Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2021, Vol. 15 Issue (4) : 507-527    https://doi.org/10.1007/s11684-020-0814-5
REVIEW
Avian influenza A (H7N9) virus: from low pathogenic to highly pathogenic
William J. Liu1,2(), Haixia Xiao3, Lianpan Dai4, Di Liu5,6,7,8, Jianjun Chen5,6,7,8, Xiaopeng Qi9, Yuhai Bi1,4,7,8, Yi Shi1,4,7,8, George F. Gao2,4,9, Yingxia Liu1()
1. Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen 518114, China
2. National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
3. Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin 300308, China
4. CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
5. CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China
6. National Virus Resource Center, Chinese Academy of Sciences, Wuhan 430071, China
7. University of Chinese Academy Sciences, Beijing 100049, China
8. Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing 100101, China
9. Chinese Center for Disease Control and Prevention, Beijing 102206, China
 Download: PDF(1813 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The avian influenza A (H7N9) virus is a zoonotic virus that is closely associated with live poultry markets. It has caused infections in humans in China since 2013. Five waves of the H7N9 influenza epidemic occurred in China between March 2013 and September 2017. H7N9 with low-pathogenicity dominated in the first four waves, whereas highly pathogenic H7N9 influenza emerged in poultry and spread to humans during the fifth wave, causing wide concern. Specialists and officials from China and other countries responded quickly, controlled the epidemic well thus far, and characterized the virus by using new technologies and surveillance tools that were made possible by their preparedness efforts. Here, we review the characteristics of the H7N9 viruses that were identified while controlling the spread of the disease. It was summarized and discussed from the perspectives of molecular epidemiology, clinical features, virulence and pathogenesis, receptor binding, T-cell responses, monoclonal antibody development, vaccine development, and disease burden. These data provide tools for minimizing the future threat of H7N9 and other emerging and re-emerging viruses, such as SARS-CoV-2.

Keywords H7N9      HPAIV      epidemiology      clinical features      pathogenesis      hemagglutinin      immunity      vaccine     
Corresponding Author(s): William J. Liu,Yingxia Liu   
Just Accepted Date: 03 December 2020   Online First Date: 15 April 2021    Issue Date: 23 September 2021
 Cite this article:   
William J. Liu,Haixia Xiao,Lianpan Dai, et al. Avian influenza A (H7N9) virus: from low pathogenic to highly pathogenic[J]. Front. Med., 2021, 15(4): 507-527.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-020-0814-5
https://academic.hep.com.cn/fmd/EN/Y2021/V15/I4/507
Fig.1  Origin and evolution of H7N9 viruses. (A) Schematic of the origin and dynamic reassortment of H7N9 viruses. The migratory birds, ducks, chickens, and humans involved in the emergence and outbreaks of H7N9 are shown. The dashed line arrow and circle of N9 represent the uncertain presence of N9 in ducks as indicated by a previous study [19]. Colored internal gene names in clouds represent diversified H9N2 gene pools. The specific reassortment of H7N9 with the H5N6 and H6N6 viruses is also shown. HP represents the highly pathogenic H7N9 viruses, which have also caused human infections. (B) Maximum likelihood (ML) trees of the surface genes of the H7N9 viruses in all human infections. Sequences of the surface genes of the H7N9 viruses in all human infections were downloaded from the NCBI Influenza Virus Database and Global Initiative on Sharing All Influenza Data for phylogenetic analysis. ML trees were inferred with the software RAxML under the GTRGAMMA model with 1000 bootstrap replicates by using A/Shanghai/02/2013 as the root. The background colors of the branches show the time at which the corresponding virus was isolated and are classified as waves 1 to 5 and after wave 5. Colored strips far from the tree indicate the regions from which the corresponding viruses were isolated. The Yangtze River Delta region, the Pearl River Delta region, and other regions are labeled in red, blue, and no-color, respectively. HP in the upper panel shows the cluster containing all HP H7N9 isolates.
Fig.2  Radiographic findings in A (H7N9) pneumonia. Chest radiograph (A) and computed tomography scan (B) showing bilateral ground-glass opacities and consolidation.
ParameteraHP (wave five, N = 5)b, cLP (wave five, N = 7)P valueeLP (first four waves, n = 123)dP valuee
WBC (×109/L) f5.02 (4.81–5.6)3.88 (3.52–6.39)NAg4.5 (2.9–6.2)NA
LYM (×109/L)0.505 (0.48–0.56)0.53 (0.47–0.86)NA0.5 (0.3–0.7)NA
NEU (×109/L)4.18 (4.13–4.73)3.22 (3.1–4.97)NA3.3 (2.2–5.4)NA
PLT (×109/L)166 (160–221.5)157 (139–198.3)NA114 (82–147.5)NA
AST (U/L)64.2 (38.5–107.4)88.3 (42.85–224.9)NA53 (38–96.5)NA
ALT (U/L)63.7 (40.4–112.4)74 (44.05–119.7)NA35.5 (24–64.5)NA
CRE (µmol/L)60 (53–107.15)89.65 (62.1–106.6)NA70.7 (58.3–85)NA
CK (U/L)182 (144–239.5)163.8 (123.75–354)NA195 (96–562)NA
CRP (nmol/L)92.65 (74.6–176.2)72.5 (49.7–83.3)NA65 (25–113)NA
ALB (g/L)31.9 (26.3–32.5)32.6 (32.5–33.7)NANANA
LDH (U/L)711.5 (573.8–848.5)994.5(475.8–1596.5)NA498 (388–661)NA
Leukopenia0/4 (0%)4/7 (57%)0.19448/105 (46%)0.129
Lymphopenia4/4 (100%)5/5 (100%)NA88/99 (89%)1.000
Neutropenia0/4 (0%)0/6 (0%)NA13/103 (13%)1.000
Neutrophilia0/4 (0%)0/6 (0%)NA5/103 (5%)1.000
Thrombocytopenia0/3 (0%)3/6 (50%)0.46480/104 (77%)0.015
Elevated AST2/4 (50%)4/7 (57%)1.00054/103 (52%)1.000
Elevated ALT2/3 (66.7%)4/6 (66.7%)1.00034/100 (34%)0.279
Elevated CRE1/3 (33.3%)1/6 (16.7%)1.00011/103 (11%)0.305
Elevated CK2/4 (50%)2/6 (33.3%)1.00048/98 (49%)1.000
Elevated CRP4/4 (100%)5/5 (100%)NA83/92 (90%)1.000
Elevated LDH4/4 (100%)6/6 (100%)NA89/98 (91%)1.000
Tab.1  Clinical characteristics and laboratory results of subjects hospitalized for infection with low pathogenic and highly pathogenic H7N9 during the five waves of the H7N9 epidemic in China
ProteinAmino acid positionPotential biological functions
HA aS138AResponsible for the acquisition of human receptor binding capacity [70]
T221P
G186VResponsible for the acquisition of human receptor binding capacity [70,72]
Q226LCritical for binding the a-2,6-linked receptor and enables transmission in mammals [70,72,174,175]
Insert-KRTA-at the HA cleavage siteContributes to disease in mice [176]
HA2-K64EReduces viral stability and replication in mice [176]
NA19- to 20-amino-acid deletion in the NA stalkEnhances virulence in mice [60]
PB2T271AEnhances viral replication in mammalian cells in vitro [175]
K526REnhances viral replication in mammalian cells and in mice [56]
A558VPromotes mammalian adaptation [58]
E627KAssociates with increased virulence of AIVs in mammals [33,175,177179]
Q591KIncreases pathogenicity in mice [177,178]
D701N
NPV41I and/or D210EPromotes the replication capability of H7N9 viruses at low temperature and thus might contribute to viral transmissibility [180]
A286VAttenuates the virulence of H7N9 viruses in mice [181]
T437M
NS1V178IPromotes viral replication in mice [182]
P212S
Tab.2  Critical amino acid residues in H7N9 proteins associated with viral virulence in mammals
Fig.3  Diagram of the evolutionary routes of H7N9 HA. H7 HA with different residue combinations at receptor binding sites (G186/Q226, V186/L226, G186/L226, and V186/Q226) are represented by surface sheets and colored cyan, violet, wheat, and orange. SA receptor analogs are shown as sticks and colored on the basis of elements (carbon, yellow; oxygen, red; nitrogen, blue). The positions of residues 186 and 226 are highlighted in purple.
Fig.4  Molecular basis for cross-reactive T cell immunity and immune evasion between the H7N9 and 2009 pH1N1 influenza viruses. (A, B) 2009 pH1N1-derived T cell epitope peptide H1-P22 (PDB code: 4MJ5) and substitution peptide H7-P22 from H7N9 (PDB code: 4MJ6) presented by HLA-A*1101. The peptide-binding groove is shown as the vacuum electrostatic surface potential of the HLA-A*1101 H chain. (C) Alignment of peptides H1-P22 (green) and H7-P22 (yellow). The a1-helix of the HLA-A*1101 H chain is shown as a white spiral ribbon behind the peptide. (D, E) Peptide H1-P25 in pH1N1 (PDB code: 5WWU) and its substitution peptide in H7N9 H7-P25 (PDB code: 5WXD) presented by HLA-A*2402. The peptide binding groove is shown by the vacuum electrostatic surface potential of the HLA-A*2402 H chain. (F) Alignment of peptides H1-P25 (cyan) and H7-P25 (orange). The a1-helix of the HLA-A*2402 H chain is shown as a white spiral ribbon behind the peptide. The names and positions of the conserved residues in the peptides are denoted by black letters and numbers, respectively. Conserved residues are shown with colored sticks. Residue substitutions are shown in underlined bold text in colors corresponding to the peptides. Residue substitutions are shown with colored spheres and sticks.
Vaccine typesVaccine manufacturerClinical trial registration
Inactivated influenza vaccines
SubunitNovartis, ItalyNCT01928472
Split virionSanofi PasteurNCT01938742
Split virionSanofi PasteurNCT01942265
Split virionSanofi PasteurNCT02213354
Split virionSanofi PasteurNCT02921997
Split virionGSKNCT02177734
Split virionGSKNCT01999842
Whole virusMedigen Vacc CorpNCT02436928
Live attenuated influenza vaccines
LAIV (Len17-based)aMicrogenNCT02480101
Prime/boost strategies
LAIV (AA-based)/IIV (split virion)bMedImmuneNCT01995695
NCT02274545
NCT02151344
LAIV (AA-based)/IIV (not specified)MedImmuneNCT02957656
IIV(split virion)/LAIV (AA-based)MedImmuneNCT02251288
Virus-like particle (VLP)
VLPNovavaxNCT01897701
VLPNovavaxNCT02078674
Tab.3  H7N9 influenza vaccines in clinical development
1 M Koopmans, B Wilbrink, M Conyn, G Natrop, H van der Nat, H Vennema, A Meijer, J van Steenbergen, R Fouchier, A Osterhaus, A Bosman. Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet 2004; 363(9409): 587–593
https://doi.org/10.1016/S0140-6736(04)15589-X pmid: 14987882
2 R Gao, B Cao, Y Hu, Z Feng, D Wang, W Hu, J Chen, Z Jie, H Qiu, K Xu, X Xu, H Lu, W Zhu, Z Gao, N Xiang, Y Shen, Z He, Y Gu, Z Zhang, Y Yang, X Zhao, L Zhou, X Li, S Zou, Y Zhang, X Li, L Yang, J Guo, J Dong, Q Li, L Dong, Y Zhu, T Bai, S Wang, P Hao, W Yang, Y Zhang, J Han, H Yu, D Li, GF Gao, G Wu, Y Wang, Z Yuan, Y Shu. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 2013; 368(20): 1888–1897
https://doi.org/10.1056/NEJMoa1304459 pmid: 23577628
3 D Liu, W Shi, Y Shi, D Wang, H Xiao, W Li, Y Bi, Y Wu, X Li, J Yan, W Liu, G Zhao, W Yang, Y Wang, J Ma, Y Shu, F Lei, GF Gao. Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet 2013; 381(9881): 1926–1932
https://doi.org/10.1016/S0140-6736(13)60938-1 pmid: 23643111
4 J Liu, H Xiao, Y Wu, D Liu, X Qi, Y Shi, GF Gao. H7N9: a low pathogenic avian influenza A virus infecting humans. Curr Opin Virol 2014; 5: 91–97
https://doi.org/10.1016/j.coviro.2014.03.001 pmid: 24705093
5 JC Kile, R Ren, L Liu, CM Greene, K Roguski, AD Iuliano, Y Jang, J Jones, S Thor, Y Song, S Zhou, SC Trock, V Dugan, DE Wentworth, MZ Levine, TM Uyeki, JM Katz, DB Jernigan, SJ Olsen, AM Fry, E Azziz-Baumgartner, CT Davis. Update: increase in human infections with novel Asian lineage avian influenza A(H7N9) viruses during the fifth epidemic — China, October 1, 2016−August 7, 2017. MMWR Morb Mortal Wkly Rep 2017; 66(35): 928–932
https://doi.org/10.15585/mmwr.mm6635a2 pmid: 28880856
6 F Zhang, Y Bi, J Wang, G Wong, W Shi, F Hu, Y Yang, L Yang, X Deng, S Jiang, X He, Y Liu, C Yin, N Zhong, GF Gao. Human infections with recently-emerging highly pathogenic H7N9 avian influenza virus in China. J Infect 2017; 75(1): 71–75
https://doi.org/10.1016/j.jinf.2017.04.001 pmid: 28390707
7 C Quan, W Shi, Y Yang, Y Yang, X Liu, W Xu, H Li, J Li, Q Wang, Z Tong, G Wong, C Zhang, S Ma, Z Ma, G Fu, Z Zhang, Y Huang, H Song, L Yang, WJ Liu, Y Liu, W Liu, GF Gao, Y Bi. New threats from H7N9 influenza virus: spread and evolution of high- and low-pathogenicity variants with high genomic diversity in wave five. J Virol 2018; 92(11): e00301-18
https://doi.org/10.1128/JVI.00301-18 pmid: 29563296
8 W Qi, W Jia, D Liu, J Li, Y Bi, S Xie, B Li, T Hu, Y Du, L Xing, J Zhang, F Zhang, X Wei, JS Eden, H Li, H Tian, W Li, G Su, G Lao, C Xu, B Xu, W Liu, G Zhang, T Ren, EC Holmes, J Cui, W Shi, GF Gao, M Liao. Emergence and adaptation of a novel highly pathogenic H7N9 influenza virus in birds and humans from a 2013 human-infecting low-pathogenic ancestor. J Virol 2018; 92(2): e00921-17
https://doi.org/10.1128/JVI.00921-17 pmid: 29070694
9 X Wang, H Jiang, P Wu, TM Uyeki, L Feng, S Lai, L Wang, X Huo, K Xu, E Chen, X Wang, J He, M Kang, R Zhang, J Zhang, J Wu, S Hu, H Zhang, X Liu, W Fu, J Ou, S Wu, Y Qin, Z Zhang, Y Shi, J Zhang, J Artois, VJ Fang, H Zhu, Y Guan, M Gilbert, PW Horby, GM Leung, GF Gao, BJ Cowling, H Yu. Epidemiology of avian influenza A H7N9 virus in human beings across five epidemics in mainland of China, 2013−17: an epidemiological study of laboratory-confirmed case series. Lancet Infect Dis 2017; 17(8): 822–832
https://doi.org/10.1016/S1473-3099(17)30323-7 pmid: 28583578
10 M Kang, EHY Lau, W Guan, Y Yang, T Song, BJ Cowling, J Wu, M Peiris, J He, CKP Mok. Epidemiology of human infections with highly pathogenic avian influenza A(H7N9) virus in Guangdong, 2016 to 2017. Euro Surveill 2017; 22(27): 30568
https://doi.org/10.2807/1560-7917.ES.2017.22.27.30568 pmid: 28703705
11 H Li, B Cao. Pandemic and avian influenza A viruses in humans: epidemiology, virology, clinical characteristics, and treatment strategy. Clin Chest Med 2017; 38(1): 59–70
https://doi.org/10.1016/j.ccm.2016.11.005 pmid: 28159162
12 M Han, J Gu, GF Gao, WJ Liu. China in action: national strategies to combat against emerging infectious diseases. Sci China Life Sci 2017; 60(12): 1383–1385
https://doi.org/10.1007/s11427-017-9141-3 pmid: 28887624
13 P Wu, H Jiang, JT Wu, E Chen, J He, H Zhou, L Wei, J Yang, B Yang, Y Qin, VJ Fang, M Li, TK Tsang, J Zheng, EH Lau, Y Cao, C Chai, H Zhong, Z Li, GM Leung, L Feng, GF Gao, BJ Cowling, H Yu. Poultry market closures and human infection with influenza A(H7N9) virus, China, 2013−14. Emerg Infect Dis 2014; 20(11): 1891–1894
https://doi.org/10.3201/eid2011.140556 pmid: 25340354
14 H Yu, JT Wu, BJ Cowling, Q Liao, VJ Fang, S Zhou, P Wu, H Zhou, EH Lau, D Guo, MY Ni, Z Peng, L Feng, H Jiang, H Luo, Q Li, Z Feng, Y Wang, W Yang, GM Leung. Effect of closure of live poultry markets on poultry-to-person transmission of avian influenza A H7N9 virus: an ecological study. Lancet 2014; 383(9916): 541–548
https://doi.org/10.1016/S0140-6736(13)61904-2 pmid: 24183056
15 GF Gao. Influenza and the live poultry trade. Science 2014; 344(6181): 235
https://doi.org/10.1126/science.1254664 pmid: 24744345
16 X Zeng, G Tian, J Shi, G Deng, C Li, H Chen. Vaccination of poultry successfully eliminated human infection with H7N9 virus in China. Sci China Life Sci 2018; 61(12): 1465–1473
https://doi.org/10.1007/s11427-018-9420-1 pmid: 30414008
17 WJ Liu, D Liu. The triphibious warfare against viruses. Sci China Life Sci 2017; 60(12): 1295–1298
https://doi.org/10.1007/s11427-017-9252-y pmid: 29285714
18 R Gao, B Cao, Y Hu, Z Feng, D Wang, W Hu, J Chen, Z Jie, H Qiu, K Xu, X Xu, H Lu, W Zhu, Z Gao, N Xiang, Y Shen, Z He, Y Gu, Z Zhang, Y Yang, X Zhao, L Zhou, X Li, S Zou, Y Zhang, X Li, L Yang, J Guo, J Dong, Q Li, L Dong, Y Zhu, T Bai, S Wang, P Hao, W Yang, Y Zhang, J Han, H Yu, D Li, GF Gao, G Wu, Y Wang, Z Yuan, Y Shu. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 2013; 368(20): 1888–1897
https://doi.org/10.1056/NEJMoa1304459 pmid: 23577628
19 L Cui, D Liu, W Shi, J Pan, X Qi, X Li, X Guo, M Zhou, W Li, J Li, J Haywood, H Xiao, X Yu, X Pu, Y Wu, H Yu, K Zhao, Y Zhu, B Wu, T Jin, Z Shi, F Tang, F Zhu, Q Sun, L Wu, R Yang, J Yan, F Lei, B Zhu, W Liu, J Ma, H Wang, GF Gao. Dynamic reassortments and genetic heterogeneity of the human-infecting influenza A (H7N9) virus. Nat Commun 2014; 5(1): 3142
https://doi.org/10.1038/ncomms4142 pmid: 24457975
20 TT Lam, J Wang, Y Shen, B Zhou, L Duan, CL Cheung, C Ma, SJ Lycett, CY Leung, X Chen, L Li, W Hong, Y Chai, L Zhou, H Liang, Z Ou, Y Liu, A Farooqui, DJ Kelvin, LL Poon, DK Smith, OG Pybus, GM Leung, Y Shu, RG Webster, RJ Webby, JS Peiris, A Rambaut, H Zhu, Y Guan. The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature 2013; 502(7470): 241–244
https://doi.org/10.1038/nature12515 pmid: 23965623
21 A Wu, C Su, D Wang, Y Peng, M Liu, S Hua, T Li, GF Gao, H Tang, J Chen, X Liu, Y Shu, D Peng, T Jiang. Sequential reassortments underlie diverse influenza H7N9 genotypes in China. Cell Host Microbe 2013; 14(4): 446–452
https://doi.org/10.1016/j.chom.2013.09.001 pmid: 24055604
22 J Pu, S Wang, Y Yin, G Zhang, RA Carter, J Wang, G Xu, H Sun, M Wang, C Wen, Y Wei, D Wang, B Zhu, G Lemmon, Y Jiao, S Duan, Q Wang, Q Du, M Sun, J Bao, Y Sun, J Zhao, H Zhang, G Wu, J Liu, RG Webster. Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus. Proc Natl Acad Sci USA 2015; 112(2): 548–553
https://doi.org/10.1073/pnas.1422456112 pmid: 25548189
23 G Li, J 3rd Fox, Z Liu, J Liu, GF Gao, Y Jin, H Gao, M Wu. Lyn mitigates mouse airway remodeling by downregulating the TGF-b3 isoform in house dust mite models. J Immunol 2013; 191(11): 5359–5370
https://doi.org/10.4049/jimmunol.1301596 pmid: 24127553
24 TT Lam, B Zhou, J Wang, Y Chai, Y Shen, X Chen, C Ma, W Hong, Y Chen, Y Zhang, L Duan, P Chen, J Jiang, Y Zhang, L Li, LL Poon, RJ Webby, DK Smith, GM Leung, JS Peiris, EC Holmes, Y Guan, H Zhu. Dissemination, divergence and establishment of H7N9 influenza viruses in China. Nature 2015; 522(7554): 102–105
https://doi.org/10.1038/nature14348 pmid: 25762140
25 Y Bi, Q Chen, Q Wang, J Chen, T Jin, G Wong, C Quan, J Liu, J Wu, R Yin, L Zhao, M Li, Z Ding, R Zou, W Xu, H Li, H Wang, K Tian, G Fu, Y Huang, A Shestopalov, S Li, B Xu, H Yu, T Luo, L Lu, X Xu, Y Luo, Y Liu, W Shi, D Liu, GF Gao. Genesis, Evolution and prevalence of H5N6 avian influenza viruses in China. Cell Host Microbe 2016; 20(6): 810–821
https://doi.org/10.1016/j.chom.2016.10.022 pmid: 27916476
26 L Zhou, R Ren, L Yang, C Bao, J Wu, D Wang, C Li, N Xiang, Y Wang, D Li, H Sui, Y Shu, Z Feng, Q Li, D Ni. Sudden increase in human infection with avian influenza A(H7N9) virus in China, September−December 2016. Western Pac Surveill Response J 2017; 8(1): 6–14
https://doi.org/10.5365/wpsar.2017.8.1.001 pmid: 28409054
27 S Su, M Gu, D Liu, J Cui, GF Gao, J Zhou, X Liu. Epidemiology, evolution, and pathogenesis of H7N9 influenza viruses in five epidemic waves since 2013 in China. Trends Microbiol 2017; 25(9): 713–728
https://doi.org/10.1016/j.tim.2017.06.008 pmid: 28734617
28 H Zhu, TT Lam, DK Smith, Y Guan. Emergence and development of H7N9 influenza viruses in China. Curr Opin Virol 2016; 16: 106–113
https://doi.org/10.1016/j.coviro.2016.01.020 pmid: 26922715
29 E Chen, Y Chen, L Fu, Z Chen, Z Gong, H Mao, D Wang, MY Ni, P Wu, Z Yu, T He, Z Li, J Gao, S Liu, Y Shu, BJ Cowling, S Xia, H Yu. Human infection with avian influenza A(H7N9) virus re-emerges in China in winter 2013. Euro Surveill 2013; 18(43): 20616
https://doi.org/10.2807/1560-7917.ES2013.18.43.20616 pmid: 24176616
30 D Xiang, Z Pu, T Luo, F Guo, X Li, X Shen, DM Irwin, RW Murphy, M Liao, Y Shen. Evolutionary dynamics of avian influenza A H7N9 virus across five waves in mainland China, 2013−2017. J Infect 2018; 77(3): 205–211
https://doi.org/10.1016/j.jinf.2018.05.006 pmid: 29807090
31 L Zhou, Y Tan, M Kang, F Liu, R Ren, Y Wang, T Chen, Y Yang, C Li, J Wu, H Zhang, D Li, CM Greene, S Zhou, AD Iuliano, F Havers, D Ni, D Wang, Z Feng, TM Uyeki, Q Li. Preliminary epidemiology of human infections with highly pathogenic avian influenza A(H7N9) virus, China, 2017. Emerg Infect Dis 2017; 23(8): 1355–1359
https://doi.org/10.3201/eid2308.170640 pmid: 28580900
32 D Wang, L Yang, R Gao, X Zhang, Y Tan, A Wu, W Zhu, J Zhou, S Zou, X Li, Y Sun, Y Zhang, Y Liu, T Liu, Y Xiong, J Xu, L Chen, Y Weng, X Qi, J Guo, X Li, J Dong, W Huang, Y Zhang, L Dong, X Zhao, L Liu, J Lu, Y Lan, H Wei, L Xin, Y Chen, C Xu, T Chen, Y Zhu, T Jiang, Z Feng, W Yang, Y Wang, H Zhu, Y Guan, GF Gao, D Li, J Han, S Wang, G Wu, Y Shu. Genetic tuning of the novel avian influenza A(H7N9) virus during interspecies transmission, China, 2013. Euro Surveill 2014; 19(25): 20836
https://doi.org/10.2807/1560-7917.ES2014.19.25.20836 pmid: 24993557
33 Y Bi, Q Xie, S Zhang, Y Li, H Xiao, T Jin, W Zheng, J Li, X Jia, L Sun, J Liu, C Qin, GF Gao, W Liu. Assessment of the internal genes of influenza A (H7N9) virus contributing to high pathogenicity in mice. J Virol 2015; 89(1): 2–13
https://doi.org/10.1128/JVI.02390-14 pmid: 25320305
34 Y Jin, H Ren, Y Teng, M Hu, X Peng, J Yue, L Liang. Novel reassortment of avian influenza A(H7N9) virus with subtype H6N6 and H5N6 viruses circulating in Guangdong Province, China. J Infect 2017; 75(2): 179–182
https://doi.org/10.1016/j.jinf.2017.05.006 pmid: 28535998
35 KK To, KH Ng, TL Que, JM Chan, KY Tsang, AK Tsang, H Chen, KY Yuen. Avian influenza A H5N1 virus: a continuous threat to humans. Emerg Microbes Infect 2012; 1(9): e25
https://doi.org/10.1038/emi.2012.24 pmid: 26038430
36 HN Gao, HZ Lu, B Cao, B Du, H Shang, JH Gan, SH Lu, YD Yang, Q Fang, YZ Shen, XM Xi, Q Gu, XM Zhou, HP Qu, Z Yan, FM Li, W Zhao, ZC Gao, GF Wang, LX Ruan, WH Wang, J Ye, HF Cao, XW Li, WH Zhang, XC Fang, J He, WF Liang, J Xie, M Zeng, XZ Wu, J Li, Q Xia, ZC Jin, Q Chen, C Tang, ZY Zhang, BM Hou, ZX Feng, JF Sheng, NS Zhong, LJ Li. Clinical findings in 111 cases of influenza A (H7N9) virus infection. N Engl J Med 2013; 368(24): 2277–2285
https://doi.org/10.1056/NEJMoa1305584 pmid: 23697469
37 Y Yang, G Wong, L Yang, S Tan, J Li, B Bai, Z Xu, H Li, W Xu, X Zhao, C Quan, H Zheng, WJ Liu, W Liu, L Liu, Y Liu, Y Bi, GF Gao. Comparison between human infections caused by highly and low pathogenic H7N9 avian influenza viruses in Wave Five: clinical and virological findings. J Infect 2019; 78(3): 241–248
https://doi.org/10.1016/j.jinf.2019.01.005 pmid: 30664912
38 Q Wang, Z Zhang, Y Shi, Y Jiang. Emerging H7N9 influenza A (novel reassortant avian-origin) pneumonia: radiologic findings. Radiology 2013; 268(3): 882–889
https://doi.org/10.1148/radiol.13130988 pmid: 23821754
39 J Shi, J Xie, Z He, Y Hu, Y He, Q Huang, B Leng, W He, Y Sheng, F Li, Y Song, C Bai, Y Gu, Z Jie. A detailed epidemiological and clinical description of 6 human cases of avian-origin influenza A (H7N9) virus infection in Shanghai. PLoS One 2013; 8(10): e77651
https://doi.org/10.1371/journal.pone.0077651 pmid: 24143251
40 Q Li, L Zhou, M Zhou, Z Chen, F Li, H Wu, N Xiang, E Chen, F Tang, D Wang, L Meng, Z Hong, W Tu, Y Cao, L Li, F Ding, B Liu, M Wang, R Xie, R Gao, X Li, T Bai, S Zou, J He, J Hu, Y Xu, C Chai, S Wang, Y Gao, L Jin, Y Zhang, H Luo, H Yu, J He, Q Li, X Wang, L Gao, X Pang, G Liu, Y Yan, H Yuan, Y Shu, W Yang, Y Wang, F Wu, TM Uyeki, Z Feng. Epidemiology of human infections with avian influenza A(H7N9) virus in China. N Engl J Med 2014; 370(6): 520–532
https://doi.org/10.1056/NEJMoa1304617 pmid: 23614499
41 L Xu, L Bao, W Deng, L Dong, H Zhu, T Chen, Q Lv, F Li, J Yuan, Z Xiang, K Gao, Y Xu, L Huang, Y Li, J Liu, Y Yao, P Yu, X Li, W Huang, X Zhao, Y Lan, J Guo, W Yong, Q Wei, H Chen, L Zhang, C Qin. Novel avian-origin human influenza A(H7N9) can be transmitted between ferrets via respiratory droplets. J Infect Dis 2014; 209(4): 551–556
https://doi.org/10.1093/infdis/jit474 pmid: 23990570
42 WJ Liu, R Zou, Y Hu, M Zhao, C Quan, S Tan, K Luo, J Yuan, H Zheng, J Liu, M Liu, Y Bi, J Yan, B Zhu, D Wang, G Wu, L Liu, KY Yuen, GF Gao, Y Liu. Clinical, immunological and bacteriological characteristics of H7N9 patients nosocomially co-infected by Acinetobacter baumannii: a case control study. BMC Infect Dis 2018; 18(1): 664
https://doi.org/10.1186/s12879-018-3447-4 pmid: 30551738
43 L Yu, Z Wang, Y Chen, W Ding, H Jia, JF Chan, KK To, H Chen, Y Yang, W Liang, S Zheng, H Yao, S Yang, H Cao, X Dai, H Zhao, J Li, Q Bao, P Chen, X Hou, L Li, KY Yuen. Clinical, virological, and histopathological manifestations of fatal human infections by avian influenza A(H7N9) virus. Clin Infect Dis 2013; 57(10): 1449–1457
https://doi.org/10.1093/cid/cit541 pmid: 23943822
44 L Yang, W Zhu, X Li, M Chen, J Wu, P Yu, S Qi, Y Huang, W Shi, J Dong, X Zhao, W Huang, Z Li, X Zeng, H Bo, T Chen, W Chen, J Liu, Y Zhang, Z Liang, W Shi, Y Shu, D Wang. Genesis and spread of newly emerged highly pathogenic H7N9 avian viruses in mainland of China. J Virol 2017; 91(23): e01277-17
https://doi.org/10.1128/JVI.01277-17 pmid: 28956760
45 WHO. Monthly Risk Assessment Summary. 2019. Updated October 23, 2020 (accessed November 15, 2020)
46 Y Yang, C Shen, J Li, R Zou, G Wong, L Peng, L Yang, S Fang, J Li, X Li, W Wu, X Jiang, L Zeng, J Lan, Y Bi, GF Gao, J Yuan, Y Liu. Clinical and virological characteristics of human infections with H7N9 avian influenza virus in Shenzhen, China, 2013−2017. J Infect 2019; 79(4): 389–399
https://doi.org/10.1016/j.jinf.2019.07.010 pmid: 31374221
47 Y Hu, S Lu, Z Song, W Wang, P Hao, J Li, X Zhang, HL Yen, B Shi, T Li, W Guan, L Xu, Y Liu, S Wang, X Zhang, D Tian, Z Zhu, J He, K Huang, H Chen, L Zheng, X Li, J Ping, B Kang, X Xi, L Zha, Y Li, Z Zhang, M Peiris, Z Yuan. Association between adverse clinical outcome in human disease caused by novel influenza A H7N9 virus and sustained viral shedding and emergence of antiviral resistance. Lancet 2013; 381(9885): 2273–2279
https://doi.org/10.1016/S0140-6736(13)61125-3 pmid: 23726392
48 J Dai, X Zhou, D Dong, Y Liu, Q Gu, B Zhu, C Wu, H Cai. Human infection with a novel avian-origin influenza A (H7N9) virus: serial chest radiographic and CT findings. Chin Med J (Engl) 2014; 127(12): 2206–2211
pmid: 24931229
49 T Watanabe, M Kiso, S Fukuyama, N Nakajima, M Imai, S Yamada, S Murakami, S Yamayoshi, K Iwatsuki-Horimoto, Y Sakoda, E Takashita, R McBride, T Noda, M Hatta, H Imai, D Zhao, N Kishida, M Shirakura, RP de Vries, S Shichinohe, M Okamatsu, T Tamura, Y Tomita, N Fujimoto, K Goto, H Katsura, E Kawakami, I Ishikawa, S Watanabe, M Ito, Y Sakai-Tagawa, Y Sugita, R Uraki, R Yamaji, AJ Eisfeld, G Zhong, S Fan, J Ping, EA Maher, A Hanson, Y Uchida, T Saito, M Ozawa, G Neumann, H Kida, T Odagiri, JC Paulson, H Hasegawa, M Tashiro, Y Kawaoka. Characterization of H7N9 influenza A viruses isolated from humans. Nature 2013; 501(7468): 551–555
https://doi.org/10.1038/nature12392 pmid: 23842494
50 Q Zhang, J Shi, G Deng, J Guo, X Zeng, X He, H Kong, C Gu, X Li, J Liu, G Wang, Y Chen, L Liu, L Liang, Y Li, J Fan, J Wang, W Li, L Guan, Q Li, H Yang, P Chen, L Jiang, Y Guan, X Xin, Y Jiang, G Tian, X Wang, C Qiao, C Li, Z Bu, H Chen. H7N9 influenza viruses are transmissible in ferrets by respiratory droplet. Science 2013; 341(6144): 410–414
https://doi.org/10.1126/science.1240532 pmid: 23868922
51 OIE. Update on avian influenza in animals (types H5 and H7). Updated October 22, 2020 (accessed November 15, 2020)
52 M Imai, T Watanabe, M Kiso, N Nakajima, S Yamayoshi, K Iwatsuki-Horimoto, M Hatta, S Yamada, M Ito, Y Sakai-Tagawa, M Shirakura, E Takashita, S Fujisaki, R McBride, AJ Thompson, K Takahashi, T Maemura, H Mitake, S Chiba, G Zhong, S Fan, K Oishi, A Yasuhara, K Takada, T Nakao, S Fukuyama, M Yamashita, TJS Lopes, G Neumann, T Odagiri, S Watanabe, Y Shu, JC Paulson, H Hasegawa, Y Kawaoka. A highly pathogenic avian H7N9 influenza virus isolated from a human is lethal in some ferrets infected via respiratory droplets. Cell Host Microbe 2017; 22(5): 615–626.e8
https://doi.org/10.1016/j.chom.2017.09.008 pmid: 29056430
53 X Sun, JA Belser, C Pappas, JA Pulit-Penaloza, N Brock, H Zeng, HM Creager, S Le, M Wilson, A Lewis, TJ Stark, WJ Shieh, J Barnes, TM Tumpey, TR Maines. Risk assessment of fifth-wave H7N9 influenza A viruses in mammalian models. J Virol 2018; 93(1): e01740-18
https://doi.org/10.1128/JVI.01740-18 pmid: 30305359
54 J Shi, G Deng, H Kong, C Gu, S Ma, X Yin, X Zeng, P Cui, Y Chen, H Yang, X Wan, X Wang, L Liu, P Chen, Y Jiang, J Liu, Y Guan, Y Suzuki, M Li, Z Qu, L Guan, J Zang, W Gu, S Han, Y Song, Y Hu, Z Wang, L Gu, W Yang, L Liang, H Bao, G Tian, Y Li, C Qiao, L Jiang, C Li, Z Bu, H Chen. H7N9 virulent mutants detected in chickens in China pose an increased threat to humans. Cell Res 2017; 27(12): 1409–1421
https://doi.org/10.1038/cr.2017.129 pmid: 29151586
55 L Bao, Y Bi, G Wong, W Qi, F Li, Q Lv, L Wang, F Liu, Y Yang, C Zhang, WJ Liu, C Quan, W Jia, Y Liu, W Liu, M Liao, GF Gao, C Qin. Diverse biological characteristics and varied virulence of H7N9 from wave 5. Emerg Microbes Infect 2019; 8(1): 94–102
https://doi.org/10.1080/22221751.2018.1560234 pmid: 30866763
56 W Song, P Wang, BW Mok, SY Lau, X Huang, WL Wu, M Zheng, X Wen, S Yang, Y Chen, L Li, KY Yuen, H Chen. The K526R substitution in viral protein PB2 enhances the effects of E627K on influenza virus replication. Nat Commun 2014; 5(1): 5509
https://doi.org/10.1038/ncomms6509 pmid: 25409547
57 CK Mok, HH Lee, M Lestra, JM Nicholls, MC Chan, SF Sia, H Zhu, LL Poon, Y Guan, JS Peiris. Amino acid substitutions in polymerase basic protein 2 gene contribute to the pathogenicity of the novel A/H7N9 influenza virus in mammalian hosts. J Virol 2014; 88(6): 3568–3576
https://doi.org/10.1128/JVI.02740-13 pmid: 24403592
58 C Xiao, W Ma, N Sun, L Huang, Y Li, Z Zeng, Y Wen, Z Zhang, H Li, Q Li, Y Yu, Y Zheng, S Liu, P Hu, X Zhang, Z Ning, W Qi, M Liao. PB2-588 V promotes the mammalian adaptation of H10N8, H7N9 and H9N2 avian influenza viruses. Sci Rep 2016; 6(1): 19474
https://doi.org/10.1038/srep19474 pmid: 26782141
59 WJ Liu, J Li, R Zou, J Pan, T Jin, L Li, P Liu, Y Zhao, X Yu, H Wang, G Liu, H Jiang, Y Bi, L Liu, KY Yuen, Y Liu, GF Gao. Dynamic PB2-E627K substitution of influenza H7N9 virus indicates the in vivo genetic tuning and rapid host adaptation. Proc Natl Acad Sci U S A 2020; 117(38): 23807–23814
https://doi.org/10.1073/pnas.2013267117 pmid: 32873642
60 Y Bi, H Xiao, Q Chen, Y Wu, L Fu, C Quan, G Wong, J Liu, J Haywood, Y Liu, B Zhou, J Yan, W Liu, GF Gao. Changes in the length of the neuraminidase stalk region impact H7N9 virulence in mice. J Virol 2016; 90(4): 2142–2149
https://doi.org/10.1128/JVI.02553-15 pmid: 26656694
61 M de Graaf, RA Fouchier. Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO J 2014; 33(8): 823–841
https://doi.org/10.1002/embj.201387442 pmid: 24668228
62 DC Wiley, JJ Skehel. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem 1987; 56(1): 365–394
https://doi.org/10.1146/annurev.bi.56.070187.002053 pmid: 3304138
63 Y Shi, Y Wu, W Zhang, J Qi, GF Gao. Enabling the ‘host jump’: structural determinants of receptor-binding specificity in influenza A viruses. Nat Rev Microbiol 2014; 12(12): 822–831
https://doi.org/10.1038/nrmicro3362 pmid: 25383601
64 X Sun, Y Shi, X Lu, J He, F Gao, J Yan, J Qi, GF Gao. Bat-derived influenza hemagglutinin H17 does not bind canonical avian or human receptors and most likely uses a unique entry mechanism. Cell Rep 2013; 3(3): 769–778
https://doi.org/10.1016/j.celrep.2013.01.025 pmid: 23434510
65 Y Wu, Y Wu, B Tefsen, Y Shi, GF Gao. Bat-derived influenza-like viruses H17N10 and H18N11. Trends Microbiol 2014; 22(4): 183–191
https://doi.org/10.1016/j.tim.2014.01.010 pmid: 24582528
66 JK Taubenberger, JC Kash. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 2010; 7(6): 440–451
https://doi.org/10.1016/j.chom.2010.05.009 pmid: 20542248
67 XL Xiong, JW McCauley, DA Steinhauer. Receptor binding properties of the influenza virus hemagglutinin as a determinant of host range. Curr Top Microbiol Immunol 2014; 385: 63–91
https://doi.org/10.1007/82_2014_423 pmid: 25078920
68 CJ Bao, LB Cui, MH Zhou, L Hong, GF Gao, H Wang. Live-animal markets and influenza A (H7N9) virus infection. N Engl J Med 2013; 368(24): 2337–2339
https://doi.org/10.1056/NEJMc1306100 pmid: 23697471
69 D Vijaykrishna, YM Deng, ML Grau, M Kay, A Suttie, PF Horwood, W Kalpravidh, F Claes, K Osbjer, P Dussart, IG Barr, EA Karlsson. Emergence of influenza A(H7N4) virus, Cambodia. Emerg Infect Dis 2019; 25(10): 1988–1991
https://doi.org/10.3201/eid2510.190506 pmid: 31310233
70 Y Xu, R Peng, W Zhang, J Qi, H Song, S Liu, H Wang, M Wang, H Xiao, L Fu, Z Fan, Y Bi, J Yan, Y Shi, GF Gao. Avian-to-human receptor-binding adaptation of avian H7N9 influenza virus hemagglutinin. Cell Rep 2019; 29(8): 2217–2228.e5
https://doi.org/10.1016/j.celrep.2019.10.047 pmid: 31747596
71 Y Shi, W Zhang, F Wang, J Qi, Y Wu, H Song, F Gao, Y Bi, Y Zhang, Z Fan, C Qin, H Sun, J Liu, J Haywood, W Liu, W Gong, D Wang, Y Shu, Y Wang, J Yan, GF Gao. Structures and receptor binding of hemagglutinins from human-infecting H7N9 influenza viruses. Science 2013; 342(6155): 243–247
https://doi.org/10.1126/science.1242917 pmid: 24009358
72 X Xiong, SR Martin, LF Haire, SA Wharton, RS Daniels, MS Bennett, JW McCauley, PJ Collins, PA Walker, JJ Skehel, SJ Gamblin. Receptor binding by an H7N9 influenza virus from humans. Nature 2013; 499(7459): 496–499
https://doi.org/10.1038/nature12372 pmid: 23787694
73 T Kageyama, S Fujisaki, E Takashita, H Xu, S Yamada, Y Uchida, G Neumann, T Saito, Y Kawaoka, M Tashiro. Genetic analysis of novel avian A(H7N9) influenza viruses isolated from patients in China, February to April 2013. Euro Surveill 2013; 18(15): 20453
pmid: 23594575
74 RP de Vries, W Peng, OC Grant, AJ Thompson, X Zhu, KM Bouwman, ATT de la Pena, MJ van Breemen, IN Ambepitiya Wickramasinghe, CAM de Haan, W Yu, R McBride, RW Sanders, RJ Woods, MH Verheije, IA Wilson, JC Paulson. Three mutations switch H7N9 influenza to human-type receptor specificity. PLoS Pathog 2017; 13(6): e1006390
https://doi.org/10.1371/journal.ppat.1006390 pmid: 28617868
75 Z Wang, A Zhang, Y Wan, X Liu, C Qiu, X Xi, Y Ren, J Wang, Y Dong, M Bao, L Li, M Zhou, S Yuan, J Sun, Z Zhu, L Chen, Q Li, Z Zhang, X Zhang, S Lu, PC Doherty, K Kedzierska, J Xu. Early hypercytokinemia is associated with interferon-induced transmembrane protein-3 dysfunction and predictive of fatal H7N9 infection. Proc Natl Acad Sci USA 2014; 111(2): 769–774
https://doi.org/10.1073/pnas.1321748111 pmid: 24367104
76 J Guo, F Huang, J Liu, Y Chen, W Wang, B Cao, Z Zou, S Liu, J Pan, C Bao, M Zeng, H Xiao, H Gao, S Yang, Y Zhao, Q Liu, H Zhou, J Zhu, X Liu, W Liang, Y Yang, S Zheng, J Yang, H Diao, K Su, L Shao, H Cao, Y Wu, M Zhao, S Tan, H Li, X Xu, C Wang, J Zhang, L Wang, J Wang, J Xu, D Li, N Zhong, X Cao, GF Gao, L Li, C Jiang. The serum profile of hypercytokinemia factors identified in H7N9-Infected patients can predict fatal outcomes. Sci Rep 2015; 5(1): 10942
https://doi.org/10.1038/srep10942 pmid: 26028236
77 F Huang, J Guo, Z Zou, J Liu, B Cao, S Zhang, H Li, W Wang, M Sheng, S Liu, J Pan, C Bao, M Zeng, H Xiao, G Qian, X Hu, Y Chen, Y Chen, Y Zhao, Q Liu, H Zhou, J Zhu, H Gao, S Yang, X Liu, S Zheng, J Yang, H Diao, H Cao, Y Wu, M Zhao, S Tan, D Guo, X Zhao, Y Ye, W Wu, Y Xu, JM Penninger, D Li, GF Gao, C Jiang, L Li. Angiotensin II plasma levels are linked to disease severity and predict fatal outcomes in H7N9-infected patients. Nat Commun 2014; 5(1): 3595
https://doi.org/10.1038/ncomms4595 pmid: 24800963
78 Y Chen, W Liang, S Yang, N Wu, H Gao, J Sheng, H Yao, J Wo, Q Fang, D Cui, Y Li, X Yao, Y Zhang, H Wu, S Zheng, H Diao, S Xia, Y Zhang, KH Chan, HW Tsoi, JL Teng, W Song, P Wang, SY Lau, M Zheng, JF Chan, KK To, H Chen, L Li, KY Yuen. Human infections with the emerging avian influenza A H7N9 virus from wet market poultry: clinical analysis and characterisation of viral genome. Lancet 2013; 381(9881): 1916–1925
https://doi.org/10.1016/S0140-6736(13)60903-4 pmid: 23623390
79 Y Bi, J Liu, H Xiong, Y Zhang, D Liu, Y Liu, GF Gao, B Wang. A new reassortment of influenza A (H7N9) virus causing human infection in Beijing, 2014. Sci Rep 2016; 6(1): 26624
https://doi.org/10.1038/srep26624 pmid: 27230107
80 Y Chi, Y Zhu, T Wen, L Cui, Y Ge, Y Jiao, T Wu, A Ge, H Ji, K Xu, C Bao, Z Zhu, X Qi, B Wu, Z Shi, F Tang, Z Xing, M Zhou. Cytokine and chemokine levels in patients infected with the novel avian influenza A (H7N9) virus in China. J Infect Dis 2013; 208(12): 1962–1967
https://doi.org/10.1093/infdis/jit440 pmid: 23990573
81 J Zhou, D Wang, R Gao, B Zhao, J Song, X Qi, Y Zhang, Y Shi, L Yang, W Zhu, T Bai, K Qin, Y Lan, S Zou, J Guo, J Dong, L Dong, Y Zhang, H Wei, X Li, J Lu, L Liu, X Zhao, X Li, W Huang, L Wen, H Bo, L Xin, Y Chen, C Xu, Y Pei, Y Yang, X Zhang, S Wang, Z Feng, J Han, W Yang, GF Gao, G Wu, D Li, Y Wang, Y Shu. Biological features of novel avian influenza A (H7N9) virus. Nature 2013; 499(7459): 500–503
https://doi.org/10.1038/nature12379 pmid: 23823727
82 Y Bi, S Tan, Y Yang, G Wong, M Zhao, Q Zhang, Q Wang, X Zhao, L Li, J Yuan, H Li, H Li, W Xu, W Shi, C Quan, R Zou, J Li, H Zheng, L Yang, WJ Liu, D Liu, H Wang, Y Qin, L Liu, C Jiang, W Liu, L Lu, GF Gao, Y Liu. Clinical and immunological characteristics of human infections with H5N6 avian influenza virus. Clin Infect Dis 2019; 68(7): 1100–1109
https://doi.org/10.1093/cid/ciy681 pmid: 30124826
83 Y Chen, X Li, L Tian, S Zheng, S Yang, Y Dong, Y Wang, D Cui, X Liu, W Liang, H Chen, L Li. Dynamic behavior of lymphocyte subgroups correlates with clinical outcomes in human H7N9 infection. J Infect 2014; 69(4): 358–365
https://doi.org/10.1016/j.jinf.2014.05.006 pmid: 24841136
84 H Diao, G Cui, Y Wei, J Chen, J Zuo, H Cao, Y Chen, H Yao, Z Tian, L Li. Severe H7N9 infection is associated with decreased antigen-presenting capacity of CD14+ cells. PLoS One 2014; 9(3): e92823
https://doi.org/10.1371/journal.pone.0092823 pmid: 24664315
85 Z Wang, Y Wan, C Qiu, S Quiñones-Parra, Z Zhu, L Loh, D Tian, Y Ren, Y Hu, X Zhang, PG Thomas, M Inouye, PC Doherty, K Kedzierska, J Xu. Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8+ T cells. Nat Commun 2015; 6(1): 6833
https://doi.org/10.1038/ncomms7833 pmid: 25967273
86 Z Wang, L Zhu, THO Nguyen, Y Wan, S Sant, SM Quiñones-Parra, JC Crawford, AA Eltahla, S Rizzetto, RA Bull, C Qiu, M Koutsakos, EB Clemens, L Loh, T Chen, L Liu, P Cao, Y Ren, L Kedzierski, T Kotsimbos, JM McCaw, NL La Gruta, SJ Turner, AC Cheng, F Luciani, X Zhang, PC Doherty, PG Thomas, J Xu, K Kedzierska. Clonally diverse CD38+HLA-DR+CD8+ T cells persist during fatal H7N9 disease. Nat Commun 2018; 9(1): 824
https://doi.org/10.1038/s41467-018-03243-7 pmid: 29483513
87 D Hou, T Ying, L Wang, C Chen, S Lu, Q Wang, E Seeley, J Xu, X Xi, T Li, J Liu, X Tang, Z Zhang, J Zhou, C Bai, C Wang, M Byrne-Steele, J Qu, J Han, Y Song. Immune repertoire diversity correlated with mortality in avian influenza A (H7N9) virus infected patients. Sci Rep 2016; 6(1): 33843
https://doi.org/10.1038/srep33843 pmid: 27669665
88 J Chen, G Cui, C Lu, Y Ding, H Gao, Y Zhu, Y Wei, L Wang, T Uede, L Li, H Diao. Severe infection with avian influenza A virus is associated with delayed immune recovery in survivors. Medicine (Baltimore) 2016; 95(5): e2606
https://doi.org/10.1097/MD.0000000000002606 pmid: 26844470
89 M Zhao, J Chen, S Tan, T Dong, H Jiang, J Zheng, C Quan, Q Liao, H Zhang, X Wang, Q Wang, Y Bi, F Liu, L Feng, PW Horby, P Klenerman, GF Gao, WJ Liu, H Yu. Prolonged evolution of virus-specific memory T cell immunity after severe avian influenza A (H7N9) virus infection. J Virol 2018; 92(17): e01024-18
https://doi.org/10.1128/JVI.01024-18
90 MJ Ma, XX Wang, MN Wu, XJ Wang, CJ Bao, HJ Zhang, Y Yang, K Xu, GL Wang, M Zhao, W Cheng, WJ Chen, WH Zhang, LQ Fang, WJ Liu, EF Chen, WC Cao. Characterization of antibody and memory T-cell response in H7N9 survivors: a cross-sectional analysis. Clin Microbiol Infect 2020; 26(2): 247–254
pmid: 31229595
91 CE van de Sandt, JH Kreijtz, G de Mutsert, MM Geelhoed-Mieras, ML Hillaire, SE Vogelzang-van Trierum, AD Osterhaus, RA Fouchier, GF Rimmelzwaan. Human cytotoxic T lymphocytes directed to seasonal influenza A viruses cross-react with the newly emerging H7N9 virus. J Virol 2014; 88(3): 1684–1693
https://doi.org/10.1128/JVI.02843-13 pmid: 24257602
92 WJ Liu, S Tan, M Zhao, C Quan, Y Bi, Y Wu, S Zhang, H Zhang, H Xiao, J Qi, J Yan, W Liu, H Yu, Y Shu, G Wu, GF Gao. Cross-immunity against avian influenza A(H7N9) virus in the healthy population is affected by antigenicity-dependent substitutions. J Infect Dis 2016; 214(12): 1937–1946
https://doi.org/10.1093/infdis/jiw471 pmid: 27738054
93 S Quiñones-Parra, E Grant, L Loh, TH Nguyen, KA Campbell, SY Tong, A Miller, PC Doherty, D Vijaykrishna, J Rossjohn, S Gras, K Kedzierska. Preexisting CD8+ T-cell immunity to the H7N9 influenza A virus varies across ethnicities. Proc Natl Acad Sci USA 2014; 111(3): 1049–1054
https://doi.org/10.1073/pnas.1322229111 pmid: 24395804
94 J Liu, B Wu, S Zhang, S Tan, Y Sun, Z Chen, Y Qin, M Sun, G Shi, Y Wu, M Sun, N Liu, K Ning, Y Ma, B Gao, J Yan, F Zhu, H Wang, GF Gao. Conserved epitopes dominate cross-CD8+ T-cell responses against influenza A H1N1 virus among Asian populations. Eur J Immunol 2013; 43(8): 2055–2069
https://doi.org/10.1002/eji.201343417 pmid: 23681926
95 M Zhao, K Liu, J Luo, S Tan, C Quan, S Zhang, Y Chai, J Qi, Y Li, Y Bi, H Xiao, G Wong, J Zhou, T Jiang, W Liu, H Yu, J Yan, Y Liu, Y Shu, G Wu, A Wu, GF Gao, WJ Liu. Heterosubtypic protections against human-infecting avian influenza viruses correlate to biased cross-T-cell responses. MBio 2018; 9(4): e01408-18
https://doi.org/10.1128/mBio.01408-18 pmid: 30087171
96 S Duan, VA Meliopoulos, JL McClaren, XZ Guo, CJ Sanders, HS Smallwood, RJ Webby, SL Schultz-Cherry, PC Doherty, PG Thomas. Diverse heterologous primary infections radically alter immunodominance hierarchies and clinical outcomes following H7N9 influenza challenge in mice. PLoS Pathog 2015; 11(2): e1004642
https://doi.org/10.1371/journal.ppat.1004642 pmid: 25668410
97 SR McMaster, JD Gabbard, DG Koutsonanos, RW Compans, RA Tripp, SM Tompkins, JE Kohlmeier. Memory T cells generated by prior exposure to influenza cross react with the novel H7N9 influenza virus and confer protective heterosubtypic immunity. PLoS One 2015; 10(2): e0115725
https://doi.org/10.1371/journal.pone.0115725 pmid: 25671696
98 Z Chen, J Wang, L Bao, L Guo, W Zhang, Y Xue, H Zhou, Y Xiao, J Wang, F Wu, Y Deng, C Qin, Q Jin. Human monoclonal antibodies targeting the haemagglutinin glycoprotein can neutralize H7N9 influenza virus. Nat Commun 2015; 6(1): 6714
https://doi.org/10.1038/ncomms7714 pmid: 25819694
99 J Wang, Z Chen, L Bao, W Zhang, Y Xue, X Pang, X Zhang, C Qin, Q Jin. Characterization of two human monoclonal antibodies neutralizing influenza A H7N9 viruses. J Virol 2015; 89(17): 9115–9118
https://doi.org/10.1128/JVI.01295-15 pmid: 26063436
100 KA Huang, P Rijal, H Jiang, B Wang, L Schimanski, T Dong, YM Liu, P Chang, M Iqbal, MC Wang, Z Chen, R Song, CC Huang, JH Yang, J Qi, TY Lin, A Li, TJ Powell, JT Jan, C Ma, GF Gao, Y Shi, AR Townsend. Structure-function analysis of neutralizing antibodies to H7N9 influenza from naturally infected humans. Nat Microbiol 2019; 4(2): 306–315
https://doi.org/10.1038/s41564-018-0303-7 pmid: 30478290
101 M Li, L Chen, Q Wang, M Hao, X Zhang, L Liu, X Yu, C Yang, J Xu, J Chen, R Gong. A cross-reactive human monoclonal antibody targets the conserved H7 antigenic site A from fifth wave H7N9-infected humans. Antiviral Res 2019; 170: 104556
https://doi.org/10.1016/j.antiviral.2019.104556 pmid: 31299269
102 J Li, Y Yang, M Wang, X Ren, Z Yang, L Liu, G Zhang, Q Chen, W Yang, YH Chen, X Wan. Rapid isolation of a potent human antibody against H7N9 influenza virus from an infected patient. Antiviral Res 2019; 170: 104564
https://doi.org/10.1016/j.antiviral.2019.104564 pmid: 31336147
103 CJ Henry Dunand, PE Leon, M Huang, A Choi, V Chromikova, IY Ho, GS Tan, J Cruz, A Hirsh, NY Zheng, CE Mullarkey, FA Ennis, M Terajima, JJ Treanor, DJ Topham, K Subbarao, P Palese, F Krammer, PC Wilson. Both neutralizing and non-neutralizing human H7N9 influenza vaccine-induced monoclonal antibodies confer protection. Cell Host Microbe 2016; 19(6): 800–813
https://doi.org/10.1016/j.chom.2016.05.014 pmid: 27281570
104 NJ Thornburg, H Zhang, S Bangaru, G Sapparapu, N Kose, RM Lampley, RG Bombardi, Y Yu, S Graham, A Branchizio, SM Yoder, MT Rock, CB Creech, KM Edwards, D Lee, S Li, IA Wilson, A García-Sastre, RA Albrecht, JE Crowe Jr. H7N9 influenza virus neutralizing antibodies that possess few somatic mutations. J Clin Invest 2016; 126(4): 1482–1494
https://doi.org/10.1172/JCI85317 pmid: 26950424
105 GS Tan, PE Leon, RA Albrecht, I Margine, A Hirsh, J Bahl, F Krammer. Broadly-reactive neutralizing and non-neutralizing antibodies directed against the H7 influenza virus hemagglutinin reveal divergent mechanisms of protection. PLoS Pathog 2016; 12(4): e1005578
https://doi.org/10.1371/journal.ppat.1005578 pmid: 27081859
106 F Schmeisser, A Vasudevan, S Verma, W Wang, E Alvarado, C Weiss, V Atukorale, C Meseda, JP Weir. Antibodies to antigenic site A of influenza H7 hemagglutinin provide protection against H7N9 challenge. PLoS One 2015; 10(1): e0117108
https://doi.org/10.1371/journal.pone.0117108 pmid: 25629172
107 D Stadlbauer, F Amanat, S Strohmeier, R Nachbagauer, F Krammer. Cross-reactive mouse monoclonal antibodies raised against the hemagglutinin of A/Shanghai/1/2013 (H7N9) protect against novel H7 virus isolates in the mouse model. Emerg Microbes Infect 2018; 7(1): 110
https://doi.org/10.1038/s41426-018-0115-0 pmid: 29925896
108 F He, SR Kumar, SM Syed Khader, Y Tan, M Prabakaran, J Kwang. Effective intranasal therapeutics and prophylactics with monoclonal antibody against lethal infection of H7N7 influenza virus. Antiviral Res 2013; 100(1): 207–214
https://doi.org/10.1016/j.antiviral.2013.08.003 pmid: 23954322
109 C Chen, L Liu, Y Xiao, S Cui, J Wang, Q Jin. Structural insight into a human neutralizing antibody against influenza virus H7N9. J Virol 2018; 92(5): e01850-17
https://doi.org/10.1128/JVI.01850-17 pmid: 29212936
110 F Yu, H Song, Y Wu, SY Chang, L Wang, W Li, B Hong, S Xia, C Wang, S Khurana, Y Feng, Y Wang, Z Sun, B He, D Hou, J Manischewitz, LR King, Y Song, JY Min, H Golding, X Ji, L Lu, S Jiang, DS Dimitrov, T Ying. A potent germline-like human monoclonal antibody targets a pH-sensitive epitope on H7N9 influenza hemagglutinin. Cell Host Microbe 2017; 22(4): 471–483.e5
https://doi.org/10.1016/j.chom.2017.08.011 pmid: 28966056
111 M Hong, PS Lee, RM Hoffman, X Zhu, JC Krause, NS Laursen, SI Yoon, L Song, L Tussey, JE Crowe Jr, AB Ward, IA Wilson. Antibody recognition of the pandemic H1N1 Influenza virus hemagglutinin receptor binding site. J Virol 2013; 87(22): 12471–12480
https://doi.org/10.1128/JVI.01388-13 pmid: 24027321
112 JRR Whittle, R Zhang, S Khurana, LR King, J Manischewitz, H Golding, PR Dormitzer, BF Haynes, EB Walter, MA Moody, TB Kepler, HX Liao, SC Harrison. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin. Proc Natl Acad Sci USA 2011; 108(34): 14216–14221
https://doi.org/10.1073/pnas.1111497108 pmid: 21825125
113 R Xu, JC Krause, R McBride, JC Paulson, JE Crowe Jr, IA Wilson. A recurring motif for antibody recognition of the receptor-binding site of influenza hemagglutinin. Nat Struct Mol Biol 2013; 20(3): 363–370
https://doi.org/10.1038/nsmb.2500 pmid: 23396351
114 NS Laursen, IA Wilson. Broadly neutralizing antibodies against influenza viruses. Antiviral Res 2013; 98(3): 476–483
https://doi.org/10.1016/j.antiviral.2013.03.021 pmid: 23583287
115 DC Ekiert, AK Kashyap, J Steel, A Rubrum, G Bhabha, R Khayat, JH Lee, MA Dillon, RE O’Neil, AM Faynboym, M Horowitz, L Horowitz, AB Ward, P Palese, R Webby, RA Lerner, RR Bhatt, IA Wilson. Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature 2012; 489(7417): 526–532
https://doi.org/10.1038/nature11414 pmid: 22982990
116 PS Lee, N Ohshima, RL Stanfield, W Yu, Y Iba, Y Okuno, Y Kurosawa, IA Wilson. Receptor mimicry by antibody F045-092 facilitates universal binding to the H3 subtype of influenza virus. Nat Commun 2014; 5(1): 3614
https://doi.org/10.1038/ncomms4614 pmid: 24717798
117 PS Lee, R Yoshida, DC Ekiert, N Sakai, Y Suzuki, A Takada, IA Wilson. Heterosubtypic antibody recognition of the influenza virus hemagglutinin receptor binding site enhanced by avidity. Proc Natl Acad Sci USA 2012; 109(42): 17040–17045
https://doi.org/10.1073/pnas.1212371109 pmid: 23027945
118 R Yoshida, M Igarashi, H Ozaki, N Kishida, D Tomabechi, H Kida, K Ito, A Takada. Cross-protective potential of a novel monoclonal antibody directed against antigenic site B of the hemagglutinin of influenza A viruses. PLoS Pathog 2009; 5(3): e1000350
https://doi.org/10.1371/journal.ppat.1000350 pmid: 19300497
119 S Bangaru, S Lang, M Schotsaert, HA Vanderven, X Zhu, N Kose, R Bombardi, JA Finn, SJ Kent, P Gilchuk, I Gilchuk, HL Turner, A Garcia-Sastre, S Li, AB Ward, IA Wilson, JE, Jr Crowe. A site of vulnerability on the influenza virus hemagglutinin head domain trimer interface. Cell 2019; 177(5): 1136–1152 .e18
pmid: 31100268 DOI: 10.1016/j.cell.2019.04.011
120 Y Okuno, Y Isegawa, F Sasao, S Ueda. A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. J Virol 1993; 67(5): 2552–2558
https://doi.org/10.1128/JVI.67.5.2552-2558.1993 pmid: 7682624
121 K Sedeyn, X Saelens. New antibody-based prevention and treatment options for influenza. Antiviral Res 2019; 170: 104562
https://doi.org/10.1016/j.antiviral.2019.104562 pmid: 31323236
122 H Xiao, T Guo, M Yang, J Qi, C Huang, Y Hong, J Gu, X Pang, WJ Liu, R Peng, J McCauley, Y Bi, S Li, J Feng, H Zhang, X Zhang, X Lu, J Yan, L Chen, Y Shi, W Chen, GF Gao. Light chain modulates heavy chain conformation to change protection profile of monoclonal antibodies against influenza A viruses. Cell Discov 2019; 5(1): 21
https://doi.org/10.1038/s41421-019-0086-x pmid: 30993000
123 C Dreyfus, NS Laursen, T Kwaks, D Zuijdgeest, R Khayat, DC Ekiert, JH Lee, Z Metlagel, MV Bujny, M Jongeneelen, R van der Vlugt, M Lamrani, HJ Korse, E Geelen, Ö Sahin, M Sieuwerts, JP Brakenhoff, R Vogels, OT Li, LL Poon, M Peiris, W Koudstaal, AB Ward, IA Wilson, J Goudsmit, RH Friesen. Highly conserved protective epitopes on influenza B viruses. Science 2012; 337(6100): 1343–1348
https://doi.org/10.1126/science.1222908 pmid: 22878502
124 MC Eichelberger, H Wan. Influenza neuraminidase as a vaccine antigen. Curr Top Microbiol Immunol 2015; 386: 275–299
https://doi.org/10.1007/82_2014_398 pmid: 25033754
125 JR Wilson, Z Guo, A Reber, RP Kamal, N Music, S Gansebom, Y Bai, M Levine, P Carney, WP Tzeng, J Stevens, IA York. An influenza A virus (H7N9) anti-neuraminidase monoclonal antibody with prophylactic and therapeutic activity invivo. Antiviral Res 2016; 135: 48–55
https://doi.org/10.1016/j.antiviral.2016.10.001 pmid: 27713074
126 J Li, X Yu, X Pu, L Xie, Y Sun, H Xiao, F Wang, H Din, Y Wu, D Liu, G Zhao, J Liu, J Pan. Environmental connections of novel avian-origin H7N9 influenza virus infection and virus adaptation to the human. Sci China Life Sci 2013; 56(6): 485–492
https://doi.org/10.1007/s11427-013-4491-3 pmid: 23657795
127 H Wan, L Qi, J Gao, LK Couzens, L Jiang, Y Gao, ZM Sheng, S Fong, M Hahn, S Khurana, JK Taubenberger, MC Eichelberger. Comparison of the efficacy of N9 neuraminidase-specific monoclonal antibodies against influenza A(H7N9) virus infection. J Virol 2018; 92(4): e01588-17
pmid: 29167344
128 IM Gilchuk, S Bangaru, P Gilchuk, RP Irving, N Kose, RG Bombardi, NJ Thornburg, CB Creech, KM Edwards, S Li, HL Turner, W Yu, X Zhu, IA Wilson, AB Ward, JE, Jr Crowe. Influenza H7N9 virus neuraminidase-specific human monoclonal antibodies inhibit viral egress and protect from lethal influenza infection in mice. Cell Host Microbe 2019; 26(6): 715–728.e8
https://doi.org/10.1016/j.chom.2019.10.003 pmid: 31757769
129 P Rijal, BB Wang, TK Tan, L Schimanski, P Janesch, T Dong, JW McCauley, RS Daniels, AR Townsend, KA Huang. Broadly inhibiting anti-neuraminidase monoclonal antibodies induced by trivalent influenza vaccine and H7N9 infection in humans. J Virol 2020; 94(4): e01182-19
https://doi.org/10.1128/JVI.01182-19 pmid: 31748388
130 H Jiang, W Peng, J Qi, Y Chai, H Song, Y Bi, P Rijal, H Wang, BO Oladejo, J Liu, Y Shi, GF Gao, AR Townsend, Y Wu. Structure-based modification of an anti-neuraminidase human antibody restores protection efficacy against the drifted influenza virus. mBio 2020; 11(5):e02315-20
https://doi.org/10.1128/mBio.02315-20 pmid: 33024040
131 YQ Chen, TJ Wohlbold, NY Zheng, M Huang, Y Huang, KE Neu, J Lee, H Wan, KT Rojas, E Kirkpatrick, C Henry, AE Palm, CT Stamper, LY Lan, DJ Topham, J Treanor, J Wrammert, R Ahmed, MC Eichelberger, G Georgiou, F Krammer, PC Wilson. Influenza infection in humans induces broadly cross-reactive and protective neuraminidase-reactive antibodies. Cell 2018; 173(2): 417–429.e10
https://doi.org/10.1016/j.cell.2018.03.030 pmid: 29625056
132 J Tang, D Wang. Research progress in human infection with avian influenza H7N9 virus. Sci China Life Sci 2017; 60(12): 1299–1306
https://doi.org/10.1007/s11427-017-9221-4 pmid: 29270791
133 I Isakova-Sivak, L Rudenko. Tackling a novel lethal virus: a focus on H7N9 vaccine development. Expert Rev Vaccines 2017; 16(7): 709–721
https://doi.org/10.1080/14760584.2017.1333907 pmid: 28532182
134 W Wodal, MG Schwendinger, H Savidis-Dacho, BA Crowe, C Hohenadl, R Fritz, P Br�hl, D Portsmouth, A Karner-Pichl, D Balta, L Grillberger, O Kistner, PN Barrett, MK Howard. Immunogenicity and protective efficacy of a Vero cell culture-derived whole-virus H7N9 vaccine in mice and guinea pigs. PLoS One 2015; 10(2): e0113963
https://doi.org/10.1371/journal.pone.0113963 pmid: 25719901
135 DH Chu, Y Sakoda, T Nishi, T Hiono, S Shichinohe, M Okamatsu, H Kida. Potency of an inactivated influenza vaccine prepared from A/duck/Mongolia/119/2008 (H7N9) against the challenge with A/Anhui/1/2013 (H7N9). Vaccine 2014; 32(28): 3473–3479
https://doi.org/10.1016/j.vaccine.2014.04.060 pmid: 24793949
136 No authors listed. Zoonotic influenza viruses: antigenic and genetic characteristics and development of candidate vaccine viruses for pandemic preparedness. Wkly Epidemiol Rec 2016; 91(42): 485–499 (in French)
pmid: 27766828
137 SH Seo, HS Kim. Inactivated antigen of the H7N9 influenza virus protects mice from its lethal infection. Viral Immunol 2016; 29(4): 235–243
https://doi.org/10.1089/vim.2015.0103 pmid: 26910526
138 W Pan, L Han, Z Dong, X Niu, Z Li, L Bao, C Li, Q Luo, Z Yang, X Li, J Huang, L Feng, C Qin, N Zhong, L Chen. Induction of neutralizing antibodies to influenza A virus H7N9 by inactivated whole virus in mice and nonhuman primates. Antiviral Res 2014; 107: 1–5
https://doi.org/10.1016/j.antiviral.2014.04.003 pmid: 24746458
139 MY Chia, AY Hu, YF Tseng, TC Weng, CC Lai, JY Lin, PL Chen, YF Wang, SR Chao, JY Chang, YS Hwang, CT Yeh, CP Yu, YC Chen, IJ Su, MS Lee. Evaluation of MDCK cell-derived influenza H7N9 vaccine candidates in ferrets. PLoS One 2015; 10(3): e0120793
https://doi.org/10.1371/journal.pone.0120793 pmid: 25799397
140 MI Barría, JL Garrido, C Stein, E Scher, Y Ge, SM Engel, TA Kraus, D Banach, TM Moran. Localized mucosal response to intranasal live attenuated influenza vaccine in adults. J Infect Dis 2013; 207(1): 115–124
https://doi.org/10.1093/infdis/jis641 pmid: 23087433
141 G Petukhova, A Naikhin, T Chirkova, S Donina, D Korenkov, L Rudenko. Comparative studies of local antibody and cellular immune responses to influenza infection and vaccination with live attenuated reassortant influenza vaccine (LAIV) utilizing a mouse nasal-associated lymphoid tissue (NALT) separation method. Vaccine 2009; 27(19): 2580–2587
https://doi.org/10.1016/j.vaccine.2009.02.035 pmid: 19428864
142 TJ Powell, T Strutt, J Reome, JA Hollenbaugh, AD Roberts, DL Woodland, SL Swain, RW Dutton. Priming with cold-adapted influenza A does not prevent infection but elicits long-lived protection against supralethal challenge with heterosubtypic virus. J Immunol 2007; 178(2): 1030–1038
https://doi.org/10.4049/jimmunol.178.2.1030 pmid: 17202366
143 S Tamura, T Tanimoto, T Kurata. Mechanisms of broad cross-protection provided by influenza virus infection and their application to vaccines. Jpn J Infect Dis 2005; 58(4): 195–207
pmid: 16116250
144 TV Chirkova, AN Naykhin, GD Petukhova, DA Korenkov, SA Donina, AN Mironov, LG Rudenko. Memory T-cell immune response in healthy young adults vaccinated with live attenuated influenza A (H5N2) vaccine. Clin Vaccine Immunol 2011; 18(10): 1710–1718
https://doi.org/10.1128/CVI.05116-11 pmid: 21813657
145 XS He, TH Holmes, C Zhang, K Mahmood, GW Kemble, DB Lewis, CL Dekker, HB Greenberg, AM Arvin. Cellular immune responses in children and adults receiving inactivated or live attenuated influenza vaccines. J Virol 2006; 80(23): 11756–11766
https://doi.org/10.1128/JVI.01460-06 pmid: 16971435
146 DF Hoft, E Babusis, S Worku, CT Spencer, K Lottenbach, SM Truscott, G Abate, IG Sakala, KM Edwards, CB Creech, MA Gerber, DI Bernstein, F Newman, I Graham, EL Anderson, RB Belshe. Live and inactivated influenza vaccines induce similar humoral responses, but only live vaccines induce diverse T-cell responses in young children. J Infect Dis 2011; 204(6): 845–853
https://doi.org/10.1093/infdis/jir436 pmid: 21846636
147 I Isakova-Sivak, L Rudenko. Safety, immunogenicity and infectivity of new live attenuated influenza vaccines. Expert Rev Vaccines 2015; 14(10): 1313–1329
https://doi.org/10.1586/14760584.2015.1075883 pmid: 26289975
148 Z Chen, M Baz, J Lu, M Paskel, C Santos, K Subbarao, H Jin, Y Matsuoka. Development of a high-yield live attenuated H7N9 influenza virus vaccine that provides protection against homologous and heterologous H7 wild-type viruses in ferrets. J Virol 2014; 88(12): 7016–7023
https://doi.org/10.1128/JVI.00100-14 pmid: 24719414
149 X Yang, J Zhao, C Wang, Y Duan, Z Zhao, R Chen, L Zhang, L Xing, C Lai, S Zhang, X Wang, P Yang. Immunization with a live attenuated H7N9 influenza vaccine protects mice against lethal challenge. PLoS One 2015; 10(4): e0123659
https://doi.org/10.1371/journal.pone.0123659 pmid: 25884801
150 H Kong, Q Zhang, C Gu, J Shi, G Deng, S Ma, J Liu, P Chen, Y Guan, Y Jiang, H Chen. A live attenuated vaccine prevents replication and transmission of H7N9 virus in mammals. Sci Rep 2015; 5(1): 11233
https://doi.org/10.1038/srep11233 pmid: 26058711
151 S Shcherbik, N Pearce, A Balish, J Jones, S Thor, CT Davis, M Pearce, T Tumpey, D Cureton, LM Chen, J Villanueva, TL Bousse. Generation and characterization of live attenuated influenza A(H7N9) candidate vaccine virus based on Russian donor of attenuation. PLoS One 2015; 10(9): e0138951
https://doi.org/10.1371/journal.pone.0138951 pmid: 26405798
152 LF Fries, GE Smith, GM Glenn. A recombinant viruslike particle influenza A (H7N9) vaccine. N Engl J Med 2013; 369(26): 2564–2566
https://doi.org/10.1056/NEJMc1313186 pmid: 24224560
153 YV Liu, MJ Massare, MB Pearce, X Sun, JA Belser, TR Maines, HM Creager, GM Glenn, P Pushko, GE Smith, TM Tumpey. Recombinant virus-like particles elicit protective immunity against avian influenza A(H7N9) virus infection in ferrets. Vaccine 2015; 33(18): 2152–2158
https://doi.org/10.1016/j.vaccine.2015.03.009 pmid: 25772674
154 S Pillet, T Racine, C Nfon, TZ Di Lenardo, S Babiuk, BJ Ward, GP Kobinger, N Landry. Plant-derived H7 VLP vaccine elicits protective immune response against H7N9 influenza virus in mice and ferrets. Vaccine 2015; 33(46): 6282–6289
https://doi.org/10.1016/j.vaccine.2015.09.065 pmid: 26432915
155 L Feng, S Feng, T Chen, J Yang, YC Lau, Z Peng, L Li, X Wang, JYT Wong, Y Qin, HS Bond, J Zhang, VJ Fang, J Zheng, J Yang, P Wu, H Jiang, Y He, BJ Cowling, H Yu, Y Shu, EHY Lau. Burden of influenza-associated outpatient influenza-like illness consultations in China, 2006–2015: a population-based study. Influenza Other Respir Viruses 2020; 14(2): 162–172
pmid: 31872547
156 SA Rasmussen, SC Redd. Using results from infectious disease modeling to improve the response to a potential H7N9 influenza pandemic. Clin Infect Dis 2015; 60(Suppl 1): S9–S10
https://doi.org/10.1093/cid/civ090 pmid: 25878303
157 X Qi, D Jiang, H Wang, D Zhuang, J Ma, J Fu, J Qu, Y Sun, S Yu, Y Meng, Y Huang, L Xia, Y Li, Y Wang, G Wang, K Xu, Q Zhang, M Wan, X Su, G Fu, GF Gao. Calculating the burden of disease of avian-origin H7N9 infections in China. BMJ Open 2014; 4(1): e004189
https://doi.org/10.1136/bmjopen-2013-004189 pmid: 24441057
158 X Huo, LL Chen, L Hong, LH Xiang, FY Tang, SH Chen, Q Gao, C Chen, QG Dai, CW Sun, K Xu, WJ Dai, X Qi, CC Li, HY Yu, Y Zhou, HD Huang, XY Pan, CS Xu, MH Zhou, CJ Bao. Economic burden and its associated factors of hospitalized patients infected with A (H7N9) virus: a retrospective study in Eastern China, 2013−2014. Infect Dis Poverty 2016; 5(1): 79
https://doi.org/10.1186/s40249-016-0170-5 pmid: 27580946
159 TC Sutton. The pandemic threat of emerging H5 and H7 avian influenza viruses. Viruses 2018; 10(9): E461
https://doi.org/10.3390/v10090461 pmid: 30154345
160 DB Jernigan, NJ Cox. H7N9: preparing for the unexpected in influenza. Annu Rev Med 2015; 66(1): 361–371
https://doi.org/10.1146/annurev-med-010714-112311 pmid: 25386931
161 W Silva, TK Das, R Izurieta. Estimating disease burden of a potential A(H7N9) pandemic influenza outbreak in the United States. BMC Public Health 2017; 17(1): 898
https://doi.org/10.1186/s12889-017-4884-5 pmid: 29178863
162 WHO. update HiwaiAHNvC. 2018. (accessed October 20, 2020)
163 K Su, S Ye, Q Li, W Xie, H Yu, L Qi, Y Xiong, H Zhao, B Li, H Ling, Y Tang, B Xiao, R Rong, W Tang, Y Li. Influenza A(H7N9) virus emerged and resulted in human infections in Chongqing, southwestern China since 2017. Int J Infect Dis 2019; 81: 244–250
https://doi.org/10.1016/j.ijid.2019.02.011 pmid: 30797966
164 D Yu, G Xiang, W Zhu, X Lei, B Li, Y Meng, L Yang, H Jiao, X Li, W Huang, H Wei, Y Zhang, Y Hai, H Zhang, H Yue, S Zou, X Zhao, C Li, D Ao, Y Zhang, M Tan, J Liu, X Zhang, GF Gao, L Meng, D Wang. The re-emergence of highly pathogenic avian influenza H7N9 viruses in humans in mainland of China, 2019. Euro Surveill 2019; 24(21): 1900273
https://doi.org/10.2807/1560-7917.ES.2019.24.21.1900273 pmid: 31138362
165 W Shi, C Ke, S Fang, J Li, H Song, X Li, T Hu, J Wu, T Chen, L Yi, Y Song, X Wang, W Xing, W Huang, H Xiao, L Liang, B Peng, W Wu, H Liu, WJ Liu, EC Holmes, GF Gao, D Wang. Co-circulation and persistence of multiple A/H3N2 influenza variants in China. Emerg Microbes Infect 2019; 8(1): 1157–1167
https://doi.org/10.1080/22221751.2019.1648183 pmid: 31373538
166 P Wang, WJ Liu. It’s not just science: challenges for public health intervention in Ebola epidemics in the Democratic Republic of Congo. Sci China Life Sci 2020; 63(7): 1079–1081
https://doi.org/10.1007/s11427-019-1670-6 pmid: 32170628
167 C Quan, Q Wang, J Zhang, M Zhao, Q Dai, T Huang, Z Zhang, S Mao, Y Nie, J Liu, Y Xie, B Zhang, Y Bi, W Shi, P Liu, D Wang, L Feng, H Yu, WJ Liu, GF Gao. Avian influenza A viruses among occupationally exposed populations, China, 2014–2016. Emerg Infect Dis 2019; 25(12): 2215–2225
https://doi.org/10.3201/eid2512.190261 pmid: 31742536
168 KZ Yu. Highly pathogenic influenza A viruses (infection with) (non-poultry including wild birds), China (People's Rep. of). . (accessed November 15, 2020)
169 D Bulach, R Halpin, D Spiro, L Pomeroy, D Janies, DB Boyle. Molecular analysis of H7 avian influenza viruses from Australia and New Zealand: genetic diversity and relationships from 1976 to 2007. J Virol 2010; 84(19): 9957–9966
https://doi.org/10.1128/JVI.00930-10 pmid: 20668069
170 X Huo, LB Cui, C Chen, D Wang, X Qi, MH Zhou, X Guo, F Wang, WJ Liu, W Kong, D Ni, Y Chi, Y Ge, H Huang, F Hu, C Li, X Zhao, R Ren, CJ Bao, GF Gao, FC Zhu. Severe human infection with a novel avian-origin influenza A(H7N4) virus. Sci Bull (Beijing) 2018; 63(16): 1043–1050
https://doi.org/10.1016/j.scib.2018.07.003 pmid: 32288966
171 C Quan, T Huang, X Chen, J Zhang, Q Wang, C Zhang, T Zhang, L Zhou, L Shu, C Long, L Yang, X Du, Y Zhao, P Liu, H Song, W Shi, Y Bi, Q Lv, WJ Liu, GF Gao. Genomic characterizations of H4 subtype avian influenza viruses from live poultry markets in Sichuan Province of China, 2014−2015. Sci China Life Sci 2018; 61(9): 1123–1126
https://doi.org/10.1007/s11427-018-9327-4 pmid: 29995198
172 GF Gao. Foreword: Foreword from Editor-in-Chief George F. Gao — China’s outreach to the world: public health goes global. China CDC Week 2019; 1(1): 1−2
https://doi.org/10.46234/ccdcw2019.001
173 G Wu. Laboratory biosafety in China: past, present, and future. Biosafety Heal 2019; 1(2): 56−58
https://doi.org/10.1016/j.bsheal.2019.10.003
174 Q Liu, B Zhou, W Ma, B Bawa, J Ma, W Wang, Y Lang, Y Lyoo, RA Halpin, X Lin, TB Stockwell, R Webby, DE Wentworth, JA Richt. Analysis of recombinant H7N9 wild-type and mutant viruses in pigs shows that the Q226L mutation in HA is important for transmission. J Virol 2014; 88(14): 8153–8165
https://doi.org/10.1128/JVI.00894-14 pmid: 24807722
175 CK Mok, HH Lee, MC Chan, SF Sia, M Lestra, JM Nicholls, H Zhu, Y Guan, JM Peiris. Pathogenicity of the novel A/H7N9 influenza virus in mice. MBio 2013; 4(4): e00362-13
https://doi.org/10.1128/mBio.00362-13 pmid: 23820393
176 X Sun, JA Belser, H Yang, JA Pulit-Penaloza, C Pappas, N Brock, H Zeng, HM Creager, J Stevens, TR Maines. Identification of key hemagglutinin residues responsible for cleavage, acid stability, and virulence of fifth-wave highly pathogenic avian influenza A(H7N9) viruses. Virology 2019; 535: 232–240
https://doi.org/10.1016/j.virol.2019.07.012 pmid: 31325838
177 W Li, HHY Lee, RF Li, HM Zhu, G Yi, JSM Peiris, ZF Yang, CKP Mok. The PB2 mutation with lysine at 627 enhances the pathogenicity of avian influenza (H7N9) virus which belongs to a non-zoonotic lineage. Sci Rep 2017; 7(1): 2352
https://doi.org/10.1038/s41598-017-02598-z pmid: 28539661
178 L Liang, L Jiang, J Li, Q Zhao, J Wang, X He, S Huang, Q Wang, Y Zhao, G Wang, N Sun, G Deng, J Shi, G Tian, X Zeng, Y Jiang, L Liu, J Liu, P Chen, Z Bu, Y Kawaoka, H Chen, C Li. Low polymerase activity attributed to PA drives the acquisition of the PB2 E627K mutation of H7N9 avian influenza virus in mammals. MBio 2019; 10(3): e01162-19
https://doi.org/10.1128/mBio.01162-19 pmid: 31213560
179 LL Chan, CT Bui, CK Mok, MM Ng, JM Nicholls, JS Peiris, MC Chan, RW Chan. Evaluation of the human adaptation of influenza A/H7N9 virus in PB2 protein using human and swine respiratory tract explant cultures. Sci Rep 2016; 6(1): 35401
https://doi.org/10.1038/srep35401 pmid: 27739468
180 W Zhu, X Zou, J Zhou, J Tang, Y Shu. Residues 41V and/or 210D in the NP protein enhance polymerase activities and potential replication of novel influenza (H7N9) viruses at low temperature. Virol J 2015; 12(1): 71
https://doi.org/10.1186/s12985-015-0304-6 pmid: 25940512
181 S Ma, B Zhang, J Shi, X Yin, G Wang, P Cui, L Liu, G Deng, Y Jiang, C Li, H Chen. Amino acid mutations A286V and T437M in the nucleoprotein attenuate H7N9 viruses in mice. J Virol 2019; 94(2): e01530-19
https://doi.org/10.1128/JVI.01530-19 pmid: 31666373
182 S Wang, L Zhang, R Zhang, X Chi, Z Yang, Y Xie, S Shu, Y Liao, JL Chen. Identification of two residues within the NS1 of H7N9 influenza A virus that critically affect the protein stability and function. Vet Res (Faisalabad) 2018; 49(1): 98
https://doi.org/10.1186/s13567-018-0594-y pmid: 30285871
[1] Miaojin Zhu, Jia Ji, Danrong Shi, Xiangyun Lu, Baohong Wang, Nanping Wu, Jie Wu, Hangping Yao, Lanjuan Li. Unusual global outbreak of monkeypox: what should we do?[J]. Front. Med., 2022, 16(4): 507-517.
[2] Yi Zhang, Haocheng Zhang, Wenhong Zhang. SARS-CoV-2 variants, immune escape, and countermeasures[J]. Front. Med., 2022, 16(2): 196-207.
[3] Chun Cai, Yuexing Liu, Yanyun Li, Yan Shi, Haidong Zou, Yuqian Bao, Yun Shen, Xin Cui, Chen Fu, Weiping Jia, the SIM Study Group. Effectiveness of quality of care for patients with type 2 diabetes in China: findings from the Shanghai Integration Model (SIM)[J]. Front. Med., 2022, 16(1): 126-138.
[4] Zehong Huang, Yingying Su, Tianying Zhang, Ningshao Xia. A review of the safety and efficacy of current COVID-19 vaccines[J]. Front. Med., 2022, 16(1): 39-55.
[5] Yuntao Zhang, Yunkai Yang, Niu Qiao, Xuewei Wang, Ling Ding, Xiujuan Zhu, Yu Liang, Zibo Han, Feng Liu, Xinxin Zhang, Xiaoming Yang. Early assessment of the safety and immunogenicity of a third dose (booster) of COVID-19 immunization in Chinese adults[J]. Front. Med., 2022, 16(1): 93-101.
[6] Hongyun Zhao, Fan Luo, Jinhui Xue, Su Li, Rui-Hua Xu. Emerging immunological strategies: recent advances and future directions[J]. Front. Med., 2021, 15(6): 805-828.
[7] Deyu Zhang, Xiaojie Xu, Qinong Ye. Metabolism and immunity in breast cancer[J]. Front. Med., 2021, 15(2): 178-207.
[8] Solmaz Ohadian Moghadam, Seyed Ali Momeni. Human microbiome and prostate cancer development: current insights into the prevention and treatment[J]. Front. Med., 2021, 15(1): 11-32.
[9] Yulu Wang, Dan Hu, Yanling Wu, Tianlei Ying. Recent advances in “universal” influenza virus antibodies: the rise of a hidden trimeric interface in hemagglutinin globular head[J]. Front. Med., 2020, 14(2): 149-159.
[10] Qian Wang, Linqi Zhang. Broadly neutralizing antibodies and vaccine design against HIV-1 infection[J]. Front. Med., 2020, 14(1): 30-42.
[11] Honglu Zhou, Songmei Wang, Lorenz von Seidlein, Xuanyi Wang. The epidemiology of norovirus gastroenteritis in China: disease burden and distribution of genotypes[J]. Front. Med., 2020, 14(1): 1-7.
[12] Xiaoxin Wu, Lanlan Xiao, Lanjuan Li. Research progress on human infection with avian influenza H7N9[J]. Front. Med., 2020, 14(1): 8-20.
[13] Nikolay V. Tsygan, Alexandr P. Trashkov, Igor V. Litvinenko, Viktoriya A. Yakovleva, Alexandr V. Ryabtsev, Andrey G. Vasiliev, Leonid P. Churilov. Autoimmunity in acute ischemic stroke and the role of blood--brain barrier: the dark side or the light one?[J]. Front. Med., 2019, 13(4): 420-426.
[14] Eun Young Lee, Kun-Ho Yoon. Epidemic obesity in children and adolescents: risk factors and prevention[J]. Front. Med., 2018, 12(6): 658-666.
[15] Jiyu Tong, Richard A. Flavell, Hua-Bing Li. RNA m6A modification and its function in diseases[J]. Front. Med., 2018, 12(4): 481-489.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed