|
|
|
Hyperglycemic memory in diabetic cardiomyopathy |
Jiabing Zhan, Chen Chen, Dao Wen Wang( ), Huaping Li( ) |
| Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China |
|
|
|
|
Abstract Cardiovascular diseases account for approximately 80% of deaths among individuals with diabetes mellitus, with diabetic cardiomyopathy as the major diabetic cardiovascular complication. Hyperglycemia is a symptom that abnormally activates multiple downstream pathways and contributes to cardiac hypertrophy, fibrosis, apoptosis, and other pathophysiological changes. Although glycemic control has long been at the center of diabetes therapy, multicenter randomized clinical studies have revealed that intensive glycemic control fails to reduce heart failure-associated hospitalization and mortality in patients with diabetes. This finding indicates that hyperglycemic stress persists in the cardiovascular system of patients with diabetes even if blood glucose level is tightly controlled to the normal level. This process is now referred to as hyperglycemic memory (HGM) phenomenon. We briefly reviewed herein the current advances that have been achieved in research on the underlying mechanisms of HGM in diabetic cardiomyopathy.
|
| Keywords
diabetes
diabetic cardiomyopathy
hyperglycemic memory
|
|
Corresponding Author(s):
Dao Wen Wang,Huaping Li
|
|
Just Accepted Date: 29 November 2021
Online First Date: 17 December 2021
Issue Date: 28 March 2022
|
|
| 1 |
ZY Fang, JB Prins, TH Marwick. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 2004; 25(4): 543–567
https://doi.org/10.1210/er.2003-0012
pmid: 15294881
|
| 2 |
H Farhangkhoee, ZA Khan, H Kaur, X Xin, S Chen, S Chakrabarti. Vascular endothelial dysfunction in diabetic cardiomyopathy: pathogenesis and potential treatment targets. Pharmacol Ther 2006; 111(2): 384–399
https://doi.org/10.1016/j.pharmthera.2005.10.008
pmid: 16343639
|
| 3 |
GC Fonarow. An approach to heart failure and diabetes mellitus. Am J Cardiol 2005; 96(4 Supplement): 47–52
https://doi.org/10.1016/j.amjcard.2005.06.005
pmid: 16098844
|
| 4 |
S Haffner, H Taegtmeyer. Epidemic obesity and the metabolic syndrome. Circulation 2003; 108(13): 1541–1545
https://doi.org/10.1161/01.CIR.0000088845.17586.EC
pmid: 14517149
|
| 5 |
W Hsueh, ED Abel, JL Breslow, N Maeda, RC Davis, EA Fisher, H Dansky, DA McClain, R McIndoe, MK Wassef, C Rabadán-Diehl, IJ Goldberg. Recipes for creating animal models of diabetic cardiovascular disease. Circ Res 2007; 100(10): 1415–1427
https://doi.org/10.1161/01.RES.0000266449.37396.1f
pmid: 17525381
|
| 6 |
RI Hamby, S Zoneraich, L Sherman. Diabetic cardiomyopathy. JAMA 1974; 229(13): 1749–1754
https://doi.org/10.1001/jama.1974.03230510023016
pmid: 4278055
|
| 7 |
S Cosson, JP Kevorkian. Left ventricular diastolic dysfunction: an early sign of diabetic cardiomyopathy? Diabetes Metab 2003; 29(5): 455–466
https://doi.org/10.1016/S1262-3636(07)70059-9
pmid: 14631322
|
| 8 |
G Jia, MA Hill, JR Sowers. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res 2018; 122(4): 624–638
https://doi.org/10.1161/CIRCRESAHA.117.311586
pmid: 29449364
|
| 9 |
WS Lee, J Kim. Application of animal models in diabetic cardiomyopathy. Diabetes Metab J 2021; 45(2): 129–145
https://doi.org/10.4093/dmj.2020.0285
pmid: 33813812
|
| 10 |
A Aneja, WH Tang, S Bansilal, MJ Garcia, ME Farkouh. Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 2008; 121(9): 748–757
https://doi.org/10.1016/j.amjmed.2008.03.046
pmid: 18724960
|
| 11 |
T Miki, S Yuda, H Kouzu, T Miura. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev 2013; 18(2): 149–166
https://doi.org/10.1007/s10741-012-9313-3
pmid: 22453289
|
| 12 |
H Li, J Fan, C Chen, DW Wang. Subcellular microRNAs in diabetic cardiomyopathy. Ann Transl Med 2020; 8(23): 1602
https://doi.org/10.21037/atm-20-2205
pmid: 33437801
|
| 13 |
MMY Lee, JJV McMurray, A Lorenzo-Almorós, SL Kristensen, N Sattar, PS Jhund, MC Petrie. Diabetic cardiomyopathy. Heart 2019; 105(4): 337–345
https://doi.org/10.1136/heartjnl-2016-310342
pmid: 30337334
|
| 14 |
J Ren, AF Ceylan-Isik. Diabetic cardiomyopathy: do women differ from men? Endocrine 2004; 25(2): 73–83
https://doi.org/10.1385/ENDO:25:2:073
pmid: 15711018
|
| 15 |
J Ren, JR Sowers. Application of a novel curcumin analog in the management of diabetic cardiomyopathy. Diabetes 2014; 63(10): 3166–3168
https://doi.org/10.2337/db14-0863
pmid: 25249640
|
| 16 |
Y Bi, Y Zhang, J Ren. Phosphoinositide 3-kinase therapy in diabetic cardiomyopathy: unravelling an enigma. Am J Physiol Heart Circ Physiol 2020; 318(5): H1029–H1031
https://doi.org/10.1152/ajpheart.00160.2020
pmid: 32167783
|
| 17 |
L Yang, D Zhao, J Ren, J Yang. Endoplasmic reticulum stress and protein quality control in diabetic cardiomyopathy. Biochim Biophys Acta 2015; 1852(2): 209–218
https://doi.org/10.1016/j.bbadis.2014.05.006
pmid: 24846717
|
| 18 |
.Diabetes Control and Complications Trial Research Group, DM Nathan, S Genuth, J Lachin, P Cleary, O Crofford, M Davis, L Rand, C Siebert. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329(14): 977–986
https://doi.org/10.1056/NEJM199309303291401
pmid: 8366922
|
| 19 |
A Afroz, L Ali, MN Karim, MJ Alramadan, K Alam, DJ Magliano, B Billah. Glycaemic control for people with type 2 diabetes mellitus in Bangladesh—an urgent need for optimization of management plan. Sci Rep 2019; 9(1): 10248
https://doi.org/10.1038/s41598-019-46766-9
pmid: 31308457
|
| 20 |
BG Fincke, JA Clark, M Linzer, A Spiro 3rd, DR Miller, A Lee, LE Kazis. Assessment of long-term complications due to type 2 diabetes using patient self-report: the diabetes complications index. J Ambul Care Manage 2005; 28(3): 262–273
https://doi.org/10.1097/00004479-200507000-00010
pmid: 15968219
|
| 21 |
C Stettler, S Allemann, P Jüni, CA Cull, RR Holman, M Egger, S Krähenbühl, P Diem. Glycemic control and macrovascular disease in types 1 and 2 diabetes mellitus: meta-analysis of randomized trials. Am Heart J 2006; 152(1): 27–38
https://doi.org/10.1016/j.ahj.2005.09.015
pmid: 16824829
|
| 22 |
UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998; 352(9131): 854–865
https://doi.org/10.1016/S0140-6736(98)07037-8
pmid: 9742977
|
| 23 |
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352(9131): 837–853
https://doi.org/10.1016/S0140-6736(98)07019-6
pmid: 9742976
|
| 24 |
Control Group, FM Turnbull, C Abraira, RJ Anderson, RP Byington, JP Chalmers, WC Duckworth, GW Evans, HC Gerstein, RR Holman, TE Moritz, BC Neal, T Ninomiya, AA Patel, SK Paul, F Travert, M Woodward. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia 2009; 52(11): 2288–2298
https://doi.org/10.1007/s00125-009-1470-0
pmid: 19655124
|
| 25 |
RE Gilbert, H Krum. Heart failure in diabetes: effects of anti-hyperglycaemic drug therapy. Lancet 2015; 385(9982): 2107–2117
https://doi.org/10.1016/S0140-6736(14)61402-1
pmid: 26009231
|
| 26 |
A Gugliucci. Formation of fructose-mediated advanced glycation end products and their roles in metabolic and inflammatory diseases. Adv Nutr 2017; 8(1): 54–62
https://doi.org/10.3945/an.116.013912
pmid: 28096127
|
| 27 |
KE Davis, C Prasad, P Vijayagopal, S Juma, V Imrhan. Advanced glycation end products, inflammation, and chronic metabolic diseases: links in a chain? Crit Rev Food Sci Nutr 2016; 56(6): 989–998
https://doi.org/10.1080/10408398.2012.744738
pmid: 25259686
|
| 28 |
H Ma, SY Li, P Xu, SA Babcock, EK Dolence, M Brownlee, J Li, J Ren. Advanced glycation endproduct (AGE) accumulation and AGE receptor (RAGE) up-regulation contribute to the onset of diabetic cardiomyopathy. J Cell Mol Med 2009; 13(8b): 1751–1764
https://doi.org/10.1111/j.1582-4934.2008.00547.x
pmid: 19602045
|
| 29 |
M Brownlee. Glycation products and the pathogenesis of diabetic complications. Diabetes Care 1992; 15(12): 1835–1843
https://doi.org/10.2337/diacare.15.12.1835
pmid: 1464241
|
| 30 |
MD Oldfield, LA Bach, JM Forbes, D Nikolic-Paterson, A McRobert, V Thallas, RC Atkins, T Osicka, G Jerums, ME Cooper. Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest 2001; 108(12): 1853–1863
https://doi.org/10.1172/JCI11951
pmid: 11748269
|
| 31 |
X Jin, T Yao, Z Zhou, J Zhu, S Zhang, W Hu, C. Shen Advanced glycation end products enhance macrophages polarization into M1 phenotype through activating RAGE/NF-κB pathway. Biomed Res Int 2015; 2015: 732450
https://doi.org/10.1155/2015/732450
pmid: 26114112
|
| 32 |
R Bucala, KJ Tracey, A Cerami. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest 1991; 87(2): 432–438
https://doi.org/10.1172/JCI115014
pmid: 1991829
|
| 33 |
AM Schmidt, O Hori, JX Chen, JF Li, J Crandall, J Zhang, R Cao, SD Yan, J Brett, D Stern. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest 1995; 96(3): 1395–1403
https://doi.org/10.1172/JCI118175
pmid: 7544803
|
| 34 |
J Wang, Z Tang, Y Zhang, C Qiu, L Zhu, N Zhao, Z. Liu Matrine alleviates AGEs-induced cardiac dysfunctions by attenuating calcium overload via reducing ryanodine receptor 2 activity. Eur J Pharmacol 2019; 842: 118–124
https://doi.org/10.1016/j.ejphar.2018.10.010
pmid: 30339815
|
| 35 |
C Tian, F Alomar, CJ Moore, CH Shao, S Kutty, J Singh, KR Bidasee. Reactive carbonyl species and their roles in sarcoplasmic reticulum Ca2+ cycling defect in the diabetic heart. Heart Fail Rev 2014; 19(1): 101–112
https://doi.org/10.1007/s10741-013-9384-9
pmid: 23430128
|
| 36 |
S Hamilton, D Terentyev. Altered intracellular calcium homeostasis and arrhythmogenesis in the aged heart. Int J Mol Sci 2019; 20(10): 2386
https://doi.org/10.3390/ijms20102386
pmid: 31091723
|
| 37 |
YC Yang, CY Tsai, CL Chen, CH Kuo, CW Hou, SY Cheng, R Aneja, CY Huang, WW Kuo. Pkcδ activation is involved in ROS-mediated mitochondrial dysfunction and apoptosis in cardiomyocytes exposed to advanced glycation end products (Ages). Aging Dis 2018; 9(4): 647–663
https://doi.org/10.14336/AD.2017.0924
pmid: 30090653
|
| 38 |
R Bucala, R Mitchell, K Arnold, T Innerarity, H Vlassara, A Cerami. Identification of the major site of apolipoprotein B modification by advanced glycosylation end products blocking uptake by the low density lipoprotein receptor. J Biol Chem 1995; 270(18): 10828–10832
https://doi.org/10.1074/jbc.270.18.10828
pmid: 7738020
|
| 39 |
M Zoltowska, E Delvin, E Ziv, N Peretti, M Chartré, E Levy. Impact of in vivo glycation of LDL on platelet aggregation and monocyte chemotaxis in diabetic psammomys obesus. Lipids 2004; 39(1): 81–85
https://doi.org/10.1007/s11745-004-1205-7
pmid: 15055239
|
| 40 |
J Chaudhuri, Y Bains, S Guha, A Kahn, D Hall, N Bose, A Gugliucci, P Kapahi. The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab 2018; 28(3): 337–352
https://doi.org/10.1016/j.cmet.2018.08.014
pmid: 30184484
|
| 41 |
K Nowotny, T Grune. Degradation of oxidized and glycoxidized collagen: role of collagen cross-linking. Arch Biochem Biophys 2014; 542: 56–64
https://doi.org/10.1016/j.abb.2013.12.007
pmid: 24361253
|
| 42 |
SL Fishman, H Sonmez, C Basman, V Singh, L Poretsky. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review. Mol Med 2018; 24(1): 59
https://doi.org/10.1186/s10020-018-0060-3
pmid: 30470170
|
| 43 |
H Li, J Fan, Y Zhao, X Zhang, B Dai, J Zhan, Z Yin, X Nie, XD Fu, C Chen, DW Wang. Nuclear miR-320 mediates diabetes-induced cardiac dysfunction by activating transcription of fatty acid metabolic genes to cause lipotoxicity in the heart. Circ Res 2019; 125(12): 1106–1120
https://doi.org/10.1161/CIRCRESAHA.119.314898
pmid: 31638474
|
| 44 |
X Zhang, X Zuo, B Yang, Z Li, Y Xue, Y Zhou, J Huang, X Zhao, J Zhou, Y Yan, H Zhang, P Guo, H Sun, L Guo, Y Zhang, XD Fu. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 2014; 158(3): 607–619
https://doi.org/10.1016/j.cell.2014.05.047
pmid: 25083871
|
| 45 |
TX Lu, ME Rothenberg. MicroRNA. J Allergy Clin Immunol 2018; 141(4): 1202–1207
https://doi.org/10.1016/j.jaci.2017.08.034
pmid: 29074454
|
| 46 |
X Zhong, Y Liao, L Chen, G Liu, Y Feng, T Zeng, J Zhang. The microRNAs in the pathogenesis of metabolic memory. Endocrinology 2015; 156(9): 3157–3168
https://doi.org/10.1210/en.2015-1063
pmid: 26083874
|
| 47 |
J Li, S Donath, Y Li, D Qin, BS Prabhakar, P Li. miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet 2010; 6(1): e1000795
https://doi.org/10.1371/journal.pgen.1000795
pmid: 20062521
|
| 48 |
E van Rooij, LB Sutherland, JE Thatcher, JM DiMaio, RH Naseem, WS Marshall, JA Hill, EN Olson. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA 2008; 105(35): 13027–13032
https://doi.org/10.1073/pnas.0805038105
pmid: 18723672
|
| 49 |
J Strycharz, E Świderska, A Wróblewski, M Podolska, P Czarny, J Szemraj, A Balcerczyk, J Drzewoski, J Kasznicki, A Śliwińska. Hyperglycemia affects miRNAs expression pattern during adipogenesis of human visceral adipocytes—is memorization involved? Nutrients 2018; 10(11): 1774
https://doi.org/10.3390/nu10111774
pmid: 30445791
|
| 50 |
QH Peng, P Tong, LM Gu, WJ Li. Astragalus polysaccharide attenuates metabolic memory-triggered ER stress and apoptosis via regulation of miR-204/SIRT1 axis in retinal pigment epithelial cells. Biosci Rep 2020; 40(1): BSR20192121
https://doi.org/10.1042/BSR20192121
pmid: 31894851
|
| 51 |
S Costantino, F Paneni, TF Lüscher, F Cosentino. MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart. Eur Heart J 2016; 37(6): 572–576
https://doi.org/10.1093/eurheartj/ehv599
pmid: 26553540
|
| 52 |
S Hussain, AW Khan, A Akhmedov, R Suades, S Costantino, F Paneni, K Caidahl, SA Mohammed, C Hage, C Gkolfos, H Björck, J Pernow, LH Lund, TF Lüscher, F Cosentino. Hyperglycemia induces myocardial dysfunction via epigenetic regulation of JunD. Circ Res 2020; 127(10): 1261–1273
https://doi.org/10.1161/CIRCRESAHA.120.317132
pmid: 32815777
|
| 53 |
M Tong, J Sadoshima. Nuclear miR-320 controls lipotoxicity. Circ Res 2019; 125(12): 1121–1123
https://doi.org/10.1161/CIRCRESAHA.119.316199
pmid: 31804912
|
| 54 |
FA Matough, SB Budin, ZA Hamid, N Alwahaibi, J Mohamed. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J 2012; 12(1): 5–18
https://doi.org/10.12816/0003082
pmid: 22375253
|
| 55 |
T Kuroki, K Isshiki, GL King. Oxidative stress: the lead or supporting actor in the pathogenesis of diabetic complications. J Am Soc Nephrol 2003; 14(Suppl 3): S216–S220
https://doi.org/10.1097/01.ASN.0000077405.07888.07
pmid: 12874434
|
| 56 |
D Wang, Y Yin, S Wang, T Zhao, F Gong, Y Zhao, B Wang, Y Huang, Z Cheng, G Zhu, Z Wang, Y Wang, J Ren, G Liang, X Li, Z Huang. FGF1ΔHBS prevents diabetic cardiomyopathy by maintaining mitochondrial homeostasis and reducing oxidative stress via AMPK/Nur77 suppression. Signal Transduct Target Ther 2021; 6(1): 133
https://doi.org/10.1038/s41392-021-00542-2
pmid: 33762571
|
| 57 |
AR Wende, JC Schell, CM Ha, ME Pepin, O Khalimonchuk, H Schwertz, RO Pereira, MK Brahma, J Tuinei, A Contreras-Ferrat, L Wang, CA Andrizzi, CD Olsen, WE Bradley, LJ Dell’Italia, WH Dillmann, SE Litwin, ED Abel. Maintaining myocardial glucose utilization in diabetic cardiomyopathy accelerates mitochondrial dysfunction. Diabetes 2020; 69(10): 2094–2111
https://doi.org/10.2337/db19-1057
pmid: 32366681
|
| 58 |
C Maack, M Lehrke, J Backs, FR Heinzel, JS Hulot, N Marx, WJ Paulus, P Rossignol, H Taegtmeyer, J Bauersachs, A Bayes-Genis, D Brutsaert, H Bugger, K Clarke, F Cosentino, G De Keulenaer, A Dei Cas, A González, M Huelsmann, G Iaccarino, IG Lunde, AR Lyon, P Pollesello, G Rena, NP Riksen, G Rosano, B Staels, LW van Laake, C Wanner, D Farmakis, G Filippatos, F Ruschitzka, P Seferovic, RA de Boer, S Heymans. Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology. Eur Heart J 2018; 39(48): 4243–4254
https://doi.org/10.1093/eurheartj/ehy596
pmid: 30295797
|
| 59 |
FF Jubaidi, S Zainalabidin, V Mariappan, SB Budin. Mitochondrial dysfunction in diabetic cardiomyopathy: the possible therapeutic roles of phenolic acids. Int J Mol Sci 2020; 21(17): 6043
https://doi.org/10.3390/ijms21176043
pmid: 32842567
|
| 60 |
T van de Weijer, VB Schrauwen-Hinderling, P Schrauwen. Lipotoxicity in type 2 diabetic cardiomyopathy. Cardiovasc Res 2011; 92(1): 10–18
https://doi.org/10.1093/cvr/cvr212
pmid: 21803867
|
| 61 |
BL Trumpower. The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. J Biol Chem 1990; 265(20): 11409–11412
https://doi.org/10.1016/S0021-9258(19)38410-8
pmid: 2164001
|
| 62 |
D C Wallace. Diseases of the mitochondrial DNA. Annu Rev Biochem 1992; 61: 1175–1212
https://doi.org/10.1146/annurev.bi.61.070192.005523
pmid: 1497308
|
| 63 |
F Giacco, M Brownlee. Oxidative stress and diabetic complications. Circ Res 2010; 107(9): 1058–1070
https://doi.org/10.1161/CIRCRESAHA.110.223545
pmid: 21030723
|
| 64 |
PA Craven, CM Davidson, FR DeRubertis. Increase in diacylglycerol mass in isolated glomeruli by glucose from de novo synthesis of glycerolipids. Diabetes 1990; 39(6): 667–674
https://doi.org/10.2337/diab.39.6.667
pmid: 2347431
|
| 65 |
MA Ihnat, JE Thorpe, CD Kamat, C Szabó, DE Green, LA Warnke, Z Lacza, A Cselenyák, K Ross, S Shakir, L Piconi, RC Kaltreider, A Ceriello. Reactive oxygen species mediate a cellular ‘memory’ of high glucose stress signalling. Diabetologia 2007; 50(7): 1523–1531
https://doi.org/10.1007/s00125-007-0684-2
pmid: 17508197
|
| 66 |
F Cosentino, P Francia, GG Camici, PG Pelicci, TF Lüscher, M Volpe. Final common molecular pathways of aging and cardiovascular disease: role of the p66Shc protein. Arterioscler Thromb Vasc Biol 2008; 28(4): 622–628
https://doi.org/10.1161/ATVBAHA.107.156059
pmid: 18162611
|
| 67 |
M Rota, N LeCapitaine, T Hosoda, A Boni, A De Angelis, ME Padin-Iruegas, G Esposito, S Vitale, K Urbanek, C Casarsa, M Giorgio, TF Lüscher, PG Pelicci, P Anversa, A Leri, J Kajstura. Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene. Circ Res 2006; 99(1): 42–52
https://doi.org/10.1161/01.RES.0000231289.63468.08
pmid: 16763167
|
| 68 |
F Paneni, P Mocharla, A Akhmedov, S Costantino, E Osto, M Volpe, TF Lüscher, F Cosentino. Gene silencing of the mitochondrial adaptor p66Shc suppresses vascular hyperglycemic memory in diabetes. Circ Res 2012; 111(3): 278–289
https://doi.org/10.1161/CIRCRESAHA.112.266593
pmid: 22693349
|
| 69 |
F Paneni, M Volpe, TF Lüscher, F Cosentino. SIRT1, p66Shc, and Set7/9 in vascular hyperglycemic memory: bringing all the strands together. Diabetes 2013; 62(6): 1800–1807
https://doi.org/10.2337/db12-1648
pmid: 23704521
|
| 70 |
JY Lee, YJ Lee, HY Jeon, ET Han, WS Park, SH Hong, YM Kim, KS Ha. The vicious cycle between transglutaminase 2 and reactive oxygen species in hyperglycemic memory-induced endothelial dysfunction. FASEB J 2019; 33(11): 12655–12667
https://doi.org/10.1096/fj.201901358RR
pmid: 31462079
|
| 71 |
M Isabelle, A Vergeade, F Moritz, B Dautréaux, JP Henry, F Lallemand, V Richard, P Mulder, C Thuillez, C Monteil. NADPH oxidase inhibition prevents cocaine-induced up-regulation of xanthine oxidoreductase and cardiac dysfunction. J Mol Cell Cardiol 2007; 42(2): 326–332
https://doi.org/10.1016/j.yjmcc.2006.11.011
pmid: 17217956
|
| 72 |
H Li, B Dai, J Fan, C Chen, X Nie, Z Yin, Y Zhao, X Zhang, D W Wang. The different roles of miRNA-92a-2–5p and let-7b-5p in mitochondrial translation in db/db Mice. Mol Ther Nucleic Acids 2019; 17: 424–435
https://doi.org/10.1016/j.omtn.2019.06.013
pmid: 31319246
|
| 73 |
M Climent, G Viggiani, YW Chen, G Coulis, A Castaldi. MicroRNA and ROS crosstalk in cardiac and pulmonary diseases. Int J Mol Sci 2020; 21(12): 4370
https://doi.org/10.3390/ijms21124370
pmid: 32575472
|
| 74 |
J H Kim, S G Park, S Y Song, J K Kim, J H Sung. Reactive oxygen species-responsive miR-210 regulates proliferation and migration of adipose-derived stem cells via PTPN2. Cell Death Dis 2013; 4: e588
https://doi.org/10.1038/cddis.2013.117
pmid: 23579275
|
| 75 |
J He, Q Xu, Y Jing, F Agani, X Qian, R Carpenter, Q Li, XR Wang, SS Peiper, Z Lu, LZ Liu, BH Jiang. Reactive oxygen species regulate ERBB2 and ERBB3 expression via miR-199a/125b and DNA methylation. EMBO Rep 2012; 13(12): 1116–1122
https://doi.org/10.1038/embor.2012.162
pmid: 23146892
|
| 76 |
AP West, GS Shadel. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol 2017; 17(6): 363–375
https://doi.org/10.1038/nri.2017.21
pmid: 28393922
|
| 77 |
S Jayaraman. Epigenetic mechanisms of metabolic memory in diabetes. Circ Res 2012; 110(8): 1039–1041
https://doi.org/10.1161/CIRCRESAHA.112.268375
pmid: 22499895
|
| 78 |
C Cencioni, F Spallotta, S Greco, F Martelli, A M Zeiher, C Gaetano. Epigenetic mechanisms of hyperglycemic memory. Int J Biochem Cell Biol 2014; 51: 155–158
https://doi.org/10.1016/j.biocel.2014.04.014
pmid: 24786298
|
| 79 |
M Tahiliani, KP Koh, Y Shen, WA Pastor, H Bandukwala, Y Brudno, S Agarwal, LM Iyer, DR Liu, L Aravind, A Rao. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009; 324(5929): 930–935
https://doi.org/10.1126/science.1170116
pmid: 19372391
|
| 80 |
M Xiao, H Yang, W Xu, S Ma, H Lin, H Zhu, L Liu, Y Liu, C Yang, Y Xu, S Zhao, D Ye, Y Xiong, KL Guan. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 2012; 26(12): 1326–1338
https://doi.org/10.1101/gad.191056.112
pmid: 22677546
|
| 81 |
C Serena, V Ceperuelo-Mallafré, N Keiran, MI Queipo-Ortuño, R Bernal, R Gomez-Huelgas, M Urpi-Sarda, M Sabater, V Pérez-Brocal, C Andrés-Lacueva, A Moya, FJ Tinahones, JM Fernández-Real, J Vendrell, S Fernández-Veledo. Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota. ISME J 2018; 12(7): 1642–1657
https://doi.org/10.1038/s41396-018-0068-2
pmid: 29434314
|
| 82 |
M Kim. DNA methylation: a cause and consequence of type 2 diabetes. Genomics Inform 2019; 17(4): e38
https://doi.org/10.5808/GI.2019.17.4.e38
pmid: 31896238
|
| 83 |
X Su, K E Wellen, J D Rabinowitz. Metabolic control of methylation and acetylation. Curr Opin Chem Biol 2016; 30: 52–60
https://doi.org/10.1016/j.cbpa.2015.10.030
pmid: 26629854
|
| 84 |
CL Peterson, MA Laniel. Histones and histone modifications. Curr Biol 2004; 14(14): R546–R551
https://doi.org/10.1016/j.cub.2004.07.007
pmid: 15268870
|
| 85 |
A Granger, I Abdullah, F Huebner, A Stout, T Wang, T Huebner, JA Epstein, PJ Gruber. Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J 2008; 22(10): 3549–3560
https://doi.org/10.1096/fj.08-108548
pmid: 18606865
|
| 86 |
Y Chen, J Du, Y T Zhao, L Zhang, G Lv, S Zhuang, G Qin, T C Zhao. Histone deacetylase (HDAC) inhibition improves myocardial function and prevents cardiac remodeling in diabetic mice. Cardiovasc Diabetol 2015; 14: 99
https://doi.org/10.1186/s12933-015-0262-8
pmid: 26245924
|
| 87 |
XY Yu, YJ Geng, JL Liang, QX Lin, SG Lin, S Zhang, Y Li. High levels of glucose induce apoptosis in cardiomyocyte via epigenetic regulation of the insulin-like growth factor receptor. Exp Cell Res 2010; 316(17): 2903–2909
https://doi.org/10.1016/j.yexcr.2010.07.004
pmid: 20633551
|
| 88 |
M Wang, J Hu, L Yan, Y Yang, M He, M Wu, Q Li, W Gong, Y Yang, Y Wang, DE Handy, B Lu, C Hao, Q Wang, Y Li, R Hu, RC Stanton, Z Zhang. High glucose-induced ubiquitination of G6PD leads to the injury of podocytes. FASEB J 2019; 33(5): 6296–6310
https://doi.org/10.1096/fj.201801921R
pmid: 30785802
|
| 89 |
M Vogelauer, AS Krall, MA McBrian, JY Li, SK Kurdistani. Stimulation of histone deacetylase activity by metabolites of intermediary metabolism. J Biol Chem 2012; 287(38): 32006–32016
https://doi.org/10.1074/jbc.M112.362467
pmid: 22822071
|
| 90 |
T Kouzarides. Acetylation: a regulatory modification to rival phosphorylation? EMBO J 2000; 19(6): 1176–1179
https://doi.org/10.1093/emboj/19.6.1176
pmid: 10716917
|
| 91 |
W Yu, B Gao, N Li, J Wang, C Qiu, G Zhang, M Liu, R Zhang, C Li, G Ji, Y Zhang. Sirt3 deficiency exacerbates diabetic cardiac dysfunction: role of Foxo3A-Parkin-mediated mitophagy. Biochim Biophys Acta Mol Basis Dis 2017; 1863(8): 1973–1983
https://doi.org/10.1016/j.bbadis.2016.10.021
pmid: 27794418
|
| 92 |
A Rossini, C Frati, C Lagrasta, G Graiani, A Scopece, S Cavalli, E Musso, M Baccarin, M Di Segni, F Fagnoni, A Germani, E Quaini, M Mayr, Q Xu, A Barbuti, D DiFrancesco, G Pompilio, F Quaini, C Gaetano, MC Capogrossi. Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin. Cardiovasc Res 2011; 89(3): 650–660
https://doi.org/10.1093/cvr/cvq290
pmid: 20833652
|
| 93 |
GR Wagner, RM Payne. Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J Biol Chem 2013; 288(40): 29036–29045
https://doi.org/10.1074/jbc.M113.486753
pmid: 23946487
|
| 94 |
T Narita, BT Weinert, C Choudhary. Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol 2019; 20(3): 156–174
https://doi.org/10.1038/s41580-018-0081-3
pmid: 30467427
|
| 95 |
S Kumar, YR Kim, A Vikram, A Naqvi, Q Li, M Kassan, V Kumar, MM Bachschmid, JS Jacobs, A Kumar, K Irani. Sirtuin1-regulated lysine acetylation of p66Shc governs diabetes-induced vascular oxidative stress and endothelial dysfunction. Proc Natl Acad Sci USA 2017; 114(7): 1714–1719
https://doi.org/10.1073/pnas.1614112114
pmid: 28137876
|
| 96 |
T Huang, X Li, F Wang, L Lu, W Hou, M Zhu, C Miao. The CREB/KMT5A complex regulates PTP1B to modulate high glucose-induced endothelial inflammatory factor levels in diabetic nephropathy. Cell Death Dis 2021; 12(4): 333
https://doi.org/10.1038/s41419-021-03629-4
pmid: 33782381
|
| 97 |
J Wang, X Shen, J Liu, W Chen, F Wu, W Wu, Z Meng, M Zhu, C Miao. High glucose mediates NLRP3 inflammasome activation via upregulation of ELF3 expression. Cell Death Dis 2020; 11(5): 383
https://doi.org/10.1038/s41419-020-2598-6
pmid: 32439949
|
| 98 |
H Zhang, Q Gao, S Tan, J You, C Lyu, Y Zhang, M Han, Z Chen, J Li, H Wang, L Liao, J Qin, J Li, J Wong. SET8 prevents excessive DNA methylation by methylation-mediated degradation of UHRF1 and DNMT1. Nucleic Acids Res 2019; 47(17): 9053–9068
https://doi.org/10.1093/nar/gkz626
pmid: 31400111
|
| 99 |
F Miao, Z Chen, S Genuth, A Paterson, L Zhang, X Wu, SM Li, P Cleary, A Riggs, DM Harlan, G Lorenzi, O Kolterman, W Sun, JM Lachin, R Natarajan; DCCT/EDIC Research Group. Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes. Diabetes 2014; 63(5): 1748–1762
https://doi.org/10.2337/db13-1251
pmid: 24458354
|
| 100 |
Z Chen, F Miao, AD Paterson, JM Lachin, L Zhang, DE Schones, X Wu, J Wang, JD Tompkins, S Genuth, BH Braffett, AD Riggs; DCCT/EDIC Research Group, R Natarajan. Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort. Proc Natl Acad Sci USA 2016; 113(21): E3002–E3011
https://doi.org/10.1073/pnas.1603712113
pmid: 27162351
|
| 101 |
AS Olsen, MP Sarras Jr, A Leontovich, RV Intine. Heritable transmission of diabetic metabolic memory in zebrafish correlates with DNA hypomethylation and aberrant gene expression. Diabetes 2012; 61(2): 485–491
https://doi.org/10.2337/db11-0588
pmid: 22228713
|
| 102 |
D Brasacchio, J Okabe, C Tikellis, A Balcerczyk, P George, EK Baker, AC Calkin, M Brownlee, ME Cooper, A El-Osta. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 2009; 58(5): 1229–1236
https://doi.org/10.2337/db08-1666
pmid: 19208907
|
| 103 |
A El-Osta, D Brasacchio, D Yao, A Pocai, PL Jones, RG Roeder, ME Cooper, M Brownlee. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med 2008; 205(10): 2409–2417
https://doi.org/10.1084/jem.20081188
pmid: 18809715
|
| 104 |
SE Pinney, RA Simmons. Epigenetic mechanisms in the development of type 2 diabetes. Trends Endocrinol Metab 2010; 21(4): 223–229
https://doi.org/10.1016/j.tem.2009.10.002
pmid: 19864158
|
| 105 |
AL Siebel, AZ Fernandez, A El-Osta. Glycemic memory associated epigenetic changes. Biochem Pharmacol 2010; 80(12): 1853–1859
https://doi.org/10.1016/j.bcp.2010.06.005
pmid: 20599797
|
| 106 |
J Okabe, C Orlowski, A Balcerczyk, C Tikellis, MC Thomas, ME Cooper, A El-Osta. Distinguishing hyperglycemic changes by Set7 in vascular endothelial cells. Circ Res 2012; 110(8): 1067–1076
https://doi.org/10.1161/CIRCRESAHA.112.266171
pmid: 22403242
|
| 107 |
XY Yu, YJ Geng, JL Liang, S Zhang, HP Lei, SL Zhong, QX Lin, ZX Shan, SG Lin, Y Li. High levels of glucose induce “metabolic memory” in cardiomyocyte via epigenetic histone H3 lysine 9 methylation. Mol Biol Rep 2012; 39(9): 8891–8898
https://doi.org/10.1007/s11033-012-1756-z
pmid: 22707199
|
| 108 |
F Miao, IG Gonzalo, L Lanting, R Natarajan. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J Biol Chem 2004; 279(17): 18091–18097
https://doi.org/10.1074/jbc.M311786200
pmid: 14976218
|
| 109 |
F Miao, DD Smith, L Zhang, A Min, W Feng, R Natarajan. Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes 2008; 57(12): 3189–3198
https://doi.org/10.2337/db08-0645
pmid: 18776137
|
| 110 |
Z Zheng, H Chen, J Li, T Li, B Zheng, Y Zheng, H Jin, Y He, Q Gu, X Xu. Sirtuin 1-mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin. Diabetes 2012; 61(1): 217–228
https://doi.org/10.2337/db11-0416
pmid: 22124463
|
| 111 |
X Chen, Q Wu, H Jiang, J Wang, Y Zhao, Y Xu, M Zhu. SET8 is involved in the regulation of hyperglycemic memory in human umbilical endothelial cells. Acta Biochim Biophys Sin (Shanghai) 2018; 50(7): 635–642
https://doi.org/10.1093/abbs/gmy051
pmid: 29762637
|
| 112 |
BM Zee, RS Levin, B Xu, G LeRoy, NS Wingreen, BA Garcia. In vivo residue-specific histone methylation dynamics. J Biol Chem 2010; 285(5): 3341–3350
https://doi.org/10.1074/jbc.M109.063784
pmid: 19940157
|
| 113 |
EL Greer, Y Shi. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 2012; 13(5): 343–357
https://doi.org/10.1038/nrg3173
pmid: 22473383
|
| 114 |
G Schotta, A Ebert, V Krauss, A Fischer, J Hoffmann, S Rea, T Jenuwein, R Dorn, G Reuter. Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J 2002; 21(5): 1121–1131
https://doi.org/10.1093/emboj/21.5.1121
pmid: 11867540
|
| 115 |
LN Rusché, J Rine. Conversion of a gene-specific repressor to a regional silencer. Genes Dev 2001; 15(8): 955–967
https://doi.org/10.1101/gad.873601
pmid: 11316790
|
| 116 |
DJ Owen, P Ornaghi, JC Yang, N Lowe, PR Evans, P Ballario, D Neuhaus, P Filetici, AA Travers. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J 2000; 19(22): 6141–6149
https://doi.org/10.1093/emboj/19.22.6141
pmid: 11080160
|
| 117 |
IB Dodd, MA Micheelsen, K Sneppen, G Thon. Theoretical analysis of epigenetic cell memory by nucleosome modification. Cell 2007; 129(4): 813–822
https://doi.org/10.1016/j.cell.2007.02.053
pmid: 17512413
|
| 118 |
F Prattichizzo, V De Nigris, R Spiga, E Mancuso, L La Sala, R Antonicelli, R Testa, A D Procopio, F Olivieri, A. CerielloInflammageing and metaflammation: the yin and yang of type 2 diabetes. Ageing Res Rev 2018; 41:1–17
https://doi.org/10.1016/j.arr.2017.10.003
pmid: ;29081381
|
| 119 |
E Elia, S Ministrini, F Carbone, F Montecucco. Diabetic cardiomyopathy and inflammation: development of hostile microenvironment resulting in cardiac damage. Minerva Cardioangiol 2021; [Epub ahead of print] doi: 10.23736/S0026-4725.20.05454-7
pmid: 33427423
|
| 120 |
M Brownlee. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414(6865): 813–820
https://doi.org/10.1038/414813a
pmid: 11742414
|
| 121 |
C Bianchi, R Miccoli, S Del Prato. Hyperglycemia and vascular metabolic memory: truth or fiction? Curr Diab Rep 2013; 13(3): 403–410
https://doi.org/10.1007/s11892-013-0371-2
pmid: 23456482
|
| 122 |
ME Cooper, A El-Osta. Epigenetics: mechanisms and implications for diabetic complications. Circ Res 2010; 107(12): 1403–1413
https://doi.org/10.1161/CIRCRESAHA.110.223552
pmid: 21148447
|
| 123 |
PS Banerjee, J Ma, GW Hart. Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria. Proc Natl Acad Sci USA 2015; 112(19): 6050–6055
https://doi.org/10.1073/pnas.1424017112
pmid: 25918408
|
| 124 |
GA Ngoh, HT Facundo, A Zafir, SP Jones. O-GlcNAc signaling in the cardiovascular system. Circ Res 2010; 107(2): 171–185
https://doi.org/10.1161/CIRCRESAHA.110.224675
pmid: 20651294
|
| 125 |
S Ducheix, J Magre, B Cariou, X. Prieur Chronic O-GlcNAcylation and diabetic cardiomyopathy: the bitterness of glucose. Front Endocrinol (Lausanne) 2018; 9: 642
https://doi.org/10.3389/fendo.2018.00642
pmid: 30420836
|
| 126 |
DC Love, MW Krause, JA Hanover. O-GlcNAc cycling: emerging roles in development and epigenetics. Semin Cell Dev Biol 2010; 21(6): 646–654
https://doi.org/10.1016/j.semcdb.2010.05.001
pmid: 20488252
|
| 127 |
P Friedrichs, A Schlotterer, C Sticht, M Kolibabka, P Wohlfart, A Dietrich, T Linn, G Molema, HP Hammes. Hyperglycaemic memory affects the neurovascular unit of the retina in a diabetic mouse model. Diabetologia 2017; 60(7): 1354–1358
https://doi.org/10.1007/s00125-017-4254-y
pmid: 28321468
|
| 128 |
EF Carney. Diabetic nephropathy: role of podocyte SHP-1 in hyperglycaemic memory. Nat Rev Nephrol 2016; 12(11): 650
pmid: 27641133
|
| 129 |
DM Nathan, PA Cleary, JY Backlund, SM Genuth, JM Lachin, TJ Orchard, P Raskin, B Zinman; Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 2005; 353(25): 2643–2653
https://doi.org/10.1056/NEJMoa052187
pmid: 16371630
|
| 130 |
MS Yorek, A Obrosov, H Shevalye, S Lupachyk, MM Harper, RH Kardon, MA Yorek. Effect of glycemic control on corneal nerves and peripheral neuropathy in streptozotocin-induced diabetic C57Bl/6J mice. J Peripher Nerv Syst 2014; 19(3): 205–217
https://doi.org/10.1111/jns.12086
pmid: 25403729
|
| 131 |
RL Engerman, TS Kern. Progression of incipient diabetic retinopathy during good glycemic control. Diabetes 1987; 36(7): 808–812
https://doi.org/10.2337/diab.36.7.808
pmid: 3556280
|
| 132 |
RA Kowluru. Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats. Diabetes 2003; 52(3): 818–823
https://doi.org/10.2337/diabetes.52.3.818
pmid: 12606525
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|