Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2022, Vol. 16 Issue (1) : 25-38    https://doi.org/10.1007/s11684-021-0881-2
REVIEW
Hyperglycemic memory in diabetic cardiomyopathy
Jiabing Zhan, Chen Chen, Dao Wen Wang(), Huaping Li()
Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
 Download: PDF(574 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cardiovascular diseases account for approximately 80% of deaths among individuals with diabetes mellitus, with diabetic cardiomyopathy as the major diabetic cardiovascular complication. Hyperglycemia is a symptom that abnormally activates multiple downstream pathways and contributes to cardiac hypertrophy, fibrosis, apoptosis, and other pathophysiological changes. Although glycemic control has long been at the center of diabetes therapy, multicenter randomized clinical studies have revealed that intensive glycemic control fails to reduce heart failure-associated hospitalization and mortality in patients with diabetes. This finding indicates that hyperglycemic stress persists in the cardiovascular system of patients with diabetes even if blood glucose level is tightly controlled to the normal level. This process is now referred to as hyperglycemic memory (HGM) phenomenon. We briefly reviewed herein the current advances that have been achieved in research on the underlying mechanisms of HGM in diabetic cardiomyopathy.

Keywords diabetes      diabetic cardiomyopathy      hyperglycemic memory     
Corresponding Author(s): Dao Wen Wang,Huaping Li   
Just Accepted Date: 29 November 2021   Online First Date: 17 December 2021    Issue Date: 28 March 2022
 Cite this article:   
Jiabing Zhan,Chen Chen,Dao Wen Wang, et al. Hyperglycemic memory in diabetic cardiomyopathy[J]. Front. Med., 2022, 16(1): 25-38.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-021-0881-2
https://academic.hep.com.cn/fmd/EN/Y2022/V16/I1/25
Fig.1  AGEs promote the process of diabetic cardiomyopathy via various pathways in multiple cell types.
Fig.2  Elevated miR-320 in the heart of diabetic mice acts in the nucleus to promote CD36 transcription by facilitating the association of argonaute 2 (Ago2) with RNA polymerase II, which increases the FFA uptake of cardiomyocytes and results in myocardial lipid deposition, causing cell apoptosis and cardiac dysfunction. Adapted from reference [37] with permission (OA related license).
Fig.3  Various pathogenic mechanisms by which diabetic cardiomyopathy (DCM) forms a complex network.
1 ZY Fang, JB Prins, TH Marwick. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 2004; 25(4): 543–567
https://doi.org/10.1210/er.2003-0012 pmid: 15294881
2 H Farhangkhoee, ZA Khan, H Kaur, X Xin, S Chen, S Chakrabarti. Vascular endothelial dysfunction in diabetic cardiomyopathy: pathogenesis and potential treatment targets. Pharmacol Ther 2006; 111(2): 384–399
https://doi.org/10.1016/j.pharmthera.2005.10.008 pmid: 16343639
3 GC Fonarow. An approach to heart failure and diabetes mellitus. Am J Cardiol 2005; 96(4 Supplement): 47–52
https://doi.org/10.1016/j.amjcard.2005.06.005 pmid: 16098844
4 S Haffner, H Taegtmeyer. Epidemic obesity and the metabolic syndrome. Circulation 2003; 108(13): 1541–1545
https://doi.org/10.1161/01.CIR.0000088845.17586.EC pmid: 14517149
5 W Hsueh, ED Abel, JL Breslow, N Maeda, RC Davis, EA Fisher, H Dansky, DA McClain, R McIndoe, MK Wassef, C Rabadán-Diehl, IJ Goldberg. Recipes for creating animal models of diabetic cardiovascular disease. Circ Res 2007; 100(10): 1415–1427
https://doi.org/10.1161/01.RES.0000266449.37396.1f pmid: 17525381
6 RI Hamby, S Zoneraich, L Sherman. Diabetic cardiomyopathy. JAMA 1974; 229(13): 1749–1754
https://doi.org/10.1001/jama.1974.03230510023016 pmid: 4278055
7 S Cosson, JP Kevorkian. Left ventricular diastolic dysfunction: an early sign of diabetic cardiomyopathy? Diabetes Metab 2003; 29(5): 455–466
https://doi.org/10.1016/S1262-3636(07)70059-9 pmid: 14631322
8 G Jia, MA Hill, JR Sowers. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res 2018; 122(4): 624–638
https://doi.org/10.1161/CIRCRESAHA.117.311586 pmid: 29449364
9 WS Lee, J Kim. Application of animal models in diabetic cardiomyopathy. Diabetes Metab J 2021; 45(2): 129–145
https://doi.org/10.4093/dmj.2020.0285 pmid: 33813812
10 A Aneja, WH Tang, S Bansilal, MJ Garcia, ME Farkouh. Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 2008; 121(9): 748–757
https://doi.org/10.1016/j.amjmed.2008.03.046 pmid: 18724960
11 T Miki, S Yuda, H Kouzu, T Miura. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev 2013; 18(2): 149–166
https://doi.org/10.1007/s10741-012-9313-3 pmid: 22453289
12 H Li, J Fan, C Chen, DW Wang. Subcellular microRNAs in diabetic cardiomyopathy. Ann Transl Med 2020; 8(23): 1602
https://doi.org/10.21037/atm-20-2205 pmid: 33437801
13 MMY Lee, JJV McMurray, A Lorenzo-Almorós, SL Kristensen, N Sattar, PS Jhund, MC Petrie. Diabetic cardiomyopathy. Heart 2019; 105(4): 337–345
https://doi.org/10.1136/heartjnl-2016-310342 pmid: 30337334
14 J Ren, AF Ceylan-Isik. Diabetic cardiomyopathy: do women differ from men? Endocrine 2004; 25(2): 73–83
https://doi.org/10.1385/ENDO:25:2:073 pmid: 15711018
15 J Ren, JR Sowers. Application of a novel curcumin analog in the management of diabetic cardiomyopathy. Diabetes 2014; 63(10): 3166–3168
https://doi.org/10.2337/db14-0863 pmid: 25249640
16 Y Bi, Y Zhang, J Ren. Phosphoinositide 3-kinase therapy in diabetic cardiomyopathy: unravelling an enigma. Am J Physiol Heart Circ Physiol 2020; 318(5): H1029–H1031
https://doi.org/10.1152/ajpheart.00160.2020 pmid: 32167783
17 L Yang, D Zhao, J Ren, J Yang. Endoplasmic reticulum stress and protein quality control in diabetic cardiomyopathy. Biochim Biophys Acta 2015; 1852(2): 209–218
https://doi.org/10.1016/j.bbadis.2014.05.006 pmid: 24846717
18 .Diabetes Control and Complications Trial Research Group, DM Nathan, S Genuth, J Lachin, P Cleary, O Crofford, M Davis, L Rand, C Siebert. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329(14): 977–986
https://doi.org/10.1056/NEJM199309303291401 pmid: 8366922
19 A Afroz, L Ali, MN Karim, MJ Alramadan, K Alam, DJ Magliano, B Billah. Glycaemic control for people with type 2 diabetes mellitus in Bangladesh—an urgent need for optimization of management plan. Sci Rep 2019; 9(1): 10248
https://doi.org/10.1038/s41598-019-46766-9 pmid: 31308457
20 BG Fincke, JA Clark, M Linzer, A Spiro 3rd, DR Miller, A Lee, LE Kazis. Assessment of long-term complications due to type 2 diabetes using patient self-report: the diabetes complications index. J Ambul Care Manage 2005; 28(3): 262–273
https://doi.org/10.1097/00004479-200507000-00010 pmid: 15968219
21 C Stettler, S Allemann, P Jüni, CA Cull, RR Holman, M Egger, S Krähenbühl, P Diem. Glycemic control and macrovascular disease in types 1 and 2 diabetes mellitus: meta-analysis of randomized trials. Am Heart J 2006; 152(1): 27–38
https://doi.org/10.1016/j.ahj.2005.09.015 pmid: 16824829
22 UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998; 352(9131): 854–865
https://doi.org/10.1016/S0140-6736(98)07037-8 pmid: 9742977
23 UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352(9131): 837–853
https://doi.org/10.1016/S0140-6736(98)07019-6 pmid: 9742976
24 Control Group, FM Turnbull, C Abraira, RJ Anderson, RP Byington, JP Chalmers, WC Duckworth, GW Evans, HC Gerstein, RR Holman, TE Moritz, BC Neal, T Ninomiya, AA Patel, SK Paul, F Travert, M Woodward. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia 2009; 52(11): 2288–2298
https://doi.org/10.1007/s00125-009-1470-0 pmid: 19655124
25 RE Gilbert, H Krum. Heart failure in diabetes: effects of anti-hyperglycaemic drug therapy. Lancet 2015; 385(9982): 2107–2117
https://doi.org/10.1016/S0140-6736(14)61402-1 pmid: 26009231
26 A Gugliucci. Formation of fructose-mediated advanced glycation end products and their roles in metabolic and inflammatory diseases. Adv Nutr 2017; 8(1): 54–62
https://doi.org/10.3945/an.116.013912 pmid: 28096127
27 KE Davis, C Prasad, P Vijayagopal, S Juma, V Imrhan. Advanced glycation end products, inflammation, and chronic metabolic diseases: links in a chain? Crit Rev Food Sci Nutr 2016; 56(6): 989–998
https://doi.org/10.1080/10408398.2012.744738 pmid: 25259686
28 H Ma, SY Li, P Xu, SA Babcock, EK Dolence, M Brownlee, J Li, J Ren. Advanced glycation endproduct (AGE) accumulation and AGE receptor (RAGE) up-regulation contribute to the onset of diabetic cardiomyopathy. J Cell Mol Med 2009; 13(8b): 1751–1764
https://doi.org/10.1111/j.1582-4934.2008.00547.x pmid: 19602045
29 M Brownlee. Glycation products and the pathogenesis of diabetic complications. Diabetes Care 1992; 15(12): 1835–1843
https://doi.org/10.2337/diacare.15.12.1835 pmid: 1464241
30 MD Oldfield, LA Bach, JM Forbes, D Nikolic-Paterson, A McRobert, V Thallas, RC Atkins, T Osicka, G Jerums, ME Cooper. Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest 2001; 108(12): 1853–1863
https://doi.org/10.1172/JCI11951 pmid: 11748269
31 X Jin, T Yao, Z Zhou, J Zhu, S Zhang, W Hu, C. Shen Advanced glycation end products enhance macrophages polarization into M1 phenotype through activating RAGE/NF-κB pathway. Biomed Res Int 2015; 2015: 732450
https://doi.org/10.1155/2015/732450 pmid: 26114112
32 R Bucala, KJ Tracey, A Cerami. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest 1991; 87(2): 432–438
https://doi.org/10.1172/JCI115014 pmid: 1991829
33 AM Schmidt, O Hori, JX Chen, JF Li, J Crandall, J Zhang, R Cao, SD Yan, J Brett, D Stern. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest 1995; 96(3): 1395–1403
https://doi.org/10.1172/JCI118175 pmid: 7544803
34 J Wang, Z Tang, Y Zhang, C Qiu, L Zhu, N Zhao, Z. Liu Matrine alleviates AGEs-induced cardiac dysfunctions by attenuating calcium overload via reducing ryanodine receptor 2 activity. Eur J Pharmacol 2019; 842: 118–124
https://doi.org/10.1016/j.ejphar.2018.10.010 pmid: 30339815
35 C Tian, F Alomar, CJ Moore, CH Shao, S Kutty, J Singh, KR Bidasee. Reactive carbonyl species and their roles in sarcoplasmic reticulum Ca2+ cycling defect in the diabetic heart. Heart Fail Rev 2014; 19(1): 101–112
https://doi.org/10.1007/s10741-013-9384-9 pmid: 23430128
36 S Hamilton, D Terentyev. Altered intracellular calcium homeostasis and arrhythmogenesis in the aged heart. Int J Mol Sci 2019; 20(10): 2386
https://doi.org/10.3390/ijms20102386 pmid: 31091723
37 YC Yang, CY Tsai, CL Chen, CH Kuo, CW Hou, SY Cheng, R Aneja, CY Huang, WW Kuo. Pkcδ activation is involved in ROS-mediated mitochondrial dysfunction and apoptosis in cardiomyocytes exposed to advanced glycation end products (Ages). Aging Dis 2018; 9(4): 647–663
https://doi.org/10.14336/AD.2017.0924 pmid: 30090653
38 R Bucala, R Mitchell, K Arnold, T Innerarity, H Vlassara, A Cerami. Identification of the major site of apolipoprotein B modification by advanced glycosylation end products blocking uptake by the low density lipoprotein receptor. J Biol Chem 1995; 270(18): 10828–10832
https://doi.org/10.1074/jbc.270.18.10828 pmid: 7738020
39 M Zoltowska, E Delvin, E Ziv, N Peretti, M Chartré, E Levy. Impact of in vivo glycation of LDL on platelet aggregation and monocyte chemotaxis in diabetic psammomys obesus. Lipids 2004; 39(1): 81–85
https://doi.org/10.1007/s11745-004-1205-7 pmid: 15055239
40 J Chaudhuri, Y Bains, S Guha, A Kahn, D Hall, N Bose, A Gugliucci, P Kapahi. The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab 2018; 28(3): 337–352
https://doi.org/10.1016/j.cmet.2018.08.014 pmid: 30184484
41 K Nowotny, T Grune. Degradation of oxidized and glycoxidized collagen: role of collagen cross-linking. Arch Biochem Biophys 2014; 542: 56–64
https://doi.org/10.1016/j.abb.2013.12.007 pmid: 24361253
42 SL Fishman, H Sonmez, C Basman, V Singh, L Poretsky. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review. Mol Med 2018; 24(1): 59
https://doi.org/10.1186/s10020-018-0060-3 pmid: 30470170
43 H Li, J Fan, Y Zhao, X Zhang, B Dai, J Zhan, Z Yin, X Nie, XD Fu, C Chen, DW Wang. Nuclear miR-320 mediates diabetes-induced cardiac dysfunction by activating transcription of fatty acid metabolic genes to cause lipotoxicity in the heart. Circ Res 2019; 125(12): 1106–1120
https://doi.org/10.1161/CIRCRESAHA.119.314898 pmid: 31638474
44 X Zhang, X Zuo, B Yang, Z Li, Y Xue, Y Zhou, J Huang, X Zhao, J Zhou, Y Yan, H Zhang, P Guo, H Sun, L Guo, Y Zhang, XD Fu. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 2014; 158(3): 607–619
https://doi.org/10.1016/j.cell.2014.05.047 pmid: 25083871
45 TX Lu, ME Rothenberg. MicroRNA. J Allergy Clin Immunol 2018; 141(4): 1202–1207
https://doi.org/10.1016/j.jaci.2017.08.034 pmid: 29074454
46 X Zhong, Y Liao, L Chen, G Liu, Y Feng, T Zeng, J Zhang. The microRNAs in the pathogenesis of metabolic memory. Endocrinology 2015; 156(9): 3157–3168
https://doi.org/10.1210/en.2015-1063 pmid: 26083874
47 J Li, S Donath, Y Li, D Qin, BS Prabhakar, P Li. miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet 2010; 6(1): e1000795
https://doi.org/10.1371/journal.pgen.1000795 pmid: 20062521
48 E van Rooij, LB Sutherland, JE Thatcher, JM DiMaio, RH Naseem, WS Marshall, JA Hill, EN Olson. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA 2008; 105(35): 13027–13032
https://doi.org/10.1073/pnas.0805038105 pmid: 18723672
49 J Strycharz, E Świderska, A Wróblewski, M Podolska, P Czarny, J Szemraj, A Balcerczyk, J Drzewoski, J Kasznicki, A Śliwińska. Hyperglycemia affects miRNAs expression pattern during adipogenesis of human visceral adipocytes—is memorization involved? Nutrients 2018; 10(11): 1774
https://doi.org/10.3390/nu10111774 pmid: 30445791
50 QH Peng, P Tong, LM Gu, WJ Li. Astragalus polysaccharide attenuates metabolic memory-triggered ER stress and apoptosis via regulation of miR-204/SIRT1 axis in retinal pigment epithelial cells. Biosci Rep 2020; 40(1): BSR20192121
https://doi.org/10.1042/BSR20192121 pmid: 31894851
51 S Costantino, F Paneni, TF Lüscher, F Cosentino. MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart. Eur Heart J 2016; 37(6): 572–576
https://doi.org/10.1093/eurheartj/ehv599 pmid: 26553540
52 S Hussain, AW Khan, A Akhmedov, R Suades, S Costantino, F Paneni, K Caidahl, SA Mohammed, C Hage, C Gkolfos, H Björck, J Pernow, LH Lund, TF Lüscher, F Cosentino. Hyperglycemia induces myocardial dysfunction via epigenetic regulation of JunD. Circ Res 2020; 127(10): 1261–1273
https://doi.org/10.1161/CIRCRESAHA.120.317132 pmid: 32815777
53 M Tong, J Sadoshima. Nuclear miR-320 controls lipotoxicity. Circ Res 2019; 125(12): 1121–1123
https://doi.org/10.1161/CIRCRESAHA.119.316199 pmid: 31804912
54 FA Matough, SB Budin, ZA Hamid, N Alwahaibi, J Mohamed. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J 2012; 12(1): 5–18
https://doi.org/10.12816/0003082 pmid: 22375253
55 T Kuroki, K Isshiki, GL King. Oxidative stress: the lead or supporting actor in the pathogenesis of diabetic complications. J Am Soc Nephrol 2003; 14(Suppl 3): S216–S220
https://doi.org/10.1097/01.ASN.0000077405.07888.07 pmid: 12874434
56 D Wang, Y Yin, S Wang, T Zhao, F Gong, Y Zhao, B Wang, Y Huang, Z Cheng, G Zhu, Z Wang, Y Wang, J Ren, G Liang, X Li, Z Huang. FGF1ΔHBS prevents diabetic cardiomyopathy by maintaining mitochondrial homeostasis and reducing oxidative stress via AMPK/Nur77 suppression. Signal Transduct Target Ther 2021; 6(1): 133
https://doi.org/10.1038/s41392-021-00542-2 pmid: 33762571
57 AR Wende, JC Schell, CM Ha, ME Pepin, O Khalimonchuk, H Schwertz, RO Pereira, MK Brahma, J Tuinei, A Contreras-Ferrat, L Wang, CA Andrizzi, CD Olsen, WE Bradley, LJ Dell’Italia, WH Dillmann, SE Litwin, ED Abel. Maintaining myocardial glucose utilization in diabetic cardiomyopathy accelerates mitochondrial dysfunction. Diabetes 2020; 69(10): 2094–2111
https://doi.org/10.2337/db19-1057 pmid: 32366681
58 C Maack, M Lehrke, J Backs, FR Heinzel, JS Hulot, N Marx, WJ Paulus, P Rossignol, H Taegtmeyer, J Bauersachs, A Bayes-Genis, D Brutsaert, H Bugger, K Clarke, F Cosentino, G De Keulenaer, A Dei Cas, A González, M Huelsmann, G Iaccarino, IG Lunde, AR Lyon, P Pollesello, G Rena, NP Riksen, G Rosano, B Staels, LW van Laake, C Wanner, D Farmakis, G Filippatos, F Ruschitzka, P Seferovic, RA de Boer, S Heymans. Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology. Eur Heart J 2018; 39(48): 4243–4254
https://doi.org/10.1093/eurheartj/ehy596 pmid: 30295797
59 FF Jubaidi, S Zainalabidin, V Mariappan, SB Budin. Mitochondrial dysfunction in diabetic cardiomyopathy: the possible therapeutic roles of phenolic acids. Int J Mol Sci 2020; 21(17): 6043
https://doi.org/10.3390/ijms21176043 pmid: 32842567
60 T van de Weijer, VB Schrauwen-Hinderling, P Schrauwen. Lipotoxicity in type 2 diabetic cardiomyopathy. Cardiovasc Res 2011; 92(1): 10–18
https://doi.org/10.1093/cvr/cvr212 pmid: 21803867
61 BL Trumpower. The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. J Biol Chem 1990; 265(20): 11409–11412
https://doi.org/10.1016/S0021-9258(19)38410-8 pmid: 2164001
62 D C Wallace. Diseases of the mitochondrial DNA. Annu Rev Biochem 1992; 61: 1175–1212
https://doi.org/10.1146/annurev.bi.61.070192.005523 pmid: 1497308
63 F Giacco, M Brownlee. Oxidative stress and diabetic complications. Circ Res 2010; 107(9): 1058–1070
https://doi.org/10.1161/CIRCRESAHA.110.223545 pmid: 21030723
64 PA Craven, CM Davidson, FR DeRubertis. Increase in diacylglycerol mass in isolated glomeruli by glucose from de novo synthesis of glycerolipids. Diabetes 1990; 39(6): 667–674
https://doi.org/10.2337/diab.39.6.667 pmid: 2347431
65 MA Ihnat, JE Thorpe, CD Kamat, C Szabó, DE Green, LA Warnke, Z Lacza, A Cselenyák, K Ross, S Shakir, L Piconi, RC Kaltreider, A Ceriello. Reactive oxygen species mediate a cellular ‘memory’ of high glucose stress signalling. Diabetologia 2007; 50(7): 1523–1531
https://doi.org/10.1007/s00125-007-0684-2 pmid: 17508197
66 F Cosentino, P Francia, GG Camici, PG Pelicci, TF Lüscher, M Volpe. Final common molecular pathways of aging and cardiovascular disease: role of the p66Shc protein. Arterioscler Thromb Vasc Biol 2008; 28(4): 622–628
https://doi.org/10.1161/ATVBAHA.107.156059 pmid: 18162611
67 M Rota, N LeCapitaine, T Hosoda, A Boni, A De Angelis, ME Padin-Iruegas, G Esposito, S Vitale, K Urbanek, C Casarsa, M Giorgio, TF Lüscher, PG Pelicci, P Anversa, A Leri, J Kajstura. Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene. Circ Res 2006; 99(1): 42–52
https://doi.org/10.1161/01.RES.0000231289.63468.08 pmid: 16763167
68 F Paneni, P Mocharla, A Akhmedov, S Costantino, E Osto, M Volpe, TF Lüscher, F Cosentino. Gene silencing of the mitochondrial adaptor p66Shc suppresses vascular hyperglycemic memory in diabetes. Circ Res 2012; 111(3): 278–289
https://doi.org/10.1161/CIRCRESAHA.112.266593 pmid: 22693349
69 F Paneni, M Volpe, TF Lüscher, F Cosentino. SIRT1, p66Shc, and Set7/9 in vascular hyperglycemic memory: bringing all the strands together. Diabetes 2013; 62(6): 1800–1807
https://doi.org/10.2337/db12-1648 pmid: 23704521
70 JY Lee, YJ Lee, HY Jeon, ET Han, WS Park, SH Hong, YM Kim, KS Ha. The vicious cycle between transglutaminase 2 and reactive oxygen species in hyperglycemic memory-induced endothelial dysfunction. FASEB J 2019; 33(11): 12655–12667
https://doi.org/10.1096/fj.201901358RR pmid: 31462079
71 M Isabelle, A Vergeade, F Moritz, B Dautréaux, JP Henry, F Lallemand, V Richard, P Mulder, C Thuillez, C Monteil. NADPH oxidase inhibition prevents cocaine-induced up-regulation of xanthine oxidoreductase and cardiac dysfunction. J Mol Cell Cardiol 2007; 42(2): 326–332
https://doi.org/10.1016/j.yjmcc.2006.11.011 pmid: 17217956
72 H Li, B Dai, J Fan, C Chen, X Nie, Z Yin, Y Zhao, X Zhang, D W Wang. The different roles of miRNA-92a-2–5p and let-7b-5p in mitochondrial translation in db/db Mice. Mol Ther Nucleic Acids 2019; 17: 424–435
https://doi.org/10.1016/j.omtn.2019.06.013 pmid: 31319246
73 M Climent, G Viggiani, YW Chen, G Coulis, A Castaldi. MicroRNA and ROS crosstalk in cardiac and pulmonary diseases. Int J Mol Sci 2020; 21(12): 4370
https://doi.org/10.3390/ijms21124370 pmid: 32575472
74 J H Kim, S G Park, S Y Song, J K Kim, J H Sung. Reactive oxygen species-responsive miR-210 regulates proliferation and migration of adipose-derived stem cells via PTPN2. Cell Death Dis 2013; 4: e588
https://doi.org/10.1038/cddis.2013.117 pmid: 23579275
75 J He, Q Xu, Y Jing, F Agani, X Qian, R Carpenter, Q Li, XR Wang, SS Peiper, Z Lu, LZ Liu, BH Jiang. Reactive oxygen species regulate ERBB2 and ERBB3 expression via miR-199a/125b and DNA methylation. EMBO Rep 2012; 13(12): 1116–1122
https://doi.org/10.1038/embor.2012.162 pmid: 23146892
76 AP West, GS Shadel. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol 2017; 17(6): 363–375
https://doi.org/10.1038/nri.2017.21 pmid: 28393922
77 S Jayaraman. Epigenetic mechanisms of metabolic memory in diabetes. Circ Res 2012; 110(8): 1039–1041
https://doi.org/10.1161/CIRCRESAHA.112.268375 pmid: 22499895
78 C Cencioni, F Spallotta, S Greco, F Martelli, A M Zeiher, C Gaetano. Epigenetic mechanisms of hyperglycemic memory. Int J Biochem Cell Biol 2014; 51: 155–158
https://doi.org/10.1016/j.biocel.2014.04.014 pmid: 24786298
79 M Tahiliani, KP Koh, Y Shen, WA Pastor, H Bandukwala, Y Brudno, S Agarwal, LM Iyer, DR Liu, L Aravind, A Rao. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009; 324(5929): 930–935
https://doi.org/10.1126/science.1170116 pmid: 19372391
80 M Xiao, H Yang, W Xu, S Ma, H Lin, H Zhu, L Liu, Y Liu, C Yang, Y Xu, S Zhao, D Ye, Y Xiong, KL Guan. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 2012; 26(12): 1326–1338
https://doi.org/10.1101/gad.191056.112 pmid: 22677546
81 C Serena, V Ceperuelo-Mallafré, N Keiran, MI Queipo-Ortuño, R Bernal, R Gomez-Huelgas, M Urpi-Sarda, M Sabater, V Pérez-Brocal, C Andrés-Lacueva, A Moya, FJ Tinahones, JM Fernández-Real, J Vendrell, S Fernández-Veledo. Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota. ISME J 2018; 12(7): 1642–1657
https://doi.org/10.1038/s41396-018-0068-2 pmid: 29434314
82 M Kim. DNA methylation: a cause and consequence of type 2 diabetes. Genomics Inform 2019; 17(4): e38
https://doi.org/10.5808/GI.2019.17.4.e38 pmid: 31896238
83 X Su, K E Wellen, J D Rabinowitz. Metabolic control of methylation and acetylation. Curr Opin Chem Biol 2016; 30: 52–60
https://doi.org/10.1016/j.cbpa.2015.10.030 pmid: 26629854
84 CL Peterson, MA Laniel. Histones and histone modifications. Curr Biol 2004; 14(14): R546–R551
https://doi.org/10.1016/j.cub.2004.07.007 pmid: 15268870
85 A Granger, I Abdullah, F Huebner, A Stout, T Wang, T Huebner, JA Epstein, PJ Gruber. Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J 2008; 22(10): 3549–3560
https://doi.org/10.1096/fj.08-108548 pmid: 18606865
86 Y Chen, J Du, Y T Zhao, L Zhang, G Lv, S Zhuang, G Qin, T C Zhao. Histone deacetylase (HDAC) inhibition improves myocardial function and prevents cardiac remodeling in diabetic mice. Cardiovasc Diabetol 2015; 14: 99
https://doi.org/10.1186/s12933-015-0262-8 pmid: 26245924
87 XY Yu, YJ Geng, JL Liang, QX Lin, SG Lin, S Zhang, Y Li. High levels of glucose induce apoptosis in cardiomyocyte via epigenetic regulation of the insulin-like growth factor receptor. Exp Cell Res 2010; 316(17): 2903–2909
https://doi.org/10.1016/j.yexcr.2010.07.004 pmid: 20633551
88 M Wang, J Hu, L Yan, Y Yang, M He, M Wu, Q Li, W Gong, Y Yang, Y Wang, DE Handy, B Lu, C Hao, Q Wang, Y Li, R Hu, RC Stanton, Z Zhang. High glucose-induced ubiquitination of G6PD leads to the injury of podocytes. FASEB J 2019; 33(5): 6296–6310
https://doi.org/10.1096/fj.201801921R pmid: 30785802
89 M Vogelauer, AS Krall, MA McBrian, JY Li, SK Kurdistani. Stimulation of histone deacetylase activity by metabolites of intermediary metabolism. J Biol Chem 2012; 287(38): 32006–32016
https://doi.org/10.1074/jbc.M112.362467 pmid: 22822071
90 T Kouzarides. Acetylation: a regulatory modification to rival phosphorylation? EMBO J 2000; 19(6): 1176–1179
https://doi.org/10.1093/emboj/19.6.1176 pmid: 10716917
91 W Yu, B Gao, N Li, J Wang, C Qiu, G Zhang, M Liu, R Zhang, C Li, G Ji, Y Zhang. Sirt3 deficiency exacerbates diabetic cardiac dysfunction: role of Foxo3A-Parkin-mediated mitophagy. Biochim Biophys Acta Mol Basis Dis 2017; 1863(8): 1973–1983
https://doi.org/10.1016/j.bbadis.2016.10.021 pmid: 27794418
92 A Rossini, C Frati, C Lagrasta, G Graiani, A Scopece, S Cavalli, E Musso, M Baccarin, M Di Segni, F Fagnoni, A Germani, E Quaini, M Mayr, Q Xu, A Barbuti, D DiFrancesco, G Pompilio, F Quaini, C Gaetano, MC Capogrossi. Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin. Cardiovasc Res 2011; 89(3): 650–660
https://doi.org/10.1093/cvr/cvq290 pmid: 20833652
93 GR Wagner, RM Payne. Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J Biol Chem 2013; 288(40): 29036–29045
https://doi.org/10.1074/jbc.M113.486753 pmid: 23946487
94 T Narita, BT Weinert, C Choudhary. Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol 2019; 20(3): 156–174
https://doi.org/10.1038/s41580-018-0081-3 pmid: 30467427
95 S Kumar, YR Kim, A Vikram, A Naqvi, Q Li, M Kassan, V Kumar, MM Bachschmid, JS Jacobs, A Kumar, K Irani. Sirtuin1-regulated lysine acetylation of p66Shc governs diabetes-induced vascular oxidative stress and endothelial dysfunction. Proc Natl Acad Sci USA 2017; 114(7): 1714–1719
https://doi.org/10.1073/pnas.1614112114 pmid: 28137876
96 T Huang, X Li, F Wang, L Lu, W Hou, M Zhu, C Miao. The CREB/KMT5A complex regulates PTP1B to modulate high glucose-induced endothelial inflammatory factor levels in diabetic nephropathy. Cell Death Dis 2021; 12(4): 333
https://doi.org/10.1038/s41419-021-03629-4 pmid: 33782381
97 J Wang, X Shen, J Liu, W Chen, F Wu, W Wu, Z Meng, M Zhu, C Miao. High glucose mediates NLRP3 inflammasome activation via upregulation of ELF3 expression. Cell Death Dis 2020; 11(5): 383
https://doi.org/10.1038/s41419-020-2598-6 pmid: 32439949
98 H Zhang, Q Gao, S Tan, J You, C Lyu, Y Zhang, M Han, Z Chen, J Li, H Wang, L Liao, J Qin, J Li, J Wong. SET8 prevents excessive DNA methylation by methylation-mediated degradation of UHRF1 and DNMT1. Nucleic Acids Res 2019; 47(17): 9053–9068
https://doi.org/10.1093/nar/gkz626 pmid: 31400111
99 F Miao, Z Chen, S Genuth, A Paterson, L Zhang, X Wu, SM Li, P Cleary, A Riggs, DM Harlan, G Lorenzi, O Kolterman, W Sun, JM Lachin, R Natarajan; DCCT/EDIC Research Group. Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes. Diabetes 2014; 63(5): 1748–1762
https://doi.org/10.2337/db13-1251 pmid: 24458354
100 Z Chen, F Miao, AD Paterson, JM Lachin, L Zhang, DE Schones, X Wu, J Wang, JD Tompkins, S Genuth, BH Braffett, AD Riggs; DCCT/EDIC Research Group, R Natarajan. Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort. Proc Natl Acad Sci USA 2016; 113(21): E3002–E3011
https://doi.org/10.1073/pnas.1603712113 pmid: 27162351
101 AS Olsen, MP Sarras Jr, A Leontovich, RV Intine. Heritable transmission of diabetic metabolic memory in zebrafish correlates with DNA hypomethylation and aberrant gene expression. Diabetes 2012; 61(2): 485–491
https://doi.org/10.2337/db11-0588 pmid: 22228713
102 D Brasacchio, J Okabe, C Tikellis, A Balcerczyk, P George, EK Baker, AC Calkin, M Brownlee, ME Cooper, A El-Osta. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 2009; 58(5): 1229–1236
https://doi.org/10.2337/db08-1666 pmid: 19208907
103 A El-Osta, D Brasacchio, D Yao, A Pocai, PL Jones, RG Roeder, ME Cooper, M Brownlee. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med 2008; 205(10): 2409–2417
https://doi.org/10.1084/jem.20081188 pmid: 18809715
104 SE Pinney, RA Simmons. Epigenetic mechanisms in the development of type 2 diabetes. Trends Endocrinol Metab 2010; 21(4): 223–229
https://doi.org/10.1016/j.tem.2009.10.002 pmid: 19864158
105 AL Siebel, AZ Fernandez, A El-Osta. Glycemic memory associated epigenetic changes. Biochem Pharmacol 2010; 80(12): 1853–1859
https://doi.org/10.1016/j.bcp.2010.06.005 pmid: 20599797
106 J Okabe, C Orlowski, A Balcerczyk, C Tikellis, MC Thomas, ME Cooper, A El-Osta. Distinguishing hyperglycemic changes by Set7 in vascular endothelial cells. Circ Res 2012; 110(8): 1067–1076
https://doi.org/10.1161/CIRCRESAHA.112.266171 pmid: 22403242
107 XY Yu, YJ Geng, JL Liang, S Zhang, HP Lei, SL Zhong, QX Lin, ZX Shan, SG Lin, Y Li. High levels of glucose induce “metabolic memory” in cardiomyocyte via epigenetic histone H3 lysine 9 methylation. Mol Biol Rep 2012; 39(9): 8891–8898
https://doi.org/10.1007/s11033-012-1756-z pmid: 22707199
108 F Miao, IG Gonzalo, L Lanting, R Natarajan. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J Biol Chem 2004; 279(17): 18091–18097
https://doi.org/10.1074/jbc.M311786200 pmid: 14976218
109 F Miao, DD Smith, L Zhang, A Min, W Feng, R Natarajan. Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes 2008; 57(12): 3189–3198
https://doi.org/10.2337/db08-0645 pmid: 18776137
110 Z Zheng, H Chen, J Li, T Li, B Zheng, Y Zheng, H Jin, Y He, Q Gu, X Xu. Sirtuin 1-mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin. Diabetes 2012; 61(1): 217–228
https://doi.org/10.2337/db11-0416 pmid: 22124463
111 X Chen, Q Wu, H Jiang, J Wang, Y Zhao, Y Xu, M Zhu. SET8 is involved in the regulation of hyperglycemic memory in human umbilical endothelial cells. Acta Biochim Biophys Sin (Shanghai) 2018; 50(7): 635–642
https://doi.org/10.1093/abbs/gmy051 pmid: 29762637
112 BM Zee, RS Levin, B Xu, G LeRoy, NS Wingreen, BA Garcia. In vivo residue-specific histone methylation dynamics. J Biol Chem 2010; 285(5): 3341–3350
https://doi.org/10.1074/jbc.M109.063784 pmid: 19940157
113 EL Greer, Y Shi. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 2012; 13(5): 343–357
https://doi.org/10.1038/nrg3173 pmid: 22473383
114 G Schotta, A Ebert, V Krauss, A Fischer, J Hoffmann, S Rea, T Jenuwein, R Dorn, G Reuter. Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J 2002; 21(5): 1121–1131
https://doi.org/10.1093/emboj/21.5.1121 pmid: 11867540
115 LN Rusché, J Rine. Conversion of a gene-specific repressor to a regional silencer. Genes Dev 2001; 15(8): 955–967
https://doi.org/10.1101/gad.873601 pmid: 11316790
116 DJ Owen, P Ornaghi, JC Yang, N Lowe, PR Evans, P Ballario, D Neuhaus, P Filetici, AA Travers. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J 2000; 19(22): 6141–6149
https://doi.org/10.1093/emboj/19.22.6141 pmid: 11080160
117 IB Dodd, MA Micheelsen, K Sneppen, G Thon. Theoretical analysis of epigenetic cell memory by nucleosome modification. Cell 2007; 129(4): 813–822
https://doi.org/10.1016/j.cell.2007.02.053 pmid: 17512413
118 F Prattichizzo, V De Nigris, R Spiga, E Mancuso, L La Sala, R Antonicelli, R Testa, A D Procopio, F Olivieri, A. CerielloInflammageing and metaflammation: the yin and yang of type 2 diabetes. Ageing Res Rev 2018; 41:1–17
https://doi.org/10.1016/j.arr.2017.10.003 pmid: ;29081381
119 E Elia, S Ministrini, F Carbone, F Montecucco. Diabetic cardiomyopathy and inflammation: development of hostile microenvironment resulting in cardiac damage. Minerva Cardioangiol 2021; [Epub ahead of print] doi: 10.23736/S0026-4725.20.05454-7
pmid: 33427423
120 M Brownlee. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414(6865): 813–820
https://doi.org/10.1038/414813a pmid: 11742414
121 C Bianchi, R Miccoli, S Del Prato. Hyperglycemia and vascular metabolic memory: truth or fiction? Curr Diab Rep 2013; 13(3): 403–410
https://doi.org/10.1007/s11892-013-0371-2 pmid: 23456482
122 ME Cooper, A El-Osta. Epigenetics: mechanisms and implications for diabetic complications. Circ Res 2010; 107(12): 1403–1413
https://doi.org/10.1161/CIRCRESAHA.110.223552 pmid: 21148447
123 PS Banerjee, J Ma, GW Hart. Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria. Proc Natl Acad Sci USA 2015; 112(19): 6050–6055
https://doi.org/10.1073/pnas.1424017112 pmid: 25918408
124 GA Ngoh, HT Facundo, A Zafir, SP Jones. O-GlcNAc signaling in the cardiovascular system. Circ Res 2010; 107(2): 171–185
https://doi.org/10.1161/CIRCRESAHA.110.224675 pmid: 20651294
125 S Ducheix, J Magre, B Cariou, X. Prieur Chronic O-GlcNAcylation and diabetic cardiomyopathy: the bitterness of glucose. Front Endocrinol (Lausanne) 2018; 9: 642
https://doi.org/10.3389/fendo.2018.00642 pmid: 30420836
126 DC Love, MW Krause, JA Hanover. O-GlcNAc cycling: emerging roles in development and epigenetics. Semin Cell Dev Biol 2010; 21(6): 646–654
https://doi.org/10.1016/j.semcdb.2010.05.001 pmid: 20488252
127 P Friedrichs, A Schlotterer, C Sticht, M Kolibabka, P Wohlfart, A Dietrich, T Linn, G Molema, HP Hammes. Hyperglycaemic memory affects the neurovascular unit of the retina in a diabetic mouse model. Diabetologia 2017; 60(7): 1354–1358
https://doi.org/10.1007/s00125-017-4254-y pmid: 28321468
128 EF Carney. Diabetic nephropathy: role of podocyte SHP-1 in hyperglycaemic memory. Nat Rev Nephrol 2016; 12(11): 650
pmid: 27641133
129 DM Nathan, PA Cleary, JY Backlund, SM Genuth, JM Lachin, TJ Orchard, P Raskin, B Zinman; Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 2005; 353(25): 2643–2653
https://doi.org/10.1056/NEJMoa052187 pmid: 16371630
130 MS Yorek, A Obrosov, H Shevalye, S Lupachyk, MM Harper, RH Kardon, MA Yorek. Effect of glycemic control on corneal nerves and peripheral neuropathy in streptozotocin-induced diabetic C57Bl/6J mice. J Peripher Nerv Syst 2014; 19(3): 205–217
https://doi.org/10.1111/jns.12086 pmid: 25403729
131 RL Engerman, TS Kern. Progression of incipient diabetic retinopathy during good glycemic control. Diabetes 1987; 36(7): 808–812
https://doi.org/10.2337/diab.36.7.808 pmid: 3556280
132 RA Kowluru. Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats. Diabetes 2003; 52(3): 818–823
https://doi.org/10.2337/diabetes.52.3.818 pmid: 12606525
[1] Chun Cai, Yuexing Liu, Yanyun Li, Yan Shi, Haidong Zou, Yuqian Bao, Yun Shen, Xin Cui, Chen Fu, Weiping Jia, the SIM Study Group. Effectiveness of quality of care for patients with type 2 diabetes in China: findings from the Shanghai Integration Model (SIM)[J]. Front. Med., 2022, 16(1): 126-138.
[2] Yalin Liu, Xianghang Luo. New practice in semaglutide on type-2 diabetes and obesity: clinical evidence and expectation[J]. Front. Med., 2022, 16(1): 17-24.
[3] Jianping Ye. Mechanism of insulin resistance in obesity: a role of ATP[J]. Front. Med., 2021, 15(3): 372-382.
[4] Hui Wang, Yang Zhang, Zhujun Shen, Ligang Fang, Zhenyu Liu, Shuyang Zhang. Prognostic value of fasting glucose on the risk of heart failure and left ventricular systolic dysfunction in non-diabetic patients with ST-segment elevation myocardial infarction[J]. Front. Med., 2021, 15(1): 70-78.
[5] Di Cheng, Chunyan Hu, Rui Du, Hongyan Qi, Lin Lin, Xueyan Wu, Lina Ma, Kui Peng, Mian Li, Min Xu, Yu Xu, Yufang Bi, Weiqing Wang, Yuhong Chen, Jieli Lu. Serum uric acid and risk of incident diabetes in middle-aged and elderly Chinese adults: prospective cohort study[J]. Front. Med., 2020, 14(6): 802-810.
[6] Huiwen Ren, Can Wu, Ying Shao, Shuang Liu, Yang Zhou, Qiuyue Wang. Correlation between serum miR-154-5p and urinary albumin excretion rates in patients with type 2 diabetes mellitus: a cross-sectional cohort study[J]. Front. Med., 2020, 14(5): 642-650.
[7] Pengju Zhang, Tao Li, Xingyun Wu, Edouard C. Nice, Canhua Huang, Yuanyuan Zhang. Oxidative stress and diabetes: antioxidative strategies[J]. Front. Med., 2020, 14(5): 583-600.
[8] Ning Jiang, Yao Li, Ting Shu, Jing Wang. Cytokines and inflammation in adipogenesis: an updated review[J]. Front. Med., 2019, 13(3): 314-329.
[9] Cynthia Rajani, Wei Jia. Bile acids and their effects on diabetes[J]. Front. Med., 2018, 12(6): 608-623.
[10] Jiemin Pan, Weiping Jia. Early-onset diabetes: an epidemic in China[J]. Front. Med., 2018, 12(6): 624-633.
[11] Xiaoqing Li, Xinxin Li, Genbei Wang, Yan Xu, Yuanyuan Wang, Ruijia Hao, Xiaohui Ma. Xiao Ke Qing improves glycometabolism and ameliorates insulin resistance by regulating the PI3K/Akt pathway in KKAy mice[J]. Front. Med., 2018, 12(6): 688-696.
[12] Liping Xuan, Zhiyun Zhao, Xu Jia, Yanan Hou, Tiange Wang, Mian Li, Jieli Lu, Yu Xu, Yuhong Chen, Lu Qi, Weiqing Wang, Yufang Bi, Min Xu. Type 2 diabetes is causally associated with depression: a Mendelian randomization analysis[J]. Front. Med., 2018, 12(6): 678-687.
[13] Meng Dong, Jun Lin, Wonchung Lim, Wanzhu Jin, Hyuek Jong Lee. Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia[J]. Front. Med., 2018, 12(2): 130-138.
[14] Chao Chen, Chang Wang, Chun Hu, Yachun Han, Li Zhao, Xuejing Zhu, Li Xiao, Lin Sun. Normoalbuminuric diabetic kidney disease[J]. Front. Med., 2017, 11(3): 310-318.
[15] Palka Kaur Khanuja,Satish Chander Narula,Rajesh Rajput,Rajinder Kumar Sharma,Shikha Tewari. Association of periodontal disease with glycemic control in patients with type 2 diabetes in Indian population[J]. Front. Med., 2017, 11(1): 110-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed