Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2022, Vol. 16 Issue (1) : 126-138    https://doi.org/10.1007/s11684-021-0897-7
RESEARCH ARTICLE
Effectiveness of quality of care for patients with type 2 diabetes in China: findings from the Shanghai Integration Model (SIM)
Chun Cai1, Yuexing Liu1, Yanyun Li2, Yan Shi2, Haidong Zou3, Yuqian Bao1, Yun Shen1, Xin Cui4, Chen Fu2(), Weiping Jia1(), the SIM Study Group
1. Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, National Office for Primary Diabetes Care, Shanghai Technical Center for Diabetes Prevention and Clinical Care, Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai 200233, China
2. Shanghai Municipal Center for Disease Control & Prevention, Shanghai 200336, China
3. Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai General Hospital, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200040, China
4. Shanghai Municipal Health Commission Information Center, Shanghai 200040, China
 Download: PDF(222 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This cross-sectional study aimed to investigate the quality of care of diabetes in Shanghai, China. A total of 173 235 patients with type 2 diabetes in 2017 were included in the analysis. Profiles of risk factors and intermediate outcomes were determined. The patients had a mean age of 66.43±8.12 (standard deviation (SD)) years and a mean diabetes duration of 7.95±5.53 (SD) years. The percentage of patients who achieved the target level for HbA1c (<7.0%) was 48.6%. Patients who achieved the target levels for blood pressure (BP)<130/80 mmHg and low-density lipoprotein-cholesterol (LDL-c)<2.6 mmol/L reached 17.5% and 34.0%, respectively. A total of 3.8% achieved all three target levels, and the value increased to 6.8% with an adaptation of the BP target level (<140/90 mmHg) for those over 65 years. Multivariable analysis identified the factors associated with a great likelihood of achieving all three target levels: male, young age, short diabetes duration, low body mass index, macrovascular complications, no microvascular complications, prescribed with lipid-lowering medication, and no prescription of antihypertensive medication. In conclusion, nearly 50% and one-third of the patients with diabetes met the target levels for HbA1c and LDL-c, respectively, with a low percentage achieving the BP target level. The percentage of patients who achieved all three target levels needs significant improvement.

Keywords type 2 diabetes      quality of care      macrovascular complication      microvascular complication      treatment pattern      epidemiology     
Corresponding Author(s): Chen Fu,Weiping Jia   
Just Accepted Date: 28 September 2021   Online First Date: 22 October 2021    Issue Date: 29 March 2022
 Cite this article:   
Chun Cai,Yuexing Liu,Yanyun Li, et al. Effectiveness of quality of care for patients with type 2 diabetes in China: findings from the Shanghai Integration Model (SIM)[J]. Front. Med., 2022, 16(1): 126-138.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-021-0897-7
https://academic.hep.com.cn/fmd/EN/Y2022/V16/I1/126
Fig.1  Flow diagram of recruitment of participants. CHC, community health center; T1D, type 1 diabetes; T2D, type 2 diabetes.
Characteristics Total Male Female Age<65 years Age≥65 years
Participants (n (%)) 173 235 (100.0) 78 042 (45.0) 95 193 (55.0) 69 201 (39.9) 104 034 (60.1)
Demographics
Age (year) 66.43±8.12 66.39±8.23 66.47±8.03 58.76±4.96 71.53±5.32
Sex (male/female) (%) 45.0/55.0 NA NA 44.3/55.7 45.5/54.5
Current smoker (%) 9.5 17.3 3.1 12.9 7.2
Current drinker (%) 6.9 11.7 3.1 8.9 5.6
Family history of diabetes (%) 31.0 30.6 31.4 35.9 27.7
Diabetes duration
Mean±SD (year) 7.95±5.53 7.77±5.49 8.10±5.55 6.92±5.01 8.65±5.75
0 to<5 years (%) 30.9 32.2 29.9 36.7 27.0
5 to<10 years (%) 35.2 35.3 35.1 36.6 34.2
≥10 years (%) 33.9 32.5 35.0 26.7 38.8
Metabolic and related complications
BMI
Mean±SD (kg/m2) 25.02±3.09 24.99±2.88 25.04±3.25 25.00±3.07 25.03±3.10
<24 kg/m2 (%) 38.5 37.3 39.5 38.6 38.5
24 to<28 kg/m2 (%) 44.4 47.6 41.8 44.6 44.3
≥28 kg/m2 (%) 17.1 15.1 18.7 16.8 17.2
Waist circumference (cm) 87.78±8.99 89.60±8.50 86.29±9.10 87.09±8.96 88.25±8.98
Central obesitya (%) 53.2 50.2 55.6 50.0 55.4
SBP (mmHg) 142.19±18.91 140.86±18.43 143.28±19.24 139.08±18.57 144.28±18.86
DBP (mmHg) 80.21±10.09 81.12±10.01 79.46±10.09 81.68±9.94 79.23±10.07
FPG (mmol/L) 7.64±1.95 7.75±1.97 7.56±1.93 7.79±2.01 7.55±1.91
HbA1c (%) 7.22±1.24 7.29±1.26 7.16±1.23 7.27±1.28 7.18±1.22
TC (mmol/L) 4.93±1.02 4.67±0.98 5.14±1.00 5.02±1.00 4.87±1.03
TG (mmol/L) 1.58±0.70 1.51±0.70 1.64±0.70 1.61±0.73 1.56±0.69
HDL-c (mmol/L) 1.31±0.32 1.23±0.31 1.37±0.32 1.30±0.32 1.31±0.32
LDL-c (mmol/L) 2.97±0.88 2.83±0.85 3.09±0.89 3.03±0.87 2.94±0.88
uACR
Median (Quartiles 25%, 75%) (mg/g) 16.17 (7.82, 41.00) 14.22 (6.69, 40.00) 17.75 (8.94, 41.90) 14.20 (7.10, 34.62) 17.80 (8.40, 45.90)
Albuminuria (≥30 mg/g) (%) 31.8 30.5 32.8 28.1 34.2
eGFR
Mean±SD (mL/min/1.73 m2) 85.72±16.34 85.08±16.32 86.24±16.33 93.76±14.03 80.34±15.54
Impaired eGFR (<60 mL/min/1.73 m2) (%) 8.1 8.3 7.9 2.9 11.6
DR (%) 19.3 19.0 19.6 20.5 18.4
One or more microvascular complicationsb (%) 44.7 43.4 45.8 40.8 47.7
One or more macrovascular complicationsc (%) 51.0 46.9 54.3 41.5 57.3
Treatment patterns
Glucose-lowering medication 80.3 80.5 80.0 79.6 80.7
Insulin 11.7 12.3 11.3 11.7 11.7
Antihypertensive medication 70.1 67.1 72.6 61.3 76.0
RAS inhibitors 33.4 32.1 34.5 30.6 35.2
Lipid-lowering medication 29.3 26.4 31.6 23.9 32.8
Statins 22.5 21.0 23.7 17.6 25.7
Aspirin 6.3 5.7 6.7 4.1 7.7
Tab.1  Gender-specific and age-stratified characteristics of 173 235 patients with T2D in Shanghai, China
HbA1c<7% BP LDL-c<2.6 mmol/L All three targetsa met All three age-stratified targetsb met
<130/80 mmHg <130/80 mmHg (<65 years) <140/90 mmHg (≥65 years)
All 48.6 17.5 20.4 41.0 34.0 3.8 6.8
Sex
Female 50.7 17.0 20.4 38.7 29.3 3.3 5.9
Male 46.0* 18.0* 20.3 43.6* 39.6* 4.3* 7.8*
Age
<65 years 47.2 20.4 20.4 NA 31.3 3.9 3.9
≥65 years 49.5* 15.5* NA 41.0 35.7* 3.7# 8.7*
Current smoker
No 48.7 17.0 19.9 40.6 33.8 3.7 6.7
Yes 45.0* 21.6* 23.2* 45.3* 35.8* 4.4* 6.8
Current drinker
No 48.3 17.2 20.3 40.8 33.8 3.7 6.7
Yes 48.7 19.8* 21.4# 42.3# 36.0* 4.5* 7.1
Durationc
0 to<5 years 60.5α,γ 18.2α,γ 20.3 43.2α,γ 33.1 4.4α,γ 7.8α,γ
5 to<10 years 49.2α,β 17.2 20.2 39.8 33.0 3.8α,β 6.5α,β
≥10 years 37.4β,γ 17.5 21.4β,γ 39.8 35.3β,γ 3.1β,γ 6.0β,γ
BMI
<24 kg/m2 52.1 23.1 27.6 47.6 34.8 5.2 8.6
≥24 kg/m2 46.8* 14.2* 16.3* 37.2* 34.2# 3.0* 5.8*
Central obesity
No 52.3 21.3 24.5 46.5 34.7 4.8 8.1
Yes 45.6* 13.9* 16.0* 36.4* 33.9* 2.8* 5.5*
One or more microvascular complicationsd
No 55.6 21.2 23.7 46.3 33.4 4.6 7.9
Yes 41.3* 13.5* 15.3* 34.2* 35.2* 2.6* 5.1*
One or more macrovascular complicationsd
No 47.1 18.3 20.8 40.6 31.1 3.5 5.8
Yes 50.0* 16.6* 19.7* 41.3# 36.7* 4.0* 7.7*
Tab.2  HbA1c, BP, LDL-c and all three targets control rates (%) by subgroups of demographic characteristics and risk factors in T2D participants (n = 173 235)
Part A (binary outcomes) HbA1c<7%
OR (95% CI)
BP<130/80 mmHg
OR (95% CI)
LDL-c<2.6 mmol/L
OR (95% CI)
All three targets meta
OR (95% CI)
Age 1.020 (1.018, 1.022) 0.983 (0.981, 0.985) 1.007 (1.005, 1.009) 0.994 (0.990, 0.999)
Male (vs. female) 0.800 (0.780, 0.821) 0.983 (0.951, 1.016) 1.703 (1.659, 1.749) 1.288 (1.204, 1.378)
Diabetes duration 0.935 (0.932, 0.937) 1.004 (1.001, 1.007) 1.002 (1.000, 1.005) 0.972 (0.965, 0.978)
Current smoker (vs. none) 0.832 (0.785, 0.881) 1.395 (1.303, 1.494) 0.944 (0.892, 0.999) 1.117 (0.973, 1.283)
Current drinker (vs. none) 1.307 (1.225, 1.394) 0.932 (0.862, 1.007) 1.070 (1.004, 1.141) 1.104 (0.946, 1.289)
BMI 0.957 (0.953, 0.961) 0.893 (0.888, 0.898) 0.986 (0.982, 0.990) 0.877 (0.867, 0.887)
One or more microvascular diseases (vs. none) 0.613 (0.597, 0.629) 0.633 (0.612, 0.654) 1.074 (1.046, 1.102) 0.608 (0.566, 0.653)
One or more macrovascular diseases (vs. none) 1.246 (1.214, 1.279) 1.119 (1.082, 1.158) 1.187 (1.156, 1.219) 1.241 (1.158, 1.330)
Glucose-lowering medication (vs. none) 0.417 (0.404, 0.431) NA NA 0.955 (0.880, 1.036)
Antihypertensive medication (vs. none) NA 0.655 (0.633, 0.678) NA 0.838 (0.777, 0.903)
Lipid-lowering medication (vs. none) NA NA 1.839 (1.788, 1.892) 1.743 (1.622, 1.872)
Part A: a All three targets met was defined as HbA1c<7.0%, BP<130/80 mmHg, and LDL-c<2.6 mmol/L.
Part B (continuous outcomes) HbA1c SBP DBP LDL-c
β (95% CI) β (95% CI) β (95% CI) β (95% CI)
Age −0.014 (−0.015, −0.013) 0.312 (0.298, 0.327) −0.209 (−0.217, −0.201) −0.004 (−0.004, −0.003)
Male (vs. female) 0.141 (0.127, 0.155) −1.799 (−2.022, −1.576) 1.927 (1.807, 2.047) −0.284 (−0.295, −0.274)
Diabetes duration 0.043 (0.041, 0.044) 0.055 (0.035, 0.075) −0.111 (−0.122, −0.100) −0.001 (−0.002, 0.000)
Current smoker (vs. none) 0.108 (0.076, 0.139) −2.804 (−3.294, −2.315) −1.234 (−1.498, −0.970) 0.007 (−0.016, 0.031)
Current drinker (vs. none) −0.162 (−0.198, −0.127) 1.785 (1.238, 2.333) 0.654 (0.359, 0.949) 0.003 (−0.023, 0.029)
BMI 0.024 (0.022, 0.026) 0.889 (0.853, 0.924) 0.492 (0.473, 0.512) 0.006 (0.004, 0.008)
One or more microvascular diseases (vs. none) 0.373 (0.359, 0.387) 5.553 (5.334, 5.773) 1.553 (1.435, 1.671) −0.017 (−0.028, −0.007)
One or more macrovascular diseases (vs. none) −0.150 (−0.164, −0.136) −1.482 (−1.707, −1.257) −0.547 (−0.668, −0.426) −0.066 (−0.077, −0.055)
Glucose-lowering medication (vs. none) 0.530 (0.513, 0.548) NA NA NA
Antihypertensive medication (vs. none) NA 3.702 (3.457, 3.947) 1.517 (1.386, 1.649) NA
Lipid-lowering medication (vs. none) NA NA NA −0.243 (−0.255, −0.231)
Part B: Model for HbA1c: R= 0.344, R2 = 0.118, R2adj = 0.118, P <0.001; Model for SBP: R= 0.295, R2 = 0.087, R2adj = 0.087, P <0.001; Model for DBP: R= 0.272, R2 = 0.074, R2adj = 0.074, P <0.001; Model for LDL-c: R= 0.211, R2 = 0.044, R2adj = 0.044, P <0.001.
Tab.3  Multivariable logistic and linear regression analysis of potential factors influencing the adequate control of intermediate outcome measures (HbA1c, BP, LDL-c, and all three targets) in T2D participants
Glucose-lowering medication Antihypertensive medication Lipid-lowering medication All three medication treatmentsa
No Yes No Yes No Yes No Yes
Age (year) 66.00±8.07 66.54±8.13* 63.93±8.13 67.50±7.88* 65.80±8.18 67.95±7.77* 65.86±8.15 68.35±7.70*
Diabetes duration (year) 5.81±4.65 8.49±5.60* 7.43±5.27 8.18±5.62* 7.73±5.37 8.51±5.86* 7.65±5.38 8.99±5.89*
HbA1c (%) 6.67±1.09 7.35±1.24* 7.26±1.28 7.20±1.23* 7.23±1.26 7.19±1.21* 7.20±1.25 7.27±1.21*
<7% (%) 69.1 43.4* 47.6 49.0* 48.4 49.0# 49.4 45.8*
SBP (mmHg) 141.89±18.74 142.26±18.96# 138.02±18.50 143.97±18.81* 142.21±18.93 142.12±18.87 141.93±18.91 143.06±18.92*
DBP (mmHg) 80.87±10.04 80.05±10.09* 79.51±9.92 80.51±10.14* 80.53±10.06 79.43±10.10* 80.41±10.07 79.52±10.11*
BP (%)
<130/80 mmHg 17.1 17.6 23.8 14.8* 17.5 17.5 17.8 16.3*
<130/80 mmHg (<65 years) 20.3 20.4 26.9 16.3* 20.4 20.2 20.8 18.3*
<140/90 mmHg (≥65 years) 40.9 41.0 47.9 38.8* 40.2 42.5* 40.9 41.1
LDL-c mmol/L 3.08±0.84 2.95±0.89* 3.06±0.84 2.94±0.90* 3.04±0.84 2.80±0.96* 3.04±0.85 2.76±0.95*
<2.6 mmol/L (%) 28.6 35.3* 29.3 35.9* 29.8 44.1* 30.5 45.7*
<1.8 mmol/L (%)b 7.8 11.8* 7.7 12.0* 7.7 16.8* 8.3 17.5*
All three targetsc met (%) 4.2 3.6* 4.3 3.5* 3.3 5.0* 3.5 4.7*
All three age-stratified targetsd met (%) 7.7 6.5* 6.4 6.9* 5.8 9.3* 6.2 8.9*
Tab.4  General characteristics and HbA1c, BP, LDL-c, and all three targets control rates (%) disaggregated by subgroups of different prescribed medications (n = 173 235)
1 International Diabetes Federation. IDF Diabetes Atlas, 9th ed. Brussels, Belgium: International Diabetes Federation. 2019. (accessed April 26, 2021)
2 XR Pan, WY Yang, GW Li, J; National Diabetes Prevention and Control Cooperative Group Liu. Prevalence of diabetes and its risk factors in China, 1994. Diabetes Care 1997; 20(11): 1664–1669
https://doi.org/10.2337/diacare.20.11.1664 pmid: 9353605
3 W Yang, J Lu, J Weng, W Jia, L Ji, J Xiao, Z Shan, J Liu, H Tian, Q Ji, D Zhu, J Ge, L Lin, L Chen, X Guo, Z Zhao, Q Li, Z Zhou, G Shan, J; China National Diabetes and Metabolic Disorders Study Group He. Prevalence of diabetes among men and women in China. N Engl J Med 2010; 362(12): 1090–1101
https://doi.org/10.1056/NEJMoa0908292 pmid: 20335585
4 L Wang, P Gao, M Zhang, Z Huang, D Zhang, Q Deng, Y Li, Z Zhao, X Qin, D Jin, M Zhou, X Tang, Y Hu, L Wang. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA 2017; 317(24): 2515–2523
https://doi.org/10.1001/jama.2017.7596 pmid: 28655017
5 Y Li, D Teng, X Shi, G Qin, Y Qin, H Quan, B Shi, H Sun, J Ba, B Chen, J Du, L He, X Lai, Y Li, H Chi, E Liao, C Liu, L Liu, X Tang, N Tong, G Wang, JA Zhang, Y Wang, Y Xue, L Yan, J Yang, L Yang, Y Yao, Z Ye, Q Zhang, L Zhang, J Zhu, M Zhu, G Ning, Y Mu, J Zhao, W Teng, Z Shan. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study. BMJ 2020; 369: m997
https://doi.org/10.1136/bmj.m997 pmid: 32345662
6 World Health Organization. Global action plan for the prevention and control of noncommunicable diseases 2013–2020. Geneva: World Health Organization. 2013. (accessed April 26, 2021)
7 United Nations. Sustainable development goals. 2015. . (accessed April 26, 2021)
8 Q Meng, A Mills, L Wang, Q Han. What can we learn from China’s health system reform? BMJ 2019; 365: l2349
https://doi.org/10.1136/bmj.l2349 pmid: 31217222
9 B Yuan, D Balabanova, J Gao, S Tang, Y Guo. Strengthening public health services to achieve universal health coverage in China. BMJ 2019; 365: l2358
https://doi.org/10.1136/bmj.l2358 pmid: 31227480
10 W Jia, J Weng, D Zhu, L Ji, J Lu, Z Zhou, D Zou, L Guo, Q Ji, L Chen, L Chen, J Dou, X Guo, H Kuang, L Li, Q Li, X Li, J Liu, X Ran, L Shi, G Song, X Xiao, L Yang, Z; Chinese Diabetes Society Zhao. Standards of medical care for type 2 diabetes in China 2019. Diabetes Metab Res Rev 2019; 35(6): e3158
https://doi.org/10.1002/dmrr.3158 pmid: 30908791
11 American Diabetes Association. Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021; 44(Suppl 1):S40–S52 PMID: 33298415
https://doi.org/10.2337/dc21-S004
12 Cholesterol Treatment Trialists’ (CTT) Collaboration; C Baigent, L Blackwell, J Emberson, LE Holland, C Reith, N Bhala, R Peto, EH Barnes, A Keech, J Simes, R Collins. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010; 376(9753): 1670–1681
https://doi.org/10.1016/S0140-6736(10)61350-5 pmid: 21067804
13 L Ji, D Hu, C Pan, J Weng, Y Huo, C Ma, Y Mu, C Hao, Q Ji, X Ran, B Su, H Zhuo, KA Fox, M Weber, D; CCMR Advisory Board; CCMR-3B STUDY Investigators Zhang. Primacy of the 3B approach to control risk factors for cardiovascular disease in type 2 diabetes patients. Am J Med 2013; 126(10): 925.e11–925.e22
https://doi.org/10.1016/j.amjmed.2013.02.035 pmid: 23810406
14 Y Ruan, QH Yan, JY Xu, QD Yang, HH Yao, R Li, Y Shi. Epidemiology of diabetes in adults aged 35 and older from Shanghai, China. Biomed Environ Sci 2016; 29(6): 408–416
pmid: 27470101
15 Y Liu, X Wu, C Cai, PY Tang, MM Coufal, Y Qian, SL Luu, EB Fisher, W Jia. Peer support in Shanghai’s Commitment to diabetes and chronic disease self-management: program development, program expansion, and policy. Transl Behav Med 2020; 10(1): 13–24
https://doi.org/10.1093/tbm/ibz194 pmid: 32011722
16 PH Scanlon, R Malhotra, RH Greenwood, SJ Aldington, C Foy, M Flatman, S Downes. Comparison of two reference standards in validating two field mydriatic digital photography as a method of screening for diabetic retinopathy. Br J Ophthalmol 2003; 87(10): 1258–1263
https://doi.org/10.1136/bjo.87.10.1258 pmid: 14507762
17 World Health Organization. Prevention of blindness from diabetes mellitus: report of a WHO consultation in Geneva, Switzerland. 2006. (accessed March 10, 2020)
18 Writing Group of 2018 Chinese Guidelines for the Management of Hypertension, Chinese Hypertension League, Chinese Society of Cardiology, Chinese Medical Doctor Association Hypertension Committee, Hypertension Branch of China International Exchange and Promotive Association for Medical and Health Care, Hypertension Branch of Chinese Geriatric Medical Association. 2018 Chinese guidelines for the management of hypertension.. Chin J Cardiovas Med 2019; 24: 24–56
https://doi.org/DOI: 10.3969/j.issn.1007-5410.2019.01.002
19 Y Bao, J Lu, C Wang, M Yang, H Li, X Zhang, J Zhu, H Lu, W Jia, K Xiang. Optimal waist circumference cutoffs for abdominal obesity in Chinese. Atherosclerosis 2008; 201(2): 378–384
https://doi.org/10.1016/j.atherosclerosis.2008.03.001 pmid: 18417137
20 TY Wong, J Sun, R Kawasaki, P Ruamviboonsuk, N Gupta, VC Lansingh, M Maia, W Mathenge, S Moreker, MMK Muqit, S Resnikoff, J Verdaguer, P Zhao, F Ferris, LP Aiello, HR Taylor. Guidelines on diabetic eye care: the International Council of Ophthalmology Recommendations for Screening, Follow-up, Referral, and Treatment Based on Resource Settings. Ophthalmology 2018; 125(10): 1608–1622
https://doi.org/10.1016/j.ophtha.2018.04.007 pmid: 29776671
21 PW Wilson, RB D’Agostino, H Parise, L Sullivan, JB Meigs. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 2005; 112(20): 3066–3072
https://doi.org/10.1161/CIRCULATIONAHA.105.539528 pmid: 16275870
22 AM Kanaya, N Adler, HH Moffet, J Liu, D Schillinger, A Adams, AT Ahmed, AJ Karter. Heterogeneity of diabetes outcomes among asians and pacific islanders in the US: the diabetes study of northern california (DISTANCE). Diabetes Care 2011; 34(4): 930–937
https://doi.org/10.2337/dc10-1964 pmid: 21350114
23 E Selvin, MW Steffes, H Zhu, K Matsushita, L Wagenknecht, J Pankow, J Coresh, FL Brancati. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N Engl J Med 2010; 362(9): 800–811
https://doi.org/10.1056/NEJMoa0908359 pmid: 20200384
24 M Kosiborod, MB Gomes, A Nicolucci, S Pocock, W Rathmann, MV Shestakova, H Watada, I Shimomura, H Chen, J Cid-Ruzafa, P Fenici, N Hammar, F Surmont, F Tang, K; DISCOVER investigators Khunti. Vascular complications in patients with type 2 diabetes: prevalence and associated factors in 38 countries (the DISCOVER study program). Cardiovasc Diabetol 2018; 17(1): 150
https://doi.org/10.1186/s12933-018-0787-8 pmid: 30486889
25 A Rawshani, A Rawshani, S Franzén, B Eliasson, AM Svensson, M Miftaraj, DK McGuire, N Sattar, A Rosengren, S Gudbjörnsdottir. Mortality and cardiovascular disease in type 1 and type 2 diabetes. N Engl J Med 2017; 376(15): 1407–1418
https://doi.org/10.1056/NEJMoa1608664 pmid: 28402770
26 P Gaede, P Vedel, N Larsen, GV Jensen, HH Parving, O Pedersen. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 2003; 348(5): 383–393
https://doi.org/10.1056/NEJMoa021778 pmid: 12556541
27 P Gaede, H Lund-Andersen, HH Parving, O Pedersen. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 2008; 358(6): 580–591
https://doi.org/10.1056/NEJMoa0706245 pmid: 18256393
28 Å Bakke, AT Tran, I Dalen, JG Cooper, KF Løvaas, AK Jenum, TJ Berg, TV Madsen, K Nøkleby, B Gjelsvik, T Claudi, S Skeie, S Carlsen, S Sandberg, G Thue. Population, general practitioner and practice characteristics are associated with screening procedures for microvascular complications in type 2 diabetes care in Norway. Diabet Med 2019; 36(11): 1431–1443
https://doi.org/10.1111/dme.13842 pmid: 30343522
29 DH Seo, S Kang, YH Lee, JY Ha, JS Park, BW Lee, ES Kang, CW Ahn, BS Cha. Current management of type 2 diabetes mellitus in primary care clinics in Korea. Endocrinol Metab (Seoul) 2019; 34(3): 282–290
https://doi.org/10.3803/EnM.2019.34.3.282 pmid: 31565881
30 MK Ali, KM Bullard, JB Saaddine, CC Cowie, G Imperatore, EW Gregg. Achievement of goals in U.S. diabetes care, 1999−2010. N Engl J Med 2013; 368(17): 1613–1624
https://doi.org/10.1056/NEJMsa1213829 pmid: 23614587
31 MA Stone, G Charpentier, K Doggen, O Kuss, U Lindblad, C Kellner, J Nolan, A Pazderska, G Rutten, M Trento, K; GUIDANCE Study Group Khunti. Quality of care of people with type 2 diabetes in eight European countries: findings from the Guideline Adherence to Enhance Care (GUIDANCE) study. Diabetes Care 2013; 36(9): 2628–2638
https://doi.org/10.2337/dc12-1759 pmid: 23628621
32 AOY Luk, EMT Hui, MC Sin, CY Yeung, WS Chow, AYY Ho, HF Hung, E Kan, CM Ng, WY So, CK Yeung, KS Chan, KW Chan, PF Chan, SC Siu, SC Tiu, VTF Yeung, JCN Chan, FWK Chan, C Cheung, NT Cheung, ST Ho, KSL Lam, LWL Yu, D Chao, IT Lau. Declining trends of cardiovascular-renal complications and mortality in type 2 diabetes: the Hong Kong Diabetes Database. Diabetes Care 2017; 40(7): 928–935
https://doi.org/10.2337/dc16-2354 pmid: 28490423
33 S De Cosmo, F Viazzi, A Pacilli, C Giorda, A Ceriello, S Gentile, G Russo, MC Rossi, A Nicolucci, P Guida, P Di Bartolo, R; AMD-Annals Study Group Pontremoli. Achievement of therapeutic targets in patients with diabetes and chronic kidney disease: insights from the Associazione Medici Diabetologi Annals initiative. Nephrol Dial Transplant 2015; 30(9): 1526–1533
https://doi.org/10.1093/ndt/gfv101 pmid: 25883195
34 D Kar, C Gillies, F Zaccardi, D Webb, S Seidu, S Tesfaye, M Davies, K Khunti. Relationship of cardiometabolic parameters in non-smokers, current smokers, and quitters in diabetes: a systematic review and meta-analysis. Cardiovasc Diabetol 2016; 15(1): 158
https://doi.org/10.1186/s12933-016-0475-5 pmid: 27881170
35 MA Alomari, OF Khabour, KH Alzoubi, DM Shqair, T Eissenberg. Central and peripheral cardiovascular changes immediately after waterpipe smoking. Inhal Toxicol 2014; 26(10): 579–587
https://doi.org/10.3109/08958378.2014.936572 pmid: 25144473
36 PE Cryer, MW Haymond, JV Santiago, SD Shah. Norepinephrine and epinephrine release and adrenergic mediation of smoking-associated hemodynamic and metabolic events. N Engl J Med 1976; 295(11): 573–577
https://doi.org/10.1056/NEJM197609092951101 pmid: 950972
37 K Narkiewicz, PJ van de Borne, M Hausberg, RL Cooley, MD Winniford, DE Davison, VK Somers. Cigarette smoking increases sympathetic outflow in humans. Circulation 1998; 98(6): 528–534
https://doi.org/10.1161/01.CIR.98.6.528 pmid: 9714109
38 B Waeber, MD Schaller, J Nussberger, JP Bussien, KG Hofbauer, HR Brunner. Skin blood flow and cigarette smoking: the role of vasopressin. Clin Exp Hypertens A 1984; 6(10-11): 2003–2006
https://doi.org/10.3109/10641968409046117 pmid: 6532586
39 G Li, H Wang, K Wang, W Wang, F Dong, Y Qian, H Gong, C Hui, G Xu, Y Li, L Pan, B Zhang, G Shan. The association between smoking and blood pressure in men: a cross-sectional study. BMC Public Health 2017; 17(1): 797
https://doi.org/10.1186/s12889-017-4802-x pmid: 29017534
40 T Gordon, WB Kannel, TR Dawber, D McGee. Changes associated with quitting cigarette smoking: the Framingham Study. Am Heart J 1975; 90(3): 322–328
https://doi.org/10.1016/0002-8703(75)90320-8 pmid: 1163424
41 MS Green, G Harari. A prospective study of the effects of changes in smoking habits on blood count, serum lipids and lipoproteins, body weight and blood pressure in occupationally active men. The Israeli CORDIS Study. J Clin Epidemiol 1995; 48(9): 1159–1166
https://doi.org/10.1016/0895-4356(95)00005-O pmid: 7636518
42 CC Seltzer. Effect of smoking on blood pressure. Am Heart J 1974; 87(5): 558–564
https://doi.org/10.1016/0002-8703(74)90492-X pmid: 4818700
43 DH Lee, MH Ha, JR Kim, DR Jacobs Jr. Effects of smoking cessation on changes in blood pressure and incidence of hypertension: a 4-year follow-up study. Hypertension 2001; 37(2): 194–198
https://doi.org/10.1161/01.HYP.37.2.194 pmid: 11230270
44 A Rawshani, A Rawshani, S Franzén, N Sattar, B Eliasson, AM Svensson, B Zethelius, M Miftaraj, DK McGuire, A Rosengren, S Gudbjörnsdottir. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2018; 379(7): 633–644
https://doi.org/10.1056/NEJMoa1800256 pmid: 30110583
45 RH Fagard. Smoking amplifies cardiovascular risk in patients with hypertension and diabetes. Diabetes Care 2009; 32 (Suppl 2): S429–S431 PMID: 19875595
https://doi.org/10.2337/dc09-S354
[1] FMD-21051-OF-JWP_suppl_1 Download
[1] Yalin Liu, Xianghang Luo. New practice in semaglutide on type-2 diabetes and obesity: clinical evidence and expectation[J]. Front. Med., 2022, 16(1): 17-24.
[2] William J. Liu, Haixia Xiao, Lianpan Dai, Di Liu, Jianjun Chen, Xiaopeng Qi, Yuhai Bi, Yi Shi, George F. Gao, Yingxia Liu. Avian influenza A (H7N9) virus: from low pathogenic to highly pathogenic[J]. Front. Med., 2021, 15(4): 507-527.
[3] Jianping Ye. Mechanism of insulin resistance in obesity: a role of ATP[J]. Front. Med., 2021, 15(3): 372-382.
[4] Solmaz Ohadian Moghadam, Seyed Ali Momeni. Human microbiome and prostate cancer development: current insights into the prevention and treatment[J]. Front. Med., 2021, 15(1): 11-32.
[5] Huiwen Ren, Can Wu, Ying Shao, Shuang Liu, Yang Zhou, Qiuyue Wang. Correlation between serum miR-154-5p and urinary albumin excretion rates in patients with type 2 diabetes mellitus: a cross-sectional cohort study[J]. Front. Med., 2020, 14(5): 642-650.
[6] Min Zhou, Xinxin Zhang, Jieming Qu. Coronavirus disease 2019 (COVID-19): a clinical update[J]. Front. Med., 2020, 14(2): 126-135.
[7] Honglu Zhou, Songmei Wang, Lorenz von Seidlein, Xuanyi Wang. The epidemiology of norovirus gastroenteritis in China: disease burden and distribution of genotypes[J]. Front. Med., 2020, 14(1): 1-7.
[8] Xiaoxin Wu, Lanlan Xiao, Lanjuan Li. Research progress on human infection with avian influenza H7N9[J]. Front. Med., 2020, 14(1): 8-20.
[9] Ning Jiang, Yao Li, Ting Shu, Jing Wang. Cytokines and inflammation in adipogenesis: an updated review[J]. Front. Med., 2019, 13(3): 314-329.
[10] Liping Xuan, Zhiyun Zhao, Xu Jia, Yanan Hou, Tiange Wang, Mian Li, Jieli Lu, Yu Xu, Yuhong Chen, Lu Qi, Weiqing Wang, Yufang Bi, Min Xu. Type 2 diabetes is causally associated with depression: a Mendelian randomization analysis[J]. Front. Med., 2018, 12(6): 678-687.
[11] Xiaoqing Li, Xinxin Li, Genbei Wang, Yan Xu, Yuanyuan Wang, Ruijia Hao, Xiaohui Ma. Xiao Ke Qing improves glycometabolism and ameliorates insulin resistance by regulating the PI3K/Akt pathway in KKAy mice[J]. Front. Med., 2018, 12(6): 688-696.
[12] Eun Young Lee, Kun-Ho Yoon. Epidemic obesity in children and adolescents: risk factors and prevention[J]. Front. Med., 2018, 12(6): 658-666.
[13] Chongguang Yang, Qian Gao. Recent transmission of Mycobacterium tuberculosis in China: the implication of molecular epidemiology for tuberculosis control[J]. Front. Med., 2018, 12(1): 76-83.
[14] Biao Kan, Haijian Zhou, Pengcheng Du, Wen Zhang, Xin Lu, Tian Qin, Jianguo Xu. Transforming bacterial disease surveillance and investigation using whole-genome sequence to probe the trace[J]. Front. Med., 2018, 12(1): 23-33.
[15] Min Chen, Yuan Xu, Nan Hong, Yali Yang, Wenzhi Lei, Lin Du, Jingjun Zhao, Xia Lei, Lin Xiong, Langqi Cai, Hui Xu, Weihua Pan, Wanqing Liao. Epidemiology of fungal infections in China[J]. Front. Med., 2018, 12(1): 58-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed