|
|
Avian influenza A (H7N9) virus: from low pathogenic to highly pathogenic |
William J. Liu1,2( ), Haixia Xiao3, Lianpan Dai4, Di Liu5,6,7,8, Jianjun Chen5,6,7,8, Xiaopeng Qi9, Yuhai Bi1,4,7,8, Yi Shi1,4,7,8, George F. Gao2,4,9, Yingxia Liu1( ) |
1. Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen 518114, China 2. National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China 3. Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin 300308, China 4. CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China 5. CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China 6. National Virus Resource Center, Chinese Academy of Sciences, Wuhan 430071, China 7. University of Chinese Academy Sciences, Beijing 100049, China 8. Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing 100101, China 9. Chinese Center for Disease Control and Prevention, Beijing 102206, China |
|
|
Abstract The avian influenza A (H7N9) virus is a zoonotic virus that is closely associated with live poultry markets. It has caused infections in humans in China since 2013. Five waves of the H7N9 influenza epidemic occurred in China between March 2013 and September 2017. H7N9 with low-pathogenicity dominated in the first four waves, whereas highly pathogenic H7N9 influenza emerged in poultry and spread to humans during the fifth wave, causing wide concern. Specialists and officials from China and other countries responded quickly, controlled the epidemic well thus far, and characterized the virus by using new technologies and surveillance tools that were made possible by their preparedness efforts. Here, we review the characteristics of the H7N9 viruses that were identified while controlling the spread of the disease. It was summarized and discussed from the perspectives of molecular epidemiology, clinical features, virulence and pathogenesis, receptor binding, T-cell responses, monoclonal antibody development, vaccine development, and disease burden. These data provide tools for minimizing the future threat of H7N9 and other emerging and re-emerging viruses, such as SARS-CoV-2.
|
Keywords
H7N9
HPAIV
epidemiology
clinical features
pathogenesis
hemagglutinin
immunity
vaccine
|
Corresponding Author(s):
William J. Liu,Yingxia Liu
|
Just Accepted Date: 03 December 2020
Online First Date: 15 April 2021
Issue Date: 23 September 2021
|
|
1 |
M Koopmans, B Wilbrink, M Conyn, G Natrop, H van der Nat, H Vennema, A Meijer, J van Steenbergen, R Fouchier, A Osterhaus, A Bosman. Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet 2004; 363(9409): 587–593
https://doi.org/10.1016/S0140-6736(04)15589-X
pmid: 14987882
|
2 |
R Gao, B Cao, Y Hu, Z Feng, D Wang, W Hu, J Chen, Z Jie, H Qiu, K Xu, X Xu, H Lu, W Zhu, Z Gao, N Xiang, Y Shen, Z He, Y Gu, Z Zhang, Y Yang, X Zhao, L Zhou, X Li, S Zou, Y Zhang, X Li, L Yang, J Guo, J Dong, Q Li, L Dong, Y Zhu, T Bai, S Wang, P Hao, W Yang, Y Zhang, J Han, H Yu, D Li, GF Gao, G Wu, Y Wang, Z Yuan, Y Shu. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 2013; 368(20): 1888–1897
https://doi.org/10.1056/NEJMoa1304459
pmid: 23577628
|
3 |
D Liu, W Shi, Y Shi, D Wang, H Xiao, W Li, Y Bi, Y Wu, X Li, J Yan, W Liu, G Zhao, W Yang, Y Wang, J Ma, Y Shu, F Lei, GF Gao. Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet 2013; 381(9881): 1926–1932
https://doi.org/10.1016/S0140-6736(13)60938-1
pmid: 23643111
|
4 |
J Liu, H Xiao, Y Wu, D Liu, X Qi, Y Shi, GF Gao. H7N9: a low pathogenic avian influenza A virus infecting humans. Curr Opin Virol 2014; 5: 91–97
https://doi.org/10.1016/j.coviro.2014.03.001
pmid: 24705093
|
5 |
JC Kile, R Ren, L Liu, CM Greene, K Roguski, AD Iuliano, Y Jang, J Jones, S Thor, Y Song, S Zhou, SC Trock, V Dugan, DE Wentworth, MZ Levine, TM Uyeki, JM Katz, DB Jernigan, SJ Olsen, AM Fry, E Azziz-Baumgartner, CT Davis. Update: increase in human infections with novel Asian lineage avian influenza A(H7N9) viruses during the fifth epidemic — China, October 1, 2016−August 7, 2017. MMWR Morb Mortal Wkly Rep 2017; 66(35): 928–932
https://doi.org/10.15585/mmwr.mm6635a2
pmid: 28880856
|
6 |
F Zhang, Y Bi, J Wang, G Wong, W Shi, F Hu, Y Yang, L Yang, X Deng, S Jiang, X He, Y Liu, C Yin, N Zhong, GF Gao. Human infections with recently-emerging highly pathogenic H7N9 avian influenza virus in China. J Infect 2017; 75(1): 71–75
https://doi.org/10.1016/j.jinf.2017.04.001
pmid: 28390707
|
7 |
C Quan, W Shi, Y Yang, Y Yang, X Liu, W Xu, H Li, J Li, Q Wang, Z Tong, G Wong, C Zhang, S Ma, Z Ma, G Fu, Z Zhang, Y Huang, H Song, L Yang, WJ Liu, Y Liu, W Liu, GF Gao, Y Bi. New threats from H7N9 influenza virus: spread and evolution of high- and low-pathogenicity variants with high genomic diversity in wave five. J Virol 2018; 92(11): e00301-18
https://doi.org/10.1128/JVI.00301-18
pmid: 29563296
|
8 |
W Qi, W Jia, D Liu, J Li, Y Bi, S Xie, B Li, T Hu, Y Du, L Xing, J Zhang, F Zhang, X Wei, JS Eden, H Li, H Tian, W Li, G Su, G Lao, C Xu, B Xu, W Liu, G Zhang, T Ren, EC Holmes, J Cui, W Shi, GF Gao, M Liao. Emergence and adaptation of a novel highly pathogenic H7N9 influenza virus in birds and humans from a 2013 human-infecting low-pathogenic ancestor. J Virol 2018; 92(2): e00921-17
https://doi.org/10.1128/JVI.00921-17
pmid: 29070694
|
9 |
X Wang, H Jiang, P Wu, TM Uyeki, L Feng, S Lai, L Wang, X Huo, K Xu, E Chen, X Wang, J He, M Kang, R Zhang, J Zhang, J Wu, S Hu, H Zhang, X Liu, W Fu, J Ou, S Wu, Y Qin, Z Zhang, Y Shi, J Zhang, J Artois, VJ Fang, H Zhu, Y Guan, M Gilbert, PW Horby, GM Leung, GF Gao, BJ Cowling, H Yu. Epidemiology of avian influenza A H7N9 virus in human beings across five epidemics in mainland of China, 2013−17: an epidemiological study of laboratory-confirmed case series. Lancet Infect Dis 2017; 17(8): 822–832
https://doi.org/10.1016/S1473-3099(17)30323-7
pmid: 28583578
|
10 |
M Kang, EHY Lau, W Guan, Y Yang, T Song, BJ Cowling, J Wu, M Peiris, J He, CKP Mok. Epidemiology of human infections with highly pathogenic avian influenza A(H7N9) virus in Guangdong, 2016 to 2017. Euro Surveill 2017; 22(27): 30568
https://doi.org/10.2807/1560-7917.ES.2017.22.27.30568
pmid: 28703705
|
11 |
H Li, B Cao. Pandemic and avian influenza A viruses in humans: epidemiology, virology, clinical characteristics, and treatment strategy. Clin Chest Med 2017; 38(1): 59–70
https://doi.org/10.1016/j.ccm.2016.11.005
pmid: 28159162
|
12 |
M Han, J Gu, GF Gao, WJ Liu. China in action: national strategies to combat against emerging infectious diseases. Sci China Life Sci 2017; 60(12): 1383–1385
https://doi.org/10.1007/s11427-017-9141-3
pmid: 28887624
|
13 |
P Wu, H Jiang, JT Wu, E Chen, J He, H Zhou, L Wei, J Yang, B Yang, Y Qin, VJ Fang, M Li, TK Tsang, J Zheng, EH Lau, Y Cao, C Chai, H Zhong, Z Li, GM Leung, L Feng, GF Gao, BJ Cowling, H Yu. Poultry market closures and human infection with influenza A(H7N9) virus, China, 2013−14. Emerg Infect Dis 2014; 20(11): 1891–1894
https://doi.org/10.3201/eid2011.140556
pmid: 25340354
|
14 |
H Yu, JT Wu, BJ Cowling, Q Liao, VJ Fang, S Zhou, P Wu, H Zhou, EH Lau, D Guo, MY Ni, Z Peng, L Feng, H Jiang, H Luo, Q Li, Z Feng, Y Wang, W Yang, GM Leung. Effect of closure of live poultry markets on poultry-to-person transmission of avian influenza A H7N9 virus: an ecological study. Lancet 2014; 383(9916): 541–548
https://doi.org/10.1016/S0140-6736(13)61904-2
pmid: 24183056
|
15 |
GF Gao. Influenza and the live poultry trade. Science 2014; 344(6181): 235
https://doi.org/10.1126/science.1254664
pmid: 24744345
|
16 |
X Zeng, G Tian, J Shi, G Deng, C Li, H Chen. Vaccination of poultry successfully eliminated human infection with H7N9 virus in China. Sci China Life Sci 2018; 61(12): 1465–1473
https://doi.org/10.1007/s11427-018-9420-1
pmid: 30414008
|
17 |
WJ Liu, D Liu. The triphibious warfare against viruses. Sci China Life Sci 2017; 60(12): 1295–1298
https://doi.org/10.1007/s11427-017-9252-y
pmid: 29285714
|
18 |
R Gao, B Cao, Y Hu, Z Feng, D Wang, W Hu, J Chen, Z Jie, H Qiu, K Xu, X Xu, H Lu, W Zhu, Z Gao, N Xiang, Y Shen, Z He, Y Gu, Z Zhang, Y Yang, X Zhao, L Zhou, X Li, S Zou, Y Zhang, X Li, L Yang, J Guo, J Dong, Q Li, L Dong, Y Zhu, T Bai, S Wang, P Hao, W Yang, Y Zhang, J Han, H Yu, D Li, GF Gao, G Wu, Y Wang, Z Yuan, Y Shu. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 2013; 368(20): 1888–1897
https://doi.org/10.1056/NEJMoa1304459
pmid: 23577628
|
19 |
L Cui, D Liu, W Shi, J Pan, X Qi, X Li, X Guo, M Zhou, W Li, J Li, J Haywood, H Xiao, X Yu, X Pu, Y Wu, H Yu, K Zhao, Y Zhu, B Wu, T Jin, Z Shi, F Tang, F Zhu, Q Sun, L Wu, R Yang, J Yan, F Lei, B Zhu, W Liu, J Ma, H Wang, GF Gao. Dynamic reassortments and genetic heterogeneity of the human-infecting influenza A (H7N9) virus. Nat Commun 2014; 5(1): 3142
https://doi.org/10.1038/ncomms4142
pmid: 24457975
|
20 |
TT Lam, J Wang, Y Shen, B Zhou, L Duan, CL Cheung, C Ma, SJ Lycett, CY Leung, X Chen, L Li, W Hong, Y Chai, L Zhou, H Liang, Z Ou, Y Liu, A Farooqui, DJ Kelvin, LL Poon, DK Smith, OG Pybus, GM Leung, Y Shu, RG Webster, RJ Webby, JS Peiris, A Rambaut, H Zhu, Y Guan. The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature 2013; 502(7470): 241–244
https://doi.org/10.1038/nature12515
pmid: 23965623
|
21 |
A Wu, C Su, D Wang, Y Peng, M Liu, S Hua, T Li, GF Gao, H Tang, J Chen, X Liu, Y Shu, D Peng, T Jiang. Sequential reassortments underlie diverse influenza H7N9 genotypes in China. Cell Host Microbe 2013; 14(4): 446–452
https://doi.org/10.1016/j.chom.2013.09.001
pmid: 24055604
|
22 |
J Pu, S Wang, Y Yin, G Zhang, RA Carter, J Wang, G Xu, H Sun, M Wang, C Wen, Y Wei, D Wang, B Zhu, G Lemmon, Y Jiao, S Duan, Q Wang, Q Du, M Sun, J Bao, Y Sun, J Zhao, H Zhang, G Wu, J Liu, RG Webster. Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus. Proc Natl Acad Sci USA 2015; 112(2): 548–553
https://doi.org/10.1073/pnas.1422456112
pmid: 25548189
|
23 |
G Li, J 3rd Fox, Z Liu, J Liu, GF Gao, Y Jin, H Gao, M Wu. Lyn mitigates mouse airway remodeling by downregulating the TGF-b3 isoform in house dust mite models. J Immunol 2013; 191(11): 5359–5370
https://doi.org/10.4049/jimmunol.1301596
pmid: 24127553
|
24 |
TT Lam, B Zhou, J Wang, Y Chai, Y Shen, X Chen, C Ma, W Hong, Y Chen, Y Zhang, L Duan, P Chen, J Jiang, Y Zhang, L Li, LL Poon, RJ Webby, DK Smith, GM Leung, JS Peiris, EC Holmes, Y Guan, H Zhu. Dissemination, divergence and establishment of H7N9 influenza viruses in China. Nature 2015; 522(7554): 102–105
https://doi.org/10.1038/nature14348
pmid: 25762140
|
25 |
Y Bi, Q Chen, Q Wang, J Chen, T Jin, G Wong, C Quan, J Liu, J Wu, R Yin, L Zhao, M Li, Z Ding, R Zou, W Xu, H Li, H Wang, K Tian, G Fu, Y Huang, A Shestopalov, S Li, B Xu, H Yu, T Luo, L Lu, X Xu, Y Luo, Y Liu, W Shi, D Liu, GF Gao. Genesis, Evolution and prevalence of H5N6 avian influenza viruses in China. Cell Host Microbe 2016; 20(6): 810–821
https://doi.org/10.1016/j.chom.2016.10.022
pmid: 27916476
|
26 |
L Zhou, R Ren, L Yang, C Bao, J Wu, D Wang, C Li, N Xiang, Y Wang, D Li, H Sui, Y Shu, Z Feng, Q Li, D Ni. Sudden increase in human infection with avian influenza A(H7N9) virus in China, September−December 2016. Western Pac Surveill Response J 2017; 8(1): 6–14
https://doi.org/10.5365/wpsar.2017.8.1.001
pmid: 28409054
|
27 |
S Su, M Gu, D Liu, J Cui, GF Gao, J Zhou, X Liu. Epidemiology, evolution, and pathogenesis of H7N9 influenza viruses in five epidemic waves since 2013 in China. Trends Microbiol 2017; 25(9): 713–728
https://doi.org/10.1016/j.tim.2017.06.008
pmid: 28734617
|
28 |
H Zhu, TT Lam, DK Smith, Y Guan. Emergence and development of H7N9 influenza viruses in China. Curr Opin Virol 2016; 16: 106–113
https://doi.org/10.1016/j.coviro.2016.01.020
pmid: 26922715
|
29 |
E Chen, Y Chen, L Fu, Z Chen, Z Gong, H Mao, D Wang, MY Ni, P Wu, Z Yu, T He, Z Li, J Gao, S Liu, Y Shu, BJ Cowling, S Xia, H Yu. Human infection with avian influenza A(H7N9) virus re-emerges in China in winter 2013. Euro Surveill 2013; 18(43): 20616
https://doi.org/10.2807/1560-7917.ES2013.18.43.20616
pmid: 24176616
|
30 |
D Xiang, Z Pu, T Luo, F Guo, X Li, X Shen, DM Irwin, RW Murphy, M Liao, Y Shen. Evolutionary dynamics of avian influenza A H7N9 virus across five waves in mainland China, 2013−2017. J Infect 2018; 77(3): 205–211
https://doi.org/10.1016/j.jinf.2018.05.006
pmid: 29807090
|
31 |
L Zhou, Y Tan, M Kang, F Liu, R Ren, Y Wang, T Chen, Y Yang, C Li, J Wu, H Zhang, D Li, CM Greene, S Zhou, AD Iuliano, F Havers, D Ni, D Wang, Z Feng, TM Uyeki, Q Li. Preliminary epidemiology of human infections with highly pathogenic avian influenza A(H7N9) virus, China, 2017. Emerg Infect Dis 2017; 23(8): 1355–1359
https://doi.org/10.3201/eid2308.170640
pmid: 28580900
|
32 |
D Wang, L Yang, R Gao, X Zhang, Y Tan, A Wu, W Zhu, J Zhou, S Zou, X Li, Y Sun, Y Zhang, Y Liu, T Liu, Y Xiong, J Xu, L Chen, Y Weng, X Qi, J Guo, X Li, J Dong, W Huang, Y Zhang, L Dong, X Zhao, L Liu, J Lu, Y Lan, H Wei, L Xin, Y Chen, C Xu, T Chen, Y Zhu, T Jiang, Z Feng, W Yang, Y Wang, H Zhu, Y Guan, GF Gao, D Li, J Han, S Wang, G Wu, Y Shu. Genetic tuning of the novel avian influenza A(H7N9) virus during interspecies transmission, China, 2013. Euro Surveill 2014; 19(25): 20836
https://doi.org/10.2807/1560-7917.ES2014.19.25.20836
pmid: 24993557
|
33 |
Y Bi, Q Xie, S Zhang, Y Li, H Xiao, T Jin, W Zheng, J Li, X Jia, L Sun, J Liu, C Qin, GF Gao, W Liu. Assessment of the internal genes of influenza A (H7N9) virus contributing to high pathogenicity in mice. J Virol 2015; 89(1): 2–13
https://doi.org/10.1128/JVI.02390-14
pmid: 25320305
|
34 |
Y Jin, H Ren, Y Teng, M Hu, X Peng, J Yue, L Liang. Novel reassortment of avian influenza A(H7N9) virus with subtype H6N6 and H5N6 viruses circulating in Guangdong Province, China. J Infect 2017; 75(2): 179–182
https://doi.org/10.1016/j.jinf.2017.05.006
pmid: 28535998
|
35 |
KK To, KH Ng, TL Que, JM Chan, KY Tsang, AK Tsang, H Chen, KY Yuen. Avian influenza A H5N1 virus: a continuous threat to humans. Emerg Microbes Infect 2012; 1(9): e25
https://doi.org/10.1038/emi.2012.24
pmid: 26038430
|
36 |
HN Gao, HZ Lu, B Cao, B Du, H Shang, JH Gan, SH Lu, YD Yang, Q Fang, YZ Shen, XM Xi, Q Gu, XM Zhou, HP Qu, Z Yan, FM Li, W Zhao, ZC Gao, GF Wang, LX Ruan, WH Wang, J Ye, HF Cao, XW Li, WH Zhang, XC Fang, J He, WF Liang, J Xie, M Zeng, XZ Wu, J Li, Q Xia, ZC Jin, Q Chen, C Tang, ZY Zhang, BM Hou, ZX Feng, JF Sheng, NS Zhong, LJ Li. Clinical findings in 111 cases of influenza A (H7N9) virus infection. N Engl J Med 2013; 368(24): 2277–2285
https://doi.org/10.1056/NEJMoa1305584
pmid: 23697469
|
37 |
Y Yang, G Wong, L Yang, S Tan, J Li, B Bai, Z Xu, H Li, W Xu, X Zhao, C Quan, H Zheng, WJ Liu, W Liu, L Liu, Y Liu, Y Bi, GF Gao. Comparison between human infections caused by highly and low pathogenic H7N9 avian influenza viruses in Wave Five: clinical and virological findings. J Infect 2019; 78(3): 241–248
https://doi.org/10.1016/j.jinf.2019.01.005
pmid: 30664912
|
38 |
Q Wang, Z Zhang, Y Shi, Y Jiang. Emerging H7N9 influenza A (novel reassortant avian-origin) pneumonia: radiologic findings. Radiology 2013; 268(3): 882–889
https://doi.org/10.1148/radiol.13130988
pmid: 23821754
|
39 |
J Shi, J Xie, Z He, Y Hu, Y He, Q Huang, B Leng, W He, Y Sheng, F Li, Y Song, C Bai, Y Gu, Z Jie. A detailed epidemiological and clinical description of 6 human cases of avian-origin influenza A (H7N9) virus infection in Shanghai. PLoS One 2013; 8(10): e77651
https://doi.org/10.1371/journal.pone.0077651
pmid: 24143251
|
40 |
Q Li, L Zhou, M Zhou, Z Chen, F Li, H Wu, N Xiang, E Chen, F Tang, D Wang, L Meng, Z Hong, W Tu, Y Cao, L Li, F Ding, B Liu, M Wang, R Xie, R Gao, X Li, T Bai, S Zou, J He, J Hu, Y Xu, C Chai, S Wang, Y Gao, L Jin, Y Zhang, H Luo, H Yu, J He, Q Li, X Wang, L Gao, X Pang, G Liu, Y Yan, H Yuan, Y Shu, W Yang, Y Wang, F Wu, TM Uyeki, Z Feng. Epidemiology of human infections with avian influenza A(H7N9) virus in China. N Engl J Med 2014; 370(6): 520–532
https://doi.org/10.1056/NEJMoa1304617
pmid: 23614499
|
41 |
L Xu, L Bao, W Deng, L Dong, H Zhu, T Chen, Q Lv, F Li, J Yuan, Z Xiang, K Gao, Y Xu, L Huang, Y Li, J Liu, Y Yao, P Yu, X Li, W Huang, X Zhao, Y Lan, J Guo, W Yong, Q Wei, H Chen, L Zhang, C Qin. Novel avian-origin human influenza A(H7N9) can be transmitted between ferrets via respiratory droplets. J Infect Dis 2014; 209(4): 551–556
https://doi.org/10.1093/infdis/jit474
pmid: 23990570
|
42 |
WJ Liu, R Zou, Y Hu, M Zhao, C Quan, S Tan, K Luo, J Yuan, H Zheng, J Liu, M Liu, Y Bi, J Yan, B Zhu, D Wang, G Wu, L Liu, KY Yuen, GF Gao, Y Liu. Clinical, immunological and bacteriological characteristics of H7N9 patients nosocomially co-infected by Acinetobacter baumannii: a case control study. BMC Infect Dis 2018; 18(1): 664
https://doi.org/10.1186/s12879-018-3447-4
pmid: 30551738
|
43 |
L Yu, Z Wang, Y Chen, W Ding, H Jia, JF Chan, KK To, H Chen, Y Yang, W Liang, S Zheng, H Yao, S Yang, H Cao, X Dai, H Zhao, J Li, Q Bao, P Chen, X Hou, L Li, KY Yuen. Clinical, virological, and histopathological manifestations of fatal human infections by avian influenza A(H7N9) virus. Clin Infect Dis 2013; 57(10): 1449–1457
https://doi.org/10.1093/cid/cit541
pmid: 23943822
|
44 |
L Yang, W Zhu, X Li, M Chen, J Wu, P Yu, S Qi, Y Huang, W Shi, J Dong, X Zhao, W Huang, Z Li, X Zeng, H Bo, T Chen, W Chen, J Liu, Y Zhang, Z Liang, W Shi, Y Shu, D Wang. Genesis and spread of newly emerged highly pathogenic H7N9 avian viruses in mainland of China. J Virol 2017; 91(23): e01277-17
https://doi.org/10.1128/JVI.01277-17
pmid: 28956760
|
45 |
WHO. Monthly Risk Assessment Summary. 2019. Updated October 23, 2020 (accessed November 15, 2020)
|
46 |
Y Yang, C Shen, J Li, R Zou, G Wong, L Peng, L Yang, S Fang, J Li, X Li, W Wu, X Jiang, L Zeng, J Lan, Y Bi, GF Gao, J Yuan, Y Liu. Clinical and virological characteristics of human infections with H7N9 avian influenza virus in Shenzhen, China, 2013−2017. J Infect 2019; 79(4): 389–399
https://doi.org/10.1016/j.jinf.2019.07.010
pmid: 31374221
|
47 |
Y Hu, S Lu, Z Song, W Wang, P Hao, J Li, X Zhang, HL Yen, B Shi, T Li, W Guan, L Xu, Y Liu, S Wang, X Zhang, D Tian, Z Zhu, J He, K Huang, H Chen, L Zheng, X Li, J Ping, B Kang, X Xi, L Zha, Y Li, Z Zhang, M Peiris, Z Yuan. Association between adverse clinical outcome in human disease caused by novel influenza A H7N9 virus and sustained viral shedding and emergence of antiviral resistance. Lancet 2013; 381(9885): 2273–2279
https://doi.org/10.1016/S0140-6736(13)61125-3
pmid: 23726392
|
48 |
J Dai, X Zhou, D Dong, Y Liu, Q Gu, B Zhu, C Wu, H Cai. Human infection with a novel avian-origin influenza A (H7N9) virus: serial chest radiographic and CT findings. Chin Med J (Engl) 2014; 127(12): 2206–2211
pmid: 24931229
|
49 |
T Watanabe, M Kiso, S Fukuyama, N Nakajima, M Imai, S Yamada, S Murakami, S Yamayoshi, K Iwatsuki-Horimoto, Y Sakoda, E Takashita, R McBride, T Noda, M Hatta, H Imai, D Zhao, N Kishida, M Shirakura, RP de Vries, S Shichinohe, M Okamatsu, T Tamura, Y Tomita, N Fujimoto, K Goto, H Katsura, E Kawakami, I Ishikawa, S Watanabe, M Ito, Y Sakai-Tagawa, Y Sugita, R Uraki, R Yamaji, AJ Eisfeld, G Zhong, S Fan, J Ping, EA Maher, A Hanson, Y Uchida, T Saito, M Ozawa, G Neumann, H Kida, T Odagiri, JC Paulson, H Hasegawa, M Tashiro, Y Kawaoka. Characterization of H7N9 influenza A viruses isolated from humans. Nature 2013; 501(7468): 551–555
https://doi.org/10.1038/nature12392
pmid: 23842494
|
50 |
Q Zhang, J Shi, G Deng, J Guo, X Zeng, X He, H Kong, C Gu, X Li, J Liu, G Wang, Y Chen, L Liu, L Liang, Y Li, J Fan, J Wang, W Li, L Guan, Q Li, H Yang, P Chen, L Jiang, Y Guan, X Xin, Y Jiang, G Tian, X Wang, C Qiao, C Li, Z Bu, H Chen. H7N9 influenza viruses are transmissible in ferrets by respiratory droplet. Science 2013; 341(6144): 410–414
https://doi.org/10.1126/science.1240532
pmid: 23868922
|
51 |
OIE. Update on avian influenza in animals (types H5 and H7). Updated October 22, 2020 (accessed November 15, 2020)
|
52 |
M Imai, T Watanabe, M Kiso, N Nakajima, S Yamayoshi, K Iwatsuki-Horimoto, M Hatta, S Yamada, M Ito, Y Sakai-Tagawa, M Shirakura, E Takashita, S Fujisaki, R McBride, AJ Thompson, K Takahashi, T Maemura, H Mitake, S Chiba, G Zhong, S Fan, K Oishi, A Yasuhara, K Takada, T Nakao, S Fukuyama, M Yamashita, TJS Lopes, G Neumann, T Odagiri, S Watanabe, Y Shu, JC Paulson, H Hasegawa, Y Kawaoka. A highly pathogenic avian H7N9 influenza virus isolated from a human is lethal in some ferrets infected via respiratory droplets. Cell Host Microbe 2017; 22(5): 615–626.e8
https://doi.org/10.1016/j.chom.2017.09.008
pmid: 29056430
|
53 |
X Sun, JA Belser, C Pappas, JA Pulit-Penaloza, N Brock, H Zeng, HM Creager, S Le, M Wilson, A Lewis, TJ Stark, WJ Shieh, J Barnes, TM Tumpey, TR Maines. Risk assessment of fifth-wave H7N9 influenza A viruses in mammalian models. J Virol 2018; 93(1): e01740-18
https://doi.org/10.1128/JVI.01740-18
pmid: 30305359
|
54 |
J Shi, G Deng, H Kong, C Gu, S Ma, X Yin, X Zeng, P Cui, Y Chen, H Yang, X Wan, X Wang, L Liu, P Chen, Y Jiang, J Liu, Y Guan, Y Suzuki, M Li, Z Qu, L Guan, J Zang, W Gu, S Han, Y Song, Y Hu, Z Wang, L Gu, W Yang, L Liang, H Bao, G Tian, Y Li, C Qiao, L Jiang, C Li, Z Bu, H Chen. H7N9 virulent mutants detected in chickens in China pose an increased threat to humans. Cell Res 2017; 27(12): 1409–1421
https://doi.org/10.1038/cr.2017.129
pmid: 29151586
|
55 |
L Bao, Y Bi, G Wong, W Qi, F Li, Q Lv, L Wang, F Liu, Y Yang, C Zhang, WJ Liu, C Quan, W Jia, Y Liu, W Liu, M Liao, GF Gao, C Qin. Diverse biological characteristics and varied virulence of H7N9 from wave 5. Emerg Microbes Infect 2019; 8(1): 94–102
https://doi.org/10.1080/22221751.2018.1560234
pmid: 30866763
|
56 |
W Song, P Wang, BW Mok, SY Lau, X Huang, WL Wu, M Zheng, X Wen, S Yang, Y Chen, L Li, KY Yuen, H Chen. The K526R substitution in viral protein PB2 enhances the effects of E627K on influenza virus replication. Nat Commun 2014; 5(1): 5509
https://doi.org/10.1038/ncomms6509
pmid: 25409547
|
57 |
CK Mok, HH Lee, M Lestra, JM Nicholls, MC Chan, SF Sia, H Zhu, LL Poon, Y Guan, JS Peiris. Amino acid substitutions in polymerase basic protein 2 gene contribute to the pathogenicity of the novel A/H7N9 influenza virus in mammalian hosts. J Virol 2014; 88(6): 3568–3576
https://doi.org/10.1128/JVI.02740-13
pmid: 24403592
|
58 |
C Xiao, W Ma, N Sun, L Huang, Y Li, Z Zeng, Y Wen, Z Zhang, H Li, Q Li, Y Yu, Y Zheng, S Liu, P Hu, X Zhang, Z Ning, W Qi, M Liao. PB2-588 V promotes the mammalian adaptation of H10N8, H7N9 and H9N2 avian influenza viruses. Sci Rep 2016; 6(1): 19474
https://doi.org/10.1038/srep19474
pmid: 26782141
|
59 |
WJ Liu, J Li, R Zou, J Pan, T Jin, L Li, P Liu, Y Zhao, X Yu, H Wang, G Liu, H Jiang, Y Bi, L Liu, KY Yuen, Y Liu, GF Gao. Dynamic PB2-E627K substitution of influenza H7N9 virus indicates the in vivo genetic tuning and rapid host adaptation. Proc Natl Acad Sci U S A 2020; 117(38): 23807–23814
https://doi.org/10.1073/pnas.2013267117
pmid: 32873642
|
60 |
Y Bi, H Xiao, Q Chen, Y Wu, L Fu, C Quan, G Wong, J Liu, J Haywood, Y Liu, B Zhou, J Yan, W Liu, GF Gao. Changes in the length of the neuraminidase stalk region impact H7N9 virulence in mice. J Virol 2016; 90(4): 2142–2149
https://doi.org/10.1128/JVI.02553-15
pmid: 26656694
|
61 |
M de Graaf, RA Fouchier. Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO J 2014; 33(8): 823–841
https://doi.org/10.1002/embj.201387442
pmid: 24668228
|
62 |
DC Wiley, JJ Skehel. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem 1987; 56(1): 365–394
https://doi.org/10.1146/annurev.bi.56.070187.002053
pmid: 3304138
|
63 |
Y Shi, Y Wu, W Zhang, J Qi, GF Gao. Enabling the ‘host jump’: structural determinants of receptor-binding specificity in influenza A viruses. Nat Rev Microbiol 2014; 12(12): 822–831
https://doi.org/10.1038/nrmicro3362
pmid: 25383601
|
64 |
X Sun, Y Shi, X Lu, J He, F Gao, J Yan, J Qi, GF Gao. Bat-derived influenza hemagglutinin H17 does not bind canonical avian or human receptors and most likely uses a unique entry mechanism. Cell Rep 2013; 3(3): 769–778
https://doi.org/10.1016/j.celrep.2013.01.025
pmid: 23434510
|
65 |
Y Wu, Y Wu, B Tefsen, Y Shi, GF Gao. Bat-derived influenza-like viruses H17N10 and H18N11. Trends Microbiol 2014; 22(4): 183–191
https://doi.org/10.1016/j.tim.2014.01.010
pmid: 24582528
|
66 |
JK Taubenberger, JC Kash. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 2010; 7(6): 440–451
https://doi.org/10.1016/j.chom.2010.05.009
pmid: 20542248
|
67 |
XL Xiong, JW McCauley, DA Steinhauer. Receptor binding properties of the influenza virus hemagglutinin as a determinant of host range. Curr Top Microbiol Immunol 2014; 385: 63–91
https://doi.org/10.1007/82_2014_423
pmid: 25078920
|
68 |
CJ Bao, LB Cui, MH Zhou, L Hong, GF Gao, H Wang. Live-animal markets and influenza A (H7N9) virus infection. N Engl J Med 2013; 368(24): 2337–2339
https://doi.org/10.1056/NEJMc1306100
pmid: 23697471
|
69 |
D Vijaykrishna, YM Deng, ML Grau, M Kay, A Suttie, PF Horwood, W Kalpravidh, F Claes, K Osbjer, P Dussart, IG Barr, EA Karlsson. Emergence of influenza A(H7N4) virus, Cambodia. Emerg Infect Dis 2019; 25(10): 1988–1991
https://doi.org/10.3201/eid2510.190506
pmid: 31310233
|
70 |
Y Xu, R Peng, W Zhang, J Qi, H Song, S Liu, H Wang, M Wang, H Xiao, L Fu, Z Fan, Y Bi, J Yan, Y Shi, GF Gao. Avian-to-human receptor-binding adaptation of avian H7N9 influenza virus hemagglutinin. Cell Rep 2019; 29(8): 2217–2228.e5
https://doi.org/10.1016/j.celrep.2019.10.047
pmid: 31747596
|
71 |
Y Shi, W Zhang, F Wang, J Qi, Y Wu, H Song, F Gao, Y Bi, Y Zhang, Z Fan, C Qin, H Sun, J Liu, J Haywood, W Liu, W Gong, D Wang, Y Shu, Y Wang, J Yan, GF Gao. Structures and receptor binding of hemagglutinins from human-infecting H7N9 influenza viruses. Science 2013; 342(6155): 243–247
https://doi.org/10.1126/science.1242917
pmid: 24009358
|
72 |
X Xiong, SR Martin, LF Haire, SA Wharton, RS Daniels, MS Bennett, JW McCauley, PJ Collins, PA Walker, JJ Skehel, SJ Gamblin. Receptor binding by an H7N9 influenza virus from humans. Nature 2013; 499(7459): 496–499
https://doi.org/10.1038/nature12372
pmid: 23787694
|
73 |
T Kageyama, S Fujisaki, E Takashita, H Xu, S Yamada, Y Uchida, G Neumann, T Saito, Y Kawaoka, M Tashiro. Genetic analysis of novel avian A(H7N9) influenza viruses isolated from patients in China, February to April 2013. Euro Surveill 2013; 18(15): 20453
pmid: 23594575
|
74 |
RP de Vries, W Peng, OC Grant, AJ Thompson, X Zhu, KM Bouwman, ATT de la Pena, MJ van Breemen, IN Ambepitiya Wickramasinghe, CAM de Haan, W Yu, R McBride, RW Sanders, RJ Woods, MH Verheije, IA Wilson, JC Paulson. Three mutations switch H7N9 influenza to human-type receptor specificity. PLoS Pathog 2017; 13(6): e1006390
https://doi.org/10.1371/journal.ppat.1006390
pmid: 28617868
|
75 |
Z Wang, A Zhang, Y Wan, X Liu, C Qiu, X Xi, Y Ren, J Wang, Y Dong, M Bao, L Li, M Zhou, S Yuan, J Sun, Z Zhu, L Chen, Q Li, Z Zhang, X Zhang, S Lu, PC Doherty, K Kedzierska, J Xu. Early hypercytokinemia is associated with interferon-induced transmembrane protein-3 dysfunction and predictive of fatal H7N9 infection. Proc Natl Acad Sci USA 2014; 111(2): 769–774
https://doi.org/10.1073/pnas.1321748111
pmid: 24367104
|
76 |
J Guo, F Huang, J Liu, Y Chen, W Wang, B Cao, Z Zou, S Liu, J Pan, C Bao, M Zeng, H Xiao, H Gao, S Yang, Y Zhao, Q Liu, H Zhou, J Zhu, X Liu, W Liang, Y Yang, S Zheng, J Yang, H Diao, K Su, L Shao, H Cao, Y Wu, M Zhao, S Tan, H Li, X Xu, C Wang, J Zhang, L Wang, J Wang, J Xu, D Li, N Zhong, X Cao, GF Gao, L Li, C Jiang. The serum profile of hypercytokinemia factors identified in H7N9-Infected patients can predict fatal outcomes. Sci Rep 2015; 5(1): 10942
https://doi.org/10.1038/srep10942
pmid: 26028236
|
77 |
F Huang, J Guo, Z Zou, J Liu, B Cao, S Zhang, H Li, W Wang, M Sheng, S Liu, J Pan, C Bao, M Zeng, H Xiao, G Qian, X Hu, Y Chen, Y Chen, Y Zhao, Q Liu, H Zhou, J Zhu, H Gao, S Yang, X Liu, S Zheng, J Yang, H Diao, H Cao, Y Wu, M Zhao, S Tan, D Guo, X Zhao, Y Ye, W Wu, Y Xu, JM Penninger, D Li, GF Gao, C Jiang, L Li. Angiotensin II plasma levels are linked to disease severity and predict fatal outcomes in H7N9-infected patients. Nat Commun 2014; 5(1): 3595
https://doi.org/10.1038/ncomms4595
pmid: 24800963
|
78 |
Y Chen, W Liang, S Yang, N Wu, H Gao, J Sheng, H Yao, J Wo, Q Fang, D Cui, Y Li, X Yao, Y Zhang, H Wu, S Zheng, H Diao, S Xia, Y Zhang, KH Chan, HW Tsoi, JL Teng, W Song, P Wang, SY Lau, M Zheng, JF Chan, KK To, H Chen, L Li, KY Yuen. Human infections with the emerging avian influenza A H7N9 virus from wet market poultry: clinical analysis and characterisation of viral genome. Lancet 2013; 381(9881): 1916–1925
https://doi.org/10.1016/S0140-6736(13)60903-4
pmid: 23623390
|
79 |
Y Bi, J Liu, H Xiong, Y Zhang, D Liu, Y Liu, GF Gao, B Wang. A new reassortment of influenza A (H7N9) virus causing human infection in Beijing, 2014. Sci Rep 2016; 6(1): 26624
https://doi.org/10.1038/srep26624
pmid: 27230107
|
80 |
Y Chi, Y Zhu, T Wen, L Cui, Y Ge, Y Jiao, T Wu, A Ge, H Ji, K Xu, C Bao, Z Zhu, X Qi, B Wu, Z Shi, F Tang, Z Xing, M Zhou. Cytokine and chemokine levels in patients infected with the novel avian influenza A (H7N9) virus in China. J Infect Dis 2013; 208(12): 1962–1967
https://doi.org/10.1093/infdis/jit440
pmid: 23990573
|
81 |
J Zhou, D Wang, R Gao, B Zhao, J Song, X Qi, Y Zhang, Y Shi, L Yang, W Zhu, T Bai, K Qin, Y Lan, S Zou, J Guo, J Dong, L Dong, Y Zhang, H Wei, X Li, J Lu, L Liu, X Zhao, X Li, W Huang, L Wen, H Bo, L Xin, Y Chen, C Xu, Y Pei, Y Yang, X Zhang, S Wang, Z Feng, J Han, W Yang, GF Gao, G Wu, D Li, Y Wang, Y Shu. Biological features of novel avian influenza A (H7N9) virus. Nature 2013; 499(7459): 500–503
https://doi.org/10.1038/nature12379
pmid: 23823727
|
82 |
Y Bi, S Tan, Y Yang, G Wong, M Zhao, Q Zhang, Q Wang, X Zhao, L Li, J Yuan, H Li, H Li, W Xu, W Shi, C Quan, R Zou, J Li, H Zheng, L Yang, WJ Liu, D Liu, H Wang, Y Qin, L Liu, C Jiang, W Liu, L Lu, GF Gao, Y Liu. Clinical and immunological characteristics of human infections with H5N6 avian influenza virus. Clin Infect Dis 2019; 68(7): 1100–1109
https://doi.org/10.1093/cid/ciy681
pmid: 30124826
|
83 |
Y Chen, X Li, L Tian, S Zheng, S Yang, Y Dong, Y Wang, D Cui, X Liu, W Liang, H Chen, L Li. Dynamic behavior of lymphocyte subgroups correlates with clinical outcomes in human H7N9 infection. J Infect 2014; 69(4): 358–365
https://doi.org/10.1016/j.jinf.2014.05.006
pmid: 24841136
|
84 |
H Diao, G Cui, Y Wei, J Chen, J Zuo, H Cao, Y Chen, H Yao, Z Tian, L Li. Severe H7N9 infection is associated with decreased antigen-presenting capacity of CD14+ cells. PLoS One 2014; 9(3): e92823
https://doi.org/10.1371/journal.pone.0092823
pmid: 24664315
|
85 |
Z Wang, Y Wan, C Qiu, S Quiñones-Parra, Z Zhu, L Loh, D Tian, Y Ren, Y Hu, X Zhang, PG Thomas, M Inouye, PC Doherty, K Kedzierska, J Xu. Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8+ T cells. Nat Commun 2015; 6(1): 6833
https://doi.org/10.1038/ncomms7833
pmid: 25967273
|
86 |
Z Wang, L Zhu, THO Nguyen, Y Wan, S Sant, SM Quiñones-Parra, JC Crawford, AA Eltahla, S Rizzetto, RA Bull, C Qiu, M Koutsakos, EB Clemens, L Loh, T Chen, L Liu, P Cao, Y Ren, L Kedzierski, T Kotsimbos, JM McCaw, NL La Gruta, SJ Turner, AC Cheng, F Luciani, X Zhang, PC Doherty, PG Thomas, J Xu, K Kedzierska. Clonally diverse CD38+HLA-DR+CD8+ T cells persist during fatal H7N9 disease. Nat Commun 2018; 9(1): 824
https://doi.org/10.1038/s41467-018-03243-7
pmid: 29483513
|
87 |
D Hou, T Ying, L Wang, C Chen, S Lu, Q Wang, E Seeley, J Xu, X Xi, T Li, J Liu, X Tang, Z Zhang, J Zhou, C Bai, C Wang, M Byrne-Steele, J Qu, J Han, Y Song. Immune repertoire diversity correlated with mortality in avian influenza A (H7N9) virus infected patients. Sci Rep 2016; 6(1): 33843
https://doi.org/10.1038/srep33843
pmid: 27669665
|
88 |
J Chen, G Cui, C Lu, Y Ding, H Gao, Y Zhu, Y Wei, L Wang, T Uede, L Li, H Diao. Severe infection with avian influenza A virus is associated with delayed immune recovery in survivors. Medicine (Baltimore) 2016; 95(5): e2606
https://doi.org/10.1097/MD.0000000000002606
pmid: 26844470
|
89 |
M Zhao, J Chen, S Tan, T Dong, H Jiang, J Zheng, C Quan, Q Liao, H Zhang, X Wang, Q Wang, Y Bi, F Liu, L Feng, PW Horby, P Klenerman, GF Gao, WJ Liu, H Yu. Prolonged evolution of virus-specific memory T cell immunity after severe avian influenza A (H7N9) virus infection. J Virol 2018; 92(17): e01024-18
https://doi.org/10.1128/JVI.01024-18
|
90 |
MJ Ma, XX Wang, MN Wu, XJ Wang, CJ Bao, HJ Zhang, Y Yang, K Xu, GL Wang, M Zhao, W Cheng, WJ Chen, WH Zhang, LQ Fang, WJ Liu, EF Chen, WC Cao. Characterization of antibody and memory T-cell response in H7N9 survivors: a cross-sectional analysis. Clin Microbiol Infect 2020; 26(2): 247–254
pmid: 31229595
|
91 |
CE van de Sandt, JH Kreijtz, G de Mutsert, MM Geelhoed-Mieras, ML Hillaire, SE Vogelzang-van Trierum, AD Osterhaus, RA Fouchier, GF Rimmelzwaan. Human cytotoxic T lymphocytes directed to seasonal influenza A viruses cross-react with the newly emerging H7N9 virus. J Virol 2014; 88(3): 1684–1693
https://doi.org/10.1128/JVI.02843-13
pmid: 24257602
|
92 |
WJ Liu, S Tan, M Zhao, C Quan, Y Bi, Y Wu, S Zhang, H Zhang, H Xiao, J Qi, J Yan, W Liu, H Yu, Y Shu, G Wu, GF Gao. Cross-immunity against avian influenza A(H7N9) virus in the healthy population is affected by antigenicity-dependent substitutions. J Infect Dis 2016; 214(12): 1937–1946
https://doi.org/10.1093/infdis/jiw471
pmid: 27738054
|
93 |
S Quiñones-Parra, E Grant, L Loh, TH Nguyen, KA Campbell, SY Tong, A Miller, PC Doherty, D Vijaykrishna, J Rossjohn, S Gras, K Kedzierska. Preexisting CD8+ T-cell immunity to the H7N9 influenza A virus varies across ethnicities. Proc Natl Acad Sci USA 2014; 111(3): 1049–1054
https://doi.org/10.1073/pnas.1322229111
pmid: 24395804
|
94 |
J Liu, B Wu, S Zhang, S Tan, Y Sun, Z Chen, Y Qin, M Sun, G Shi, Y Wu, M Sun, N Liu, K Ning, Y Ma, B Gao, J Yan, F Zhu, H Wang, GF Gao. Conserved epitopes dominate cross-CD8+ T-cell responses against influenza A H1N1 virus among Asian populations. Eur J Immunol 2013; 43(8): 2055–2069
https://doi.org/10.1002/eji.201343417
pmid: 23681926
|
95 |
M Zhao, K Liu, J Luo, S Tan, C Quan, S Zhang, Y Chai, J Qi, Y Li, Y Bi, H Xiao, G Wong, J Zhou, T Jiang, W Liu, H Yu, J Yan, Y Liu, Y Shu, G Wu, A Wu, GF Gao, WJ Liu. Heterosubtypic protections against human-infecting avian influenza viruses correlate to biased cross-T-cell responses. MBio 2018; 9(4): e01408-18
https://doi.org/10.1128/mBio.01408-18
pmid: 30087171
|
96 |
S Duan, VA Meliopoulos, JL McClaren, XZ Guo, CJ Sanders, HS Smallwood, RJ Webby, SL Schultz-Cherry, PC Doherty, PG Thomas. Diverse heterologous primary infections radically alter immunodominance hierarchies and clinical outcomes following H7N9 influenza challenge in mice. PLoS Pathog 2015; 11(2): e1004642
https://doi.org/10.1371/journal.ppat.1004642
pmid: 25668410
|
97 |
SR McMaster, JD Gabbard, DG Koutsonanos, RW Compans, RA Tripp, SM Tompkins, JE Kohlmeier. Memory T cells generated by prior exposure to influenza cross react with the novel H7N9 influenza virus and confer protective heterosubtypic immunity. PLoS One 2015; 10(2): e0115725
https://doi.org/10.1371/journal.pone.0115725
pmid: 25671696
|
98 |
Z Chen, J Wang, L Bao, L Guo, W Zhang, Y Xue, H Zhou, Y Xiao, J Wang, F Wu, Y Deng, C Qin, Q Jin. Human monoclonal antibodies targeting the haemagglutinin glycoprotein can neutralize H7N9 influenza virus. Nat Commun 2015; 6(1): 6714
https://doi.org/10.1038/ncomms7714
pmid: 25819694
|
99 |
J Wang, Z Chen, L Bao, W Zhang, Y Xue, X Pang, X Zhang, C Qin, Q Jin. Characterization of two human monoclonal antibodies neutralizing influenza A H7N9 viruses. J Virol 2015; 89(17): 9115–9118
https://doi.org/10.1128/JVI.01295-15
pmid: 26063436
|
100 |
KA Huang, P Rijal, H Jiang, B Wang, L Schimanski, T Dong, YM Liu, P Chang, M Iqbal, MC Wang, Z Chen, R Song, CC Huang, JH Yang, J Qi, TY Lin, A Li, TJ Powell, JT Jan, C Ma, GF Gao, Y Shi, AR Townsend. Structure-function analysis of neutralizing antibodies to H7N9 influenza from naturally infected humans. Nat Microbiol 2019; 4(2): 306–315
https://doi.org/10.1038/s41564-018-0303-7
pmid: 30478290
|
101 |
M Li, L Chen, Q Wang, M Hao, X Zhang, L Liu, X Yu, C Yang, J Xu, J Chen, R Gong. A cross-reactive human monoclonal antibody targets the conserved H7 antigenic site A from fifth wave H7N9-infected humans. Antiviral Res 2019; 170: 104556
https://doi.org/10.1016/j.antiviral.2019.104556
pmid: 31299269
|
102 |
J Li, Y Yang, M Wang, X Ren, Z Yang, L Liu, G Zhang, Q Chen, W Yang, YH Chen, X Wan. Rapid isolation of a potent human antibody against H7N9 influenza virus from an infected patient. Antiviral Res 2019; 170: 104564
https://doi.org/10.1016/j.antiviral.2019.104564
pmid: 31336147
|
103 |
CJ Henry Dunand, PE Leon, M Huang, A Choi, V Chromikova, IY Ho, GS Tan, J Cruz, A Hirsh, NY Zheng, CE Mullarkey, FA Ennis, M Terajima, JJ Treanor, DJ Topham, K Subbarao, P Palese, F Krammer, PC Wilson. Both neutralizing and non-neutralizing human H7N9 influenza vaccine-induced monoclonal antibodies confer protection. Cell Host Microbe 2016; 19(6): 800–813
https://doi.org/10.1016/j.chom.2016.05.014
pmid: 27281570
|
104 |
NJ Thornburg, H Zhang, S Bangaru, G Sapparapu, N Kose, RM Lampley, RG Bombardi, Y Yu, S Graham, A Branchizio, SM Yoder, MT Rock, CB Creech, KM Edwards, D Lee, S Li, IA Wilson, A García-Sastre, RA Albrecht, JE Crowe Jr. H7N9 influenza virus neutralizing antibodies that possess few somatic mutations. J Clin Invest 2016; 126(4): 1482–1494
https://doi.org/10.1172/JCI85317
pmid: 26950424
|
105 |
GS Tan, PE Leon, RA Albrecht, I Margine, A Hirsh, J Bahl, F Krammer. Broadly-reactive neutralizing and non-neutralizing antibodies directed against the H7 influenza virus hemagglutinin reveal divergent mechanisms of protection. PLoS Pathog 2016; 12(4): e1005578
https://doi.org/10.1371/journal.ppat.1005578
pmid: 27081859
|
106 |
F Schmeisser, A Vasudevan, S Verma, W Wang, E Alvarado, C Weiss, V Atukorale, C Meseda, JP Weir. Antibodies to antigenic site A of influenza H7 hemagglutinin provide protection against H7N9 challenge. PLoS One 2015; 10(1): e0117108
https://doi.org/10.1371/journal.pone.0117108
pmid: 25629172
|
107 |
D Stadlbauer, F Amanat, S Strohmeier, R Nachbagauer, F Krammer. Cross-reactive mouse monoclonal antibodies raised against the hemagglutinin of A/Shanghai/1/2013 (H7N9) protect against novel H7 virus isolates in the mouse model. Emerg Microbes Infect 2018; 7(1): 110
https://doi.org/10.1038/s41426-018-0115-0
pmid: 29925896
|
108 |
F He, SR Kumar, SM Syed Khader, Y Tan, M Prabakaran, J Kwang. Effective intranasal therapeutics and prophylactics with monoclonal antibody against lethal infection of H7N7 influenza virus. Antiviral Res 2013; 100(1): 207–214
https://doi.org/10.1016/j.antiviral.2013.08.003
pmid: 23954322
|
109 |
C Chen, L Liu, Y Xiao, S Cui, J Wang, Q Jin. Structural insight into a human neutralizing antibody against influenza virus H7N9. J Virol 2018; 92(5): e01850-17
https://doi.org/10.1128/JVI.01850-17
pmid: 29212936
|
110 |
F Yu, H Song, Y Wu, SY Chang, L Wang, W Li, B Hong, S Xia, C Wang, S Khurana, Y Feng, Y Wang, Z Sun, B He, D Hou, J Manischewitz, LR King, Y Song, JY Min, H Golding, X Ji, L Lu, S Jiang, DS Dimitrov, T Ying. A potent germline-like human monoclonal antibody targets a pH-sensitive epitope on H7N9 influenza hemagglutinin. Cell Host Microbe 2017; 22(4): 471–483.e5
https://doi.org/10.1016/j.chom.2017.08.011
pmid: 28966056
|
111 |
M Hong, PS Lee, RM Hoffman, X Zhu, JC Krause, NS Laursen, SI Yoon, L Song, L Tussey, JE Crowe Jr, AB Ward, IA Wilson. Antibody recognition of the pandemic H1N1 Influenza virus hemagglutinin receptor binding site. J Virol 2013; 87(22): 12471–12480
https://doi.org/10.1128/JVI.01388-13
pmid: 24027321
|
112 |
JRR Whittle, R Zhang, S Khurana, LR King, J Manischewitz, H Golding, PR Dormitzer, BF Haynes, EB Walter, MA Moody, TB Kepler, HX Liao, SC Harrison. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin. Proc Natl Acad Sci USA 2011; 108(34): 14216–14221
https://doi.org/10.1073/pnas.1111497108
pmid: 21825125
|
113 |
R Xu, JC Krause, R McBride, JC Paulson, JE Crowe Jr, IA Wilson. A recurring motif for antibody recognition of the receptor-binding site of influenza hemagglutinin. Nat Struct Mol Biol 2013; 20(3): 363–370
https://doi.org/10.1038/nsmb.2500
pmid: 23396351
|
114 |
NS Laursen, IA Wilson. Broadly neutralizing antibodies against influenza viruses. Antiviral Res 2013; 98(3): 476–483
https://doi.org/10.1016/j.antiviral.2013.03.021
pmid: 23583287
|
115 |
DC Ekiert, AK Kashyap, J Steel, A Rubrum, G Bhabha, R Khayat, JH Lee, MA Dillon, RE O’Neil, AM Faynboym, M Horowitz, L Horowitz, AB Ward, P Palese, R Webby, RA Lerner, RR Bhatt, IA Wilson. Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature 2012; 489(7417): 526–532
https://doi.org/10.1038/nature11414
pmid: 22982990
|
116 |
PS Lee, N Ohshima, RL Stanfield, W Yu, Y Iba, Y Okuno, Y Kurosawa, IA Wilson. Receptor mimicry by antibody F045-092 facilitates universal binding to the H3 subtype of influenza virus. Nat Commun 2014; 5(1): 3614
https://doi.org/10.1038/ncomms4614
pmid: 24717798
|
117 |
PS Lee, R Yoshida, DC Ekiert, N Sakai, Y Suzuki, A Takada, IA Wilson. Heterosubtypic antibody recognition of the influenza virus hemagglutinin receptor binding site enhanced by avidity. Proc Natl Acad Sci USA 2012; 109(42): 17040–17045
https://doi.org/10.1073/pnas.1212371109
pmid: 23027945
|
118 |
R Yoshida, M Igarashi, H Ozaki, N Kishida, D Tomabechi, H Kida, K Ito, A Takada. Cross-protective potential of a novel monoclonal antibody directed against antigenic site B of the hemagglutinin of influenza A viruses. PLoS Pathog 2009; 5(3): e1000350
https://doi.org/10.1371/journal.ppat.1000350
pmid: 19300497
|
119 |
S Bangaru, S Lang, M Schotsaert, HA Vanderven, X Zhu, N Kose, R Bombardi, JA Finn, SJ Kent, P Gilchuk, I Gilchuk, HL Turner, A Garcia-Sastre, S Li, AB Ward, IA Wilson, JE, Jr Crowe. A site of vulnerability on the influenza virus hemagglutinin head domain trimer interface. Cell 2019; 177(5): 1136–1152 .e18
pmid: 31100268 DOI: 10.1016/j.cell.2019.04.011
|
120 |
Y Okuno, Y Isegawa, F Sasao, S Ueda. A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. J Virol 1993; 67(5): 2552–2558
https://doi.org/10.1128/JVI.67.5.2552-2558.1993
pmid: 7682624
|
121 |
K Sedeyn, X Saelens. New antibody-based prevention and treatment options for influenza. Antiviral Res 2019; 170: 104562
https://doi.org/10.1016/j.antiviral.2019.104562
pmid: 31323236
|
122 |
H Xiao, T Guo, M Yang, J Qi, C Huang, Y Hong, J Gu, X Pang, WJ Liu, R Peng, J McCauley, Y Bi, S Li, J Feng, H Zhang, X Zhang, X Lu, J Yan, L Chen, Y Shi, W Chen, GF Gao. Light chain modulates heavy chain conformation to change protection profile of monoclonal antibodies against influenza A viruses. Cell Discov 2019; 5(1): 21
https://doi.org/10.1038/s41421-019-0086-x
pmid: 30993000
|
123 |
C Dreyfus, NS Laursen, T Kwaks, D Zuijdgeest, R Khayat, DC Ekiert, JH Lee, Z Metlagel, MV Bujny, M Jongeneelen, R van der Vlugt, M Lamrani, HJ Korse, E Geelen, Ö Sahin, M Sieuwerts, JP Brakenhoff, R Vogels, OT Li, LL Poon, M Peiris, W Koudstaal, AB Ward, IA Wilson, J Goudsmit, RH Friesen. Highly conserved protective epitopes on influenza B viruses. Science 2012; 337(6100): 1343–1348
https://doi.org/10.1126/science.1222908
pmid: 22878502
|
124 |
MC Eichelberger, H Wan. Influenza neuraminidase as a vaccine antigen. Curr Top Microbiol Immunol 2015; 386: 275–299
https://doi.org/10.1007/82_2014_398
pmid: 25033754
|
125 |
JR Wilson, Z Guo, A Reber, RP Kamal, N Music, S Gansebom, Y Bai, M Levine, P Carney, WP Tzeng, J Stevens, IA York. An influenza A virus (H7N9) anti-neuraminidase monoclonal antibody with prophylactic and therapeutic activity in vivo. Antiviral Res 2016; 135: 48–55
https://doi.org/10.1016/j.antiviral.2016.10.001
pmid: 27713074
|
126 |
J Li, X Yu, X Pu, L Xie, Y Sun, H Xiao, F Wang, H Din, Y Wu, D Liu, G Zhao, J Liu, J Pan. Environmental connections of novel avian-origin H7N9 influenza virus infection and virus adaptation to the human. Sci China Life Sci 2013; 56(6): 485–492
https://doi.org/10.1007/s11427-013-4491-3
pmid: 23657795
|
127 |
H Wan, L Qi, J Gao, LK Couzens, L Jiang, Y Gao, ZM Sheng, S Fong, M Hahn, S Khurana, JK Taubenberger, MC Eichelberger. Comparison of the efficacy of N9 neuraminidase-specific monoclonal antibodies against influenza A(H7N9) virus infection. J Virol 2018; 92(4): e01588-17
pmid: 29167344
|
128 |
IM Gilchuk, S Bangaru, P Gilchuk, RP Irving, N Kose, RG Bombardi, NJ Thornburg, CB Creech, KM Edwards, S Li, HL Turner, W Yu, X Zhu, IA Wilson, AB Ward, JE, Jr Crowe. Influenza H7N9 virus neuraminidase-specific human monoclonal antibodies inhibit viral egress and protect from lethal influenza infection in mice. Cell Host Microbe 2019; 26(6): 715–728.e8
https://doi.org/10.1016/j.chom.2019.10.003
pmid: 31757769
|
129 |
P Rijal, BB Wang, TK Tan, L Schimanski, P Janesch, T Dong, JW McCauley, RS Daniels, AR Townsend, KA Huang. Broadly inhibiting anti-neuraminidase monoclonal antibodies induced by trivalent influenza vaccine and H7N9 infection in humans. J Virol 2020; 94(4): e01182-19
https://doi.org/10.1128/JVI.01182-19
pmid: 31748388
|
130 |
H Jiang, W Peng, J Qi, Y Chai, H Song, Y Bi, P Rijal, H Wang, BO Oladejo, J Liu, Y Shi, GF Gao, AR Townsend, Y Wu. Structure-based modification of an anti-neuraminidase human antibody restores protection efficacy against the drifted influenza virus. mBio 2020; 11(5):e02315-20
https://doi.org/10.1128/mBio.02315-20
pmid: 33024040
|
131 |
YQ Chen, TJ Wohlbold, NY Zheng, M Huang, Y Huang, KE Neu, J Lee, H Wan, KT Rojas, E Kirkpatrick, C Henry, AE Palm, CT Stamper, LY Lan, DJ Topham, J Treanor, J Wrammert, R Ahmed, MC Eichelberger, G Georgiou, F Krammer, PC Wilson. Influenza infection in humans induces broadly cross-reactive and protective neuraminidase-reactive antibodies. Cell 2018; 173(2): 417–429.e10
https://doi.org/10.1016/j.cell.2018.03.030
pmid: 29625056
|
132 |
J Tang, D Wang. Research progress in human infection with avian influenza H7N9 virus. Sci China Life Sci 2017; 60(12): 1299–1306
https://doi.org/10.1007/s11427-017-9221-4
pmid: 29270791
|
133 |
I Isakova-Sivak, L Rudenko. Tackling a novel lethal virus: a focus on H7N9 vaccine development. Expert Rev Vaccines 2017; 16(7): 709–721
https://doi.org/10.1080/14760584.2017.1333907
pmid: 28532182
|
134 |
W Wodal, MG Schwendinger, H Savidis-Dacho, BA Crowe, C Hohenadl, R Fritz, P Br�hl, D Portsmouth, A Karner-Pichl, D Balta, L Grillberger, O Kistner, PN Barrett, MK Howard. Immunogenicity and protective efficacy of a Vero cell culture-derived whole-virus H7N9 vaccine in mice and guinea pigs. PLoS One 2015; 10(2): e0113963
https://doi.org/10.1371/journal.pone.0113963
pmid: 25719901
|
135 |
DH Chu, Y Sakoda, T Nishi, T Hiono, S Shichinohe, M Okamatsu, H Kida. Potency of an inactivated influenza vaccine prepared from A/duck/Mongolia/119/2008 (H7N9) against the challenge with A/Anhui/1/2013 (H7N9). Vaccine 2014; 32(28): 3473–3479
https://doi.org/10.1016/j.vaccine.2014.04.060
pmid: 24793949
|
136 |
No authors listed. Zoonotic influenza viruses: antigenic and genetic characteristics and development of candidate vaccine viruses for pandemic preparedness. Wkly Epidemiol Rec 2016; 91(42): 485–499 (in French)
pmid: 27766828
|
137 |
SH Seo, HS Kim. Inactivated antigen of the H7N9 influenza virus protects mice from its lethal infection. Viral Immunol 2016; 29(4): 235–243
https://doi.org/10.1089/vim.2015.0103
pmid: 26910526
|
138 |
W Pan, L Han, Z Dong, X Niu, Z Li, L Bao, C Li, Q Luo, Z Yang, X Li, J Huang, L Feng, C Qin, N Zhong, L Chen. Induction of neutralizing antibodies to influenza A virus H7N9 by inactivated whole virus in mice and nonhuman primates. Antiviral Res 2014; 107: 1–5
https://doi.org/10.1016/j.antiviral.2014.04.003
pmid: 24746458
|
139 |
MY Chia, AY Hu, YF Tseng, TC Weng, CC Lai, JY Lin, PL Chen, YF Wang, SR Chao, JY Chang, YS Hwang, CT Yeh, CP Yu, YC Chen, IJ Su, MS Lee. Evaluation of MDCK cell-derived influenza H7N9 vaccine candidates in ferrets. PLoS One 2015; 10(3): e0120793
https://doi.org/10.1371/journal.pone.0120793
pmid: 25799397
|
140 |
MI Barría, JL Garrido, C Stein, E Scher, Y Ge, SM Engel, TA Kraus, D Banach, TM Moran. Localized mucosal response to intranasal live attenuated influenza vaccine in adults. J Infect Dis 2013; 207(1): 115–124
https://doi.org/10.1093/infdis/jis641
pmid: 23087433
|
141 |
G Petukhova, A Naikhin, T Chirkova, S Donina, D Korenkov, L Rudenko. Comparative studies of local antibody and cellular immune responses to influenza infection and vaccination with live attenuated reassortant influenza vaccine (LAIV) utilizing a mouse nasal-associated lymphoid tissue (NALT) separation method. Vaccine 2009; 27(19): 2580–2587
https://doi.org/10.1016/j.vaccine.2009.02.035
pmid: 19428864
|
142 |
TJ Powell, T Strutt, J Reome, JA Hollenbaugh, AD Roberts, DL Woodland, SL Swain, RW Dutton. Priming with cold-adapted influenza A does not prevent infection but elicits long-lived protection against supralethal challenge with heterosubtypic virus. J Immunol 2007; 178(2): 1030–1038
https://doi.org/10.4049/jimmunol.178.2.1030
pmid: 17202366
|
143 |
S Tamura, T Tanimoto, T Kurata. Mechanisms of broad cross-protection provided by influenza virus infection and their application to vaccines. Jpn J Infect Dis 2005; 58(4): 195–207
pmid: 16116250
|
144 |
TV Chirkova, AN Naykhin, GD Petukhova, DA Korenkov, SA Donina, AN Mironov, LG Rudenko. Memory T-cell immune response in healthy young adults vaccinated with live attenuated influenza A (H5N2) vaccine. Clin Vaccine Immunol 2011; 18(10): 1710–1718
https://doi.org/10.1128/CVI.05116-11
pmid: 21813657
|
145 |
XS He, TH Holmes, C Zhang, K Mahmood, GW Kemble, DB Lewis, CL Dekker, HB Greenberg, AM Arvin. Cellular immune responses in children and adults receiving inactivated or live attenuated influenza vaccines. J Virol 2006; 80(23): 11756–11766
https://doi.org/10.1128/JVI.01460-06
pmid: 16971435
|
146 |
DF Hoft, E Babusis, S Worku, CT Spencer, K Lottenbach, SM Truscott, G Abate, IG Sakala, KM Edwards, CB Creech, MA Gerber, DI Bernstein, F Newman, I Graham, EL Anderson, RB Belshe. Live and inactivated influenza vaccines induce similar humoral responses, but only live vaccines induce diverse T-cell responses in young children. J Infect Dis 2011; 204(6): 845–853
https://doi.org/10.1093/infdis/jir436
pmid: 21846636
|
147 |
I Isakova-Sivak, L Rudenko. Safety, immunogenicity and infectivity of new live attenuated influenza vaccines. Expert Rev Vaccines 2015; 14(10): 1313–1329
https://doi.org/10.1586/14760584.2015.1075883
pmid: 26289975
|
148 |
Z Chen, M Baz, J Lu, M Paskel, C Santos, K Subbarao, H Jin, Y Matsuoka. Development of a high-yield live attenuated H7N9 influenza virus vaccine that provides protection against homologous and heterologous H7 wild-type viruses in ferrets. J Virol 2014; 88(12): 7016–7023
https://doi.org/10.1128/JVI.00100-14
pmid: 24719414
|
149 |
X Yang, J Zhao, C Wang, Y Duan, Z Zhao, R Chen, L Zhang, L Xing, C Lai, S Zhang, X Wang, P Yang. Immunization with a live attenuated H7N9 influenza vaccine protects mice against lethal challenge. PLoS One 2015; 10(4): e0123659
https://doi.org/10.1371/journal.pone.0123659
pmid: 25884801
|
150 |
H Kong, Q Zhang, C Gu, J Shi, G Deng, S Ma, J Liu, P Chen, Y Guan, Y Jiang, H Chen. A live attenuated vaccine prevents replication and transmission of H7N9 virus in mammals. Sci Rep 2015; 5(1): 11233
https://doi.org/10.1038/srep11233
pmid: 26058711
|
151 |
S Shcherbik, N Pearce, A Balish, J Jones, S Thor, CT Davis, M Pearce, T Tumpey, D Cureton, LM Chen, J Villanueva, TL Bousse. Generation and characterization of live attenuated influenza A(H7N9) candidate vaccine virus based on Russian donor of attenuation. PLoS One 2015; 10(9): e0138951
https://doi.org/10.1371/journal.pone.0138951
pmid: 26405798
|
152 |
LF Fries, GE Smith, GM Glenn. A recombinant viruslike particle influenza A (H7N9) vaccine. N Engl J Med 2013; 369(26): 2564–2566
https://doi.org/10.1056/NEJMc1313186
pmid: 24224560
|
153 |
YV Liu, MJ Massare, MB Pearce, X Sun, JA Belser, TR Maines, HM Creager, GM Glenn, P Pushko, GE Smith, TM Tumpey. Recombinant virus-like particles elicit protective immunity against avian influenza A(H7N9) virus infection in ferrets. Vaccine 2015; 33(18): 2152–2158
https://doi.org/10.1016/j.vaccine.2015.03.009
pmid: 25772674
|
154 |
S Pillet, T Racine, C Nfon, TZ Di Lenardo, S Babiuk, BJ Ward, GP Kobinger, N Landry. Plant-derived H7 VLP vaccine elicits protective immune response against H7N9 influenza virus in mice and ferrets. Vaccine 2015; 33(46): 6282–6289
https://doi.org/10.1016/j.vaccine.2015.09.065
pmid: 26432915
|
155 |
L Feng, S Feng, T Chen, J Yang, YC Lau, Z Peng, L Li, X Wang, JYT Wong, Y Qin, HS Bond, J Zhang, VJ Fang, J Zheng, J Yang, P Wu, H Jiang, Y He, BJ Cowling, H Yu, Y Shu, EHY Lau. Burden of influenza-associated outpatient influenza-like illness consultations in China, 2006–2015: a population-based study. Influenza Other Respir Viruses 2020; 14(2): 162–172
pmid: 31872547
|
156 |
SA Rasmussen, SC Redd. Using results from infectious disease modeling to improve the response to a potential H7N9 influenza pandemic. Clin Infect Dis 2015; 60(Suppl 1): S9–S10
https://doi.org/10.1093/cid/civ090
pmid: 25878303
|
157 |
X Qi, D Jiang, H Wang, D Zhuang, J Ma, J Fu, J Qu, Y Sun, S Yu, Y Meng, Y Huang, L Xia, Y Li, Y Wang, G Wang, K Xu, Q Zhang, M Wan, X Su, G Fu, GF Gao. Calculating the burden of disease of avian-origin H7N9 infections in China. BMJ Open 2014; 4(1): e004189
https://doi.org/10.1136/bmjopen-2013-004189
pmid: 24441057
|
158 |
X Huo, LL Chen, L Hong, LH Xiang, FY Tang, SH Chen, Q Gao, C Chen, QG Dai, CW Sun, K Xu, WJ Dai, X Qi, CC Li, HY Yu, Y Zhou, HD Huang, XY Pan, CS Xu, MH Zhou, CJ Bao. Economic burden and its associated factors of hospitalized patients infected with A (H7N9) virus: a retrospective study in Eastern China, 2013−2014. Infect Dis Poverty 2016; 5(1): 79
https://doi.org/10.1186/s40249-016-0170-5
pmid: 27580946
|
159 |
TC Sutton. The pandemic threat of emerging H5 and H7 avian influenza viruses. Viruses 2018; 10(9): E461
https://doi.org/10.3390/v10090461
pmid: 30154345
|
160 |
DB Jernigan, NJ Cox. H7N9: preparing for the unexpected in influenza. Annu Rev Med 2015; 66(1): 361–371
https://doi.org/10.1146/annurev-med-010714-112311
pmid: 25386931
|
161 |
W Silva, TK Das, R Izurieta. Estimating disease burden of a potential A(H7N9) pandemic influenza outbreak in the United States. BMC Public Health 2017; 17(1): 898
https://doi.org/10.1186/s12889-017-4884-5
pmid: 29178863
|
162 |
WHO. update HiwaiAHNvC. 2018. (accessed October 20, 2020)
|
163 |
K Su, S Ye, Q Li, W Xie, H Yu, L Qi, Y Xiong, H Zhao, B Li, H Ling, Y Tang, B Xiao, R Rong, W Tang, Y Li. Influenza A(H7N9) virus emerged and resulted in human infections in Chongqing, southwestern China since 2017. Int J Infect Dis 2019; 81: 244–250
https://doi.org/10.1016/j.ijid.2019.02.011
pmid: 30797966
|
164 |
D Yu, G Xiang, W Zhu, X Lei, B Li, Y Meng, L Yang, H Jiao, X Li, W Huang, H Wei, Y Zhang, Y Hai, H Zhang, H Yue, S Zou, X Zhao, C Li, D Ao, Y Zhang, M Tan, J Liu, X Zhang, GF Gao, L Meng, D Wang. The re-emergence of highly pathogenic avian influenza H7N9 viruses in humans in mainland of China, 2019. Euro Surveill 2019; 24(21): 1900273
https://doi.org/10.2807/1560-7917.ES.2019.24.21.1900273
pmid: 31138362
|
165 |
W Shi, C Ke, S Fang, J Li, H Song, X Li, T Hu, J Wu, T Chen, L Yi, Y Song, X Wang, W Xing, W Huang, H Xiao, L Liang, B Peng, W Wu, H Liu, WJ Liu, EC Holmes, GF Gao, D Wang. Co-circulation and persistence of multiple A/H3N2 influenza variants in China. Emerg Microbes Infect 2019; 8(1): 1157–1167
https://doi.org/10.1080/22221751.2019.1648183
pmid: 31373538
|
166 |
P Wang, WJ Liu. It’s not just science: challenges for public health intervention in Ebola epidemics in the Democratic Republic of Congo. Sci China Life Sci 2020; 63(7): 1079–1081
https://doi.org/10.1007/s11427-019-1670-6
pmid: 32170628
|
167 |
C Quan, Q Wang, J Zhang, M Zhao, Q Dai, T Huang, Z Zhang, S Mao, Y Nie, J Liu, Y Xie, B Zhang, Y Bi, W Shi, P Liu, D Wang, L Feng, H Yu, WJ Liu, GF Gao. Avian influenza A viruses among occupationally exposed populations, China, 2014–2016. Emerg Infect Dis 2019; 25(12): 2215–2225
https://doi.org/10.3201/eid2512.190261
pmid: 31742536
|
168 |
KZ Yu. Highly pathogenic influenza A viruses (infection with) (non-poultry including wild birds), China (People's Rep. of). . (accessed November 15, 2020)
|
169 |
D Bulach, R Halpin, D Spiro, L Pomeroy, D Janies, DB Boyle. Molecular analysis of H7 avian influenza viruses from Australia and New Zealand: genetic diversity and relationships from 1976 to 2007. J Virol 2010; 84(19): 9957–9966
https://doi.org/10.1128/JVI.00930-10
pmid: 20668069
|
170 |
X Huo, LB Cui, C Chen, D Wang, X Qi, MH Zhou, X Guo, F Wang, WJ Liu, W Kong, D Ni, Y Chi, Y Ge, H Huang, F Hu, C Li, X Zhao, R Ren, CJ Bao, GF Gao, FC Zhu. Severe human infection with a novel avian-origin influenza A(H7N4) virus. Sci Bull (Beijing) 2018; 63(16): 1043–1050
https://doi.org/10.1016/j.scib.2018.07.003
pmid: 32288966
|
171 |
C Quan, T Huang, X Chen, J Zhang, Q Wang, C Zhang, T Zhang, L Zhou, L Shu, C Long, L Yang, X Du, Y Zhao, P Liu, H Song, W Shi, Y Bi, Q Lv, WJ Liu, GF Gao. Genomic characterizations of H4 subtype avian influenza viruses from live poultry markets in Sichuan Province of China, 2014−2015. Sci China Life Sci 2018; 61(9): 1123–1126
https://doi.org/10.1007/s11427-018-9327-4
pmid: 29995198
|
172 |
GF Gao. Foreword: Foreword from Editor-in-Chief George F. Gao — China’s outreach to the world: public health goes global. China CDC Week 2019; 1(1): 1−2
https://doi.org/10.46234/ccdcw2019.001
|
173 |
G Wu. Laboratory biosafety in China: past, present, and future. Biosafety Heal 2019; 1(2): 56−58
https://doi.org/10.1016/j.bsheal.2019.10.003
|
174 |
Q Liu, B Zhou, W Ma, B Bawa, J Ma, W Wang, Y Lang, Y Lyoo, RA Halpin, X Lin, TB Stockwell, R Webby, DE Wentworth, JA Richt. Analysis of recombinant H7N9 wild-type and mutant viruses in pigs shows that the Q226L mutation in HA is important for transmission. J Virol 2014; 88(14): 8153–8165
https://doi.org/10.1128/JVI.00894-14
pmid: 24807722
|
175 |
CK Mok, HH Lee, MC Chan, SF Sia, M Lestra, JM Nicholls, H Zhu, Y Guan, JM Peiris. Pathogenicity of the novel A/H7N9 influenza virus in mice. MBio 2013; 4(4): e00362-13
https://doi.org/10.1128/mBio.00362-13
pmid: 23820393
|
176 |
X Sun, JA Belser, H Yang, JA Pulit-Penaloza, C Pappas, N Brock, H Zeng, HM Creager, J Stevens, TR Maines. Identification of key hemagglutinin residues responsible for cleavage, acid stability, and virulence of fifth-wave highly pathogenic avian influenza A(H7N9) viruses. Virology 2019; 535: 232–240
https://doi.org/10.1016/j.virol.2019.07.012
pmid: 31325838
|
177 |
W Li, HHY Lee, RF Li, HM Zhu, G Yi, JSM Peiris, ZF Yang, CKP Mok. The PB2 mutation with lysine at 627 enhances the pathogenicity of avian influenza (H7N9) virus which belongs to a non-zoonotic lineage. Sci Rep 2017; 7(1): 2352
https://doi.org/10.1038/s41598-017-02598-z
pmid: 28539661
|
178 |
L Liang, L Jiang, J Li, Q Zhao, J Wang, X He, S Huang, Q Wang, Y Zhao, G Wang, N Sun, G Deng, J Shi, G Tian, X Zeng, Y Jiang, L Liu, J Liu, P Chen, Z Bu, Y Kawaoka, H Chen, C Li. Low polymerase activity attributed to PA drives the acquisition of the PB2 E627K mutation of H7N9 avian influenza virus in mammals. MBio 2019; 10(3): e01162-19
https://doi.org/10.1128/mBio.01162-19
pmid: 31213560
|
179 |
LL Chan, CT Bui, CK Mok, MM Ng, JM Nicholls, JS Peiris, MC Chan, RW Chan. Evaluation of the human adaptation of influenza A/H7N9 virus in PB2 protein using human and swine respiratory tract explant cultures. Sci Rep 2016; 6(1): 35401
https://doi.org/10.1038/srep35401
pmid: 27739468
|
180 |
W Zhu, X Zou, J Zhou, J Tang, Y Shu. Residues 41V and/or 210D in the NP protein enhance polymerase activities and potential replication of novel influenza (H7N9) viruses at low temperature. Virol J 2015; 12(1): 71
https://doi.org/10.1186/s12985-015-0304-6
pmid: 25940512
|
181 |
S Ma, B Zhang, J Shi, X Yin, G Wang, P Cui, L Liu, G Deng, Y Jiang, C Li, H Chen. Amino acid mutations A286V and T437M in the nucleoprotein attenuate H7N9 viruses in mice. J Virol 2019; 94(2): e01530-19
https://doi.org/10.1128/JVI.01530-19
pmid: 31666373
|
182 |
S Wang, L Zhang, R Zhang, X Chi, Z Yang, Y Xie, S Shu, Y Liao, JL Chen. Identification of two residues within the NS1 of H7N9 influenza A virus that critically affect the protein stability and function. Vet Res (Faisalabad) 2018; 49(1): 98
https://doi.org/10.1186/s13567-018-0594-y
pmid: 30285871
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|