Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2021, Vol. 15 Issue (2) : 178-207    https://doi.org/10.1007/s11684-020-0793-6
REVIEW
Metabolism and immunity in breast cancer
Deyu Zhang, Xiaojie Xu(), Qinong Ye()
Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China
 Download: PDF(1533 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Breast cancer is one of the most common malignancies that seriously threaten women’s health. In the process of the malignant transformation of breast cancer, metabolic reprogramming and immune evasion represent the two main fascinating characteristics of cancer and facilitate cancer cell proliferation. Breast cancer cells generate energy through increased glucose metabolism. Lipid metabolism contributes to biological signal pathways and forms cell membranes except energy generation. Amino acids act as basic protein units and metabolic regulators in supporting cell growth. For tumor-associated immunity, poor immunogenicity and heightened immunosuppression cause breast cancer cells to evade the host’s immune system. For the past few years, the complex mechanisms of metabolic reprogramming and immune evasion are deeply investigated, and the genes involved in these processes are used as clinical therapeutic targets for breast cancer. Here, we review the recent findings related to abnormal metabolism and immune characteristics, regulatory mechanisms, their links, and relevant therapeutic strategies.

Keywords breast cancer      metabolism      immunity      cancer stem cells     
Corresponding Author(s): Xiaojie Xu,Qinong Ye   
Just Accepted Date: 31 August 2020   Online First Date: 20 October 2020    Issue Date: 23 April 2021
 Cite this article:   
Deyu Zhang,Xiaojie Xu,Qinong Ye. Metabolism and immunity in breast cancer[J]. Front. Med., 2021, 15(2): 178-207.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-020-0793-6
https://academic.hep.com.cn/fmd/EN/Y2021/V15/I2/178
Metabolism Specific classification of metabolism Level of metabolism in breast cancer Reference
Glycometabolism Glucose uptake Increase [35]
Warburg effect Increase [1]
TCA cycle Abnormal [1]
Pentose phosphate pathway Increase [36]
Gluconeogenesis Decrease [37]
Lipid metabolism Fatty acid uptake Uncertain but important [38]
De novo fatty acid synthesis Increase [39]
Fatty acid oxidation Increase [40]
Amino acid metabolism Glutamine metabolism Increase [41]
Serine and glycine metabolism Increase [42]
Cysteine metabolism Increase [42]
Arginine metabolism Uncertain [42]
Tab.1  Abnormal metabolism in breast cancer
Fig.1  Glucose metabolism. HK, PFK, and PK are the three key enzymes in glycolysis. G6PD regulates the rates of the PPP by catalyzing the oxidation. In general, pyruvate is oxidized into carbon dioxide and water in the mitochondria, which is catalyzed by three key enzymes, namely, CS, IDH, and KGDHC. Pyruvate is converted to lactate by LDHA in cancer cells, and lactate is expelled from the cell by MCT4. Gluconeogenesis can influence glycolysis, TCA, PPP, and other processes indirectly via the rates of glucose production. Three key enzymes control the gluconeogenic flux, including PEPCK, FBP, and G6PC. Abbreviations: G6P, glucose 6-phosphate; F6P, fructose 6-phoshate; F–1,6-bisP, fructose-1,6-bisphosphate; G3P, glyceraldehyde 3-phosphate; 1,3-PGA, 1,3-disphosphoglycerate; 3-PG, glyceraldeyde 3-phosphate; 2-PG, glyceraldeyde 2-phosphate; PEP, phosphoenolpyravate; TCA, tricarboxylic acid cycle; a-KG, a-ketoglutarate; GLUTs, glucose transporters; HK2, hexokinase 2; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PFK, 6-phosphofructo kinase; ALDO, aldolase; TPI, triose phosphate isomerase; PGK, phosphoglycerate kinase; PGM, phosphoglycerate mutase; ENO1, enolase; PKM, pyruvate kinase; LDH, lactate dehydrogenase; MCT, monocarboxylate transporter; CS, citrate synthase; IDH, isocitrate dehydrogenase; KGDHC, a-ketoglutarate dehydrogenase complex; G6PD, glucose 6-phosphate dehydrogenase; PC, pyruvate carboxylase; PEPCK, phosphoenolpyruvate carboxykinase; FBP, fructose-1,6-bisphosphatase; G6PC, glucose-6-phosphatase.
Fig.2  Lipid metabolism. In the de novo fatty acid synthesis, citrate is catalyzed into FA by ACLY, ACC, and FASN sequentially. CD36 and FABPs are involved in the intake of FA. FA needs to be transformed to FA-CoA before they enter the subsequent metabolism, including anabolism or catabolism. During fatty acid b-oxidation, FA-CoA is transported into the mitochondria and then oxidized, the rate of which is limited by CPT1. FA-CoA and DAG are synthesized into TG catalyzed by DGAT. During triglyceride synthesis, the glycolytic intermediate 3-PG is converted into DAG by AGPT2 and lipin-1, and DAG is ultimately converted into TG. Abbreviations: ACLY, ATP citrate lyase; ACC, acetyl-CoA carboxylase; FASN, fatty acid synthase; FABP, fatty acid binding protein; AGPAT2, acylglycerol-3-phosphate acyltransferase 2; CPT1, carnitine palmitoyltransferase 1; CIC, citrate carrier; FA, fatty acid; TG, triglyceride; DAG, diacylglycerol; 3-PG, glyceraldeyde 3-phosphate; DGAT, diacylglycerol acyltransferase; AGPAT2, acylglycerol-3-phosphate acyltransferase 2.
Fig.3  Amino acid metabolism. Glutamine uptake is regulated by SLC1A5, SLC7A5, and SLC7A11. Glutamine is converted into glutamate by GLS, and the counter-reaction is catalyzed by GS. GLUD catalyzes glutamate to a-KG. Glutamate is converted into alanine by ALT and converted into aspartic acid by AST. ASNS utilizes glutamine as a nitrogen donor to turn aspartic acid to asparagine. In addition, the glycolytic intermediate 3-PG is oxidized into serine catalyzed by PHGDH, PSAT1, and PSPH. Serine is converted into glycine by SHMT and converted into cysteine catalyzed by CTH. Glutamate, glycine, and cysteine are synthesized into GSH, which sustains the redox balance. Abbreviations: Ala, alanine; Glu, glutamate; Gln, glutamine; Aln, asparagine; Asp, aspartic acid; Gly, glycine; Ser, serine; Leu, leucine; Asn, asparagine; Cys, cysteine; a-KG, a-ketoglutarate; GSH, glutathione; PHGDH, phosphoglycerate dehydrogenase; PSAT1, phosphoserine aminotransferase; PSPH, phosphate ester hydrolysis; SHMT, serine hydroxymethyltransferase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GS: glutamine synthetase; GLS, glutaminase; GLUD, glutamate dehydrogenase; ASNS, asparagine synthetase; 3-PG, 3-phosphoglycerate; ASS, argininosuccinate synthetase; ASL, argininosuccinate lyase; ADI, arginine deiminase; ASNS, asparagine synthetase; SLCs, membrane-bound solute carriers; CTH, cystathionine g-lyase.
Metabolism Genes Functional category of genes Role of HIF1 in metabolism Reference
Glycometabolism GLUT1
GLUT3
Glucose uptake Increase [140]
[141]
HK2 Glucose phosphorylation Increase [142]
PGI
PFK1
ALDOA
TPI
GAPDH
PGK1
ENO1
PKM2
LDHA
PFKFB3
Glycolysis Increase [143]
[143]
[143]
[143]
[143]
[143]
[143]
[143]
[143]
[144]
MCT4 Lactate excretion Increase [145]
PDK1
MXI1
OXPHOS inhibition Increase PDK1 expression [143]
[143]
Lipid metabolism PPARg
FABPs
LRP1
VDLR
Lipid uptake Increase [132]
[139]
[146]
[147]
SREBP-1
FASN
Lipin-1
AGPAT2
Lipid synthesis Increase [148]
[148]
[134]
[135]
HIG2 Lipid accumulation Increase [149]
CPT1
PGC-1a
LCAD
MCAD
FA b-oxidation Decrease [138]
[138]
[137]
[137]
Glutamine metabolism GLS1 Glutaminolysis Increase [150]
Tab.2  Hypoxia-inducible factor 1 (HIF1) downstream targets that regulate metabolism
Metabolism Genes Functional category of genes Role of c-Myc in metabolism Reference
Glycometabolism Glut1
Glut2
Glut4
Glucose uptake Increase [169]
[170]
[170]
HK2 Glucose phosphorylation Increase [171]
PGI
PFK1
ALDOA
PGK1
ENO1
PKM2
LDHA
Glycolysis Increase [172]
[170]
[170]
[170]
[170]
[171]
[171]
PDK1 OXPHOS inhibition Increase PDK1 expression [170]
Lipid metabolism FASN Lipid synthesis Increase [170]
Glutamine metabolism GLS1 Glutaminolysis Increase [171]
ASCT2 Glutamine uptake Increase [171]
Tab.3  c-Myc downstream targets that regulate metabolism
Metabolism Genes Functional category of genes Role of p53 in metabolism Reference
Glycometabolism GLUT4 Glucose uptake Decrease [43]
PGM1 Glycolysis Decrease [43]
TIGAR Decrease glycolysis and promote PPP Increase TIGAR expression [195]
SCO2, Acad11 OXPHOS Increase [195]
HK2 Glucose phosphorylation Decrease [43]
G6PD PPP Decrease [196]
Lipid metabolism Caveolin1 Lipid homeostasis and endocytosis Decrease [196]
SREBP1 Lipid synthesis Decrease [195]
DHR53, Lipin1, MCD Lipid accumulation Increase [196]
AMPK Promote FA b-Oxidation
and inhibit lipid synthesis
Increase AMPK expression [196]
Glutamine metabolism GLS2 Glutaminolysis Increase [195]
Tab.4  p53 downstream targets that regulate metabolism
Proteins Modification Site Functional category Reference
HK2 Phosphorylation Thr473 Enhancing activity [210]
PFK1 Oxidation Ser529 Decreasing activity [211]
PFK2 Phosphorylation Ser466, Ser483 Enhancing activity [212]
PGAM1 Phosphorylation
Acetylation
His11, Tyr26
Lys251, Lys253, Lys254
Enhancing activity
Enhancing activity
[213]
[214]
PKM2 Phosphorylation
Acetylation
Oxidation
Ser37, Tyr105
Lys305, Lys433
Cys358
Enhancing activity
Degradation
Decreasing activity
[215,216]
[217]
[202]
PDP1 Phosphorylation
Acetylation
Tyr381
Lys202
Enhancing activity
Decreasing activity
[218]
[218]
LDHA Phosphorylation
Acetylation
Tyr10, Tyr 83
Lys5
Enhancing activity
Degradation
[200,219]
[201]
PDK1 Phosphorylation Tyr243, Tyr244 Enhancing activity [220]
PDHA1 Phosphorylation
Acetylation
Ser293, Tyr301
Lys321
Decreasing activity
Decreasing activity
[221,222]
[218]
p53 Phosphorylation
Ubiquitylation
Acetylation
Ser15
Lys237, Lys338
Lys
Stabilization
Degradation
Stabilization
[223]
[20]
[224]
HIF1a Ubiquitylation Lys709, Lys532 Degradation [225]
PPARg Phosphorylation
SUMOylation
Acetylation
Ubiquitylation
Serine112
Lys63, Lys94, Lys98, Lys107
Lys268, Lys293
Lys184, Lys185
Decreasing activity
Decreasing activity
Decreasing activity
Degradation
[203]
[195]
[206]
[204,205]
SREBP1 Phosphorylation
Acetylation
Thr402, Thr426
Lys324, Lys333
Degradation
Stabilization
[207]
[207,226]
GLS Phosphorylation
Phosphorylation
Acetylation
Ser95
Ser314
Lys320
Decreasing activity
Stabilization
Decreasing activity
[208]
[209]
[227]
Tab.5  Post-translational modifications of proteins involved in metabolism
Fig.4  Vaccine-based therapies for breast cancer. The autologous cell-based vaccines uses the whole autologous tumor cells, which can submit almost all tumor antigens. Dendritic cell-based vaccines are finished following DC generation, TAA loading, or associated gene transfection. Peptide-based vaccines contain MHC I and MHC II epitopes and activate most CD4+ T cells and relatively few CD8+ T cells. DNA-based vaccines are usually delivered in the form of plasmids. Abbreviations: TAAs, tumor-associated antigens; APC, antigen-presenting cells.
Fig.5  Interplay between metabolism and immunity in cancer. On the one hand, abnormal metabolism in cancer cells creates a tumor microenvironment characterized by hypoxia, nutrient depletion, and acidic pH. This microenvironment can prevent T cells from increasing glycolysis and impair TCR signaling, thus suppressing their function. However, TAMs and Treg cells gain energy through fatty acid oxidation rather than glycolysis, whose characteristic helps them survive and exert their immunosuppressive effect. On the other hand, PD-1 and CTLA-4 can inhibit glycolysis in T cells, thus promoting cell death and inactivation. Furthermore, the expression levels of B7-H3 and PD-L1 promote glucose uptake, glucose utilization, and lactate production in breast cancer cells. Abbreviations: OXPHOS, oxidative phosphorylation; FAO, fatty acid oxidation; TCR, T cell receptor; MHC, major histocompatibilty complex class; PD-1, programmed cell death 1; PD-L1, programmed cell death ligand 1; CTLA-4, cytotoxic T-lymphocyte-associated antigen 4.
1 H Li, RS Zheng, SW Zhang, HM Zeng, KX Sun, CF Xia, ZX Yang, WQ Chen, J He. Incidence and mortality of female breast cancer in China, 2014. Chin J Oncol (Zhonghua Zhong Liu Za Zhi) 2018; 40(3): 166–171 (in Chinese)
pmid: 29575833
2 R Stienstra, RT Netea-Maier, NP Riksen, LAB Joosten, MG Netea. Specific and complex reprogramming of cellular metabolism in myeloid cells during innate immune responses. Cell Metab 2017; 26(1): 142–156
https://doi.org/10.1016/j.cmet.2017.06.001 pmid: 28683282
3 RJ Kishton, M Sukumar, NP Restifo. Metabolic regulation of T cell longevity and function in tumor immunotherapy. Cell Metab 2017; 26(1): 94–109
https://doi.org/10.1016/j.cmet.2017.06.016 pmid: 28683298
4 R El Ansari, A McIntyre, ML Craze, IO Ellis, EA Rakha, AR Green. Altered glutamine metabolism in breast cancer; subtype dependencies and alternative adaptations. Histopathology 2018; 72(2): 183–190
https://doi.org/10.1111/his.13334 pmid: 28771772
5 V Cappelletti, E Iorio, P Miodini, M Silvestri, M Dugo, MG Daidone. Metabolic footprints and molecular subtypes in breast cancer. Dis Markers 2017; 2017: 7687851
https://doi.org/10.1155/2017/7687851 pmid: 29434411
6 Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490(7418): 61–70
https://doi.org/10.1038/nature11412 pmid: 23000897
7 K Holm, C Hegardt, J Staaf, J Vallon-Christersson, G Jönsson, H Olsson, A Borg, M Ringnér. Molecular subtypes of breast cancer are associated with characteristic DNA methylation patterns. Breast Cancer Res 2010; 12(3): R36
https://doi.org/10.1186/bcr2590 pmid: 20565864
8 O Yersal, S Barutca. Biological subtypes of breast cancer: prognostic and therapeutic implications. World J Clin Oncol 2014; 5(3): 412–424
https://doi.org/10.5306/wjco.v5.i3.412 pmid: 25114856
9 CJ Witton, JR Reeves, JJ Going, TG Cooke, JM Bartlett. Expression of the HER1-4 family of receptor tyrosine kinases in breast cancer. J Pathol 2003; 200(3): 290–297
https://doi.org/10.1002/path.1370 pmid: 12845624
10 MC Cheang, SK Chia, D Voduc, D Gao, S Leung, J Snider, M Watson, S Davies, PS Bernard, JS Parker, CM Perou, MJ Ellis, TO Nielsen. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 2009; 101(10): 736–750
https://doi.org/10.1093/jnci/djp082 pmid: 19436038
11 SA Roberts, MS Lawrence, LJ Klimczak, SA Grimm, D Fargo, P Stojanov, A Kiezun, GV Kryukov, SL Carter, G Saksena, S Harris, RR Shah, MA Resnick, G Getz, DA Gordenin. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet 2013; 45(9): 970–976
https://doi.org/10.1038/ng.2702 pmid: 23852170
12 YC Cheng, G Rondón, P Anderlini, IF Khouri, RE Champlin, NT Ueno. Paclitaxel and trastuzumab as maintenance therapy in patients with HER2-positive metastatic breast cancer who underwent high-dose chemotherapy and autologous hematopoietic stem cell transplantation. J Cancer 2013; 4(8): 679–685
https://doi.org/10.7150/jca.6775 pmid: 24155780
13 N Duru, D Candas, G Jiang, JJ Li. Breast cancer adaptive resistance: HER2 and cancer stem cell repopulation in a heterogeneous tumor society. J Cancer Res Clin Oncol 2014; 140(1): 1–14
https://doi.org/10.1007/s00432-013-1494-1 pmid: 23990015
14 F Malik, H Korkaya, SG Clouthier, MS Wicha. Lin28 and HER2: two stem cell regulators conspire to drive aggressive breast cancer. Cell Cycle 2012; 11(15): 2780–2781
https://doi.org/10.4161/cc.21395 pmid: 22833047
15 H Korkaya, MS Wicha. HER2 and breast cancer stem cells: more than meets the eye. Cancer Res 2013; 73(12): 3489–3493
https://doi.org/10.1158/0008-5472.CAN-13-0260 pmid: 23740771
16 HG Russnes, OC Lingjærde, AL Børresen-Dale, C Caldas. Breast cancer molecular stratification: from intrinsic subtypes to integrative clusters. Am J Pathol 2017; 187(10): 2152–2162
https://doi.org/10.1016/j.ajpath.2017.04.022 pmid: 28733194
17 A Prat, C Cruz, KA Hoadley, O Díez, CM Perou, J Balmaña. Molecular features of the basal-like breast cancer subtype based on BRCA1 mutation status. Breast Cancer Res Treat 2014; 147(1): 185–191
https://doi.org/10.1007/s10549-014-3056-x pmid: 25048467
18 SH Kim, SI Choi, KY Won, SJ Lim. Distinctive interrelation of p53 with SCO2, COX, and TIGAR in human gastric cancer. Pathol Res Pract 2016; 212(10): 904–910
https://doi.org/10.1016/j.prp.2016.07.014 pmid: 27499152
19 S Matoba, JG Kang, WD Patino, A Wragg, M Boehm, O Gavrilova, PJ Hurley, F Bunz, PM Hwang. p53 regulates mitochondrial respiration. Science 2006; 312(5780): 1650–1653
https://doi.org/10.1126/science.1126863 pmid: 16728594
20 K Bensaad, A Tsuruta, MA Selak, MN Vidal, K Nakano, R Bartrons, E Gottlieb, KH Vousden. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006; 126(1): 107–120
https://doi.org/10.1016/j.cell.2006.05.036 pmid: 16839880
21 RL Elstrom, DE Bauer, M Buzzai, R Karnauskas, MH Harris, DR Plas, H Zhuang, RM Cinalli, A Alavi, CM Rudin, CB Thompson. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 2004; 64(11): 3892–3899
https://doi.org/10.1158/0008-5472.CAN-03-2904 pmid: 15172999
22 J Xu, Y Chen, OI Olopade. MYC and breast cancer. Genes Cancer 2010; 1(6): 629–640
https://doi.org/10.1177/1947601910378691 pmid: 21779462
23 DR Wise, RJ DeBerardinis, A Mancuso, N Sayed, XY Zhang, HK Pfeiffer, I Nissim, E Daikhin, M Yudkoff, SB McMahon, CB Thompson. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 2008; 105(48): 18782–18787
https://doi.org/10.1073/pnas.0810199105 pmid: 19033189
24 P Gao, I Tchernyshyov, TC Chang, YS Lee, K Kita, T Ochi, KI Zeller, AM De Marzo, JE Van Eyk, JT Mendell, CV Dang. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009; 458(7239): 762–765
https://doi.org/10.1038/nature07823 pmid: 19219026
25 SO Lim, CW Li, W Xia, HH Lee, SS Chang, J Shen, JL Hsu, D Raftery, D Djukovic, H Gu, WC Chang, HL Wang, ML Chen, L Huo, CH Chen, Y Wu, A Sahin, SM Hanash, GN Hortobagyi, MC Hung. EGFR signaling enhances aerobic glycolysis in triple-negative breast cancer cells to promote tumor growth and immune escape. Cancer Res 2016; 76(5): 1284–1296
https://doi.org/10.1158/0008-5472.CAN-15-2478 pmid: 26759242
26 YM Kanaan, BP Sampey, D Beyene, AK Esnakula, TJ Naab, LJ Ricks-Santi, S Dasi, A Day, KW Blackman, W Frederick, RL Copeland Sr, E Gabrielson, RL Dewitty Jr. Metabolic profile of triple-negative breast cancer in African-American women reveals potential biomarkers of aggressive disease. Cancer Genomics Proteomics 2014; 11(6): 279–294
pmid: 25422359
27 S Kim, DH Kim, WH Jung, JS Koo. Expression of glutamine metabolism-related proteins according to molecular subtype of breast cancer. Endocr Relat Cancer 2013; 20(3): 339–348
https://doi.org/10.1530/ERC-12-0398 pmid: 23507704
28 MD Cao, S Lamichhane, S Lundgren, A Bofin, H Fjøsne, GF Giskeødegård, TF Bathen. Metabolic characterization of triple negative breast cancer. BMC Cancer 2014; 14(1): 941
https://doi.org/10.1186/1471-2407-14-941 pmid: 25495193
29 S McGuirk, SP Gravel, G Deblois, DJ Papadopoli, B Faubert, A Wegner, K Hiller, D Avizonis, UD Akavia, RG Jones, V Giguère, J St-Pierre. PGC-1α supports glutamine metabolism in breast cancer. Cancer Metab 2013; 1(1): 22
https://doi.org/10.1186/2049-3002-1-22 pmid: 24304688
30 ME Monaco. Fatty acid metabolism in breast cancer subtypes. Oncotarget 2017; 8(17): 29487–29500
https://doi.org/10.18632/oncotarget.15494 pmid: 28412757
31 DR Rhodes, J Yu, K Shanker, N Deshpande, R Varambally, D Ghosh, T Barrette, A Pandey, AM Chinnaiyan. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 2004; 6(1): 1–6
https://doi.org/10.1016/S1476-5586(04)80047-2 pmid: 15068665
32 R Camarda, AY Zhou, RA Kohnz, S Balakrishnan, C Mahieu, B Anderton, H Eyob, S Kajimura, A Tward, G Krings, DK Nomura, A Goga. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat Med 2016; 22(4): 427–432
https://doi.org/10.1038/nm.4055 pmid: 26950360
33 NN Pavlova, CB Thompson. The emerging hallmarks of cancer metabolism. Cell Metab 2016; 23(1): 27–47
https://doi.org/10.1016/j.cmet.2015.12.006 pmid: 26771115
34 DI Benjamin, BF Cravatt, DK Nomura. Global profiling strategies for mapping dysregulated metabolic pathways in cancer. Cell Metab 2012; 16(5): 565–577
https://doi.org/10.1016/j.cmet.2012.09.013 pmid: 23063552
35 RA Islam, S Hossain, EH Chowdhury. Potential therapeutic targets in energy metabolism pathways of breast cancer. Curr Cancer Drug Targets 2017; 17(8): 707–721
https://doi.org/10.2174/1568009617666170330150458 pmid: 28359244
36 L Jin, Y Zhou. Crucial role of the pentose phosphate pathway in malignant tumors. Oncol Lett 2019; 17(5): 4213–4221
https://doi.org/10.3892/ol.2019.10112 pmid: 30944616
37 Z Wang, C Dong. Gluconeogenesis in cancer: function and regulation of PEPCK, FBPase, and G6Pase. Trends Cancer 2019; 5(1): 30–45
https://doi.org/10.1016/j.trecan.2018.11.003 pmid: 30616754
38 V Brovkovych, A Aldrich, N Li, GE Atilla-Gokcumen, J Frasor. Removal of serum lipids and lipid-derived metabolites to investigate breast cancer cell biology. Proteomics 2019; 19(18): e1800370
https://doi.org/10.1002/pmic.201800370 pmid: 30919589
39 L Gomes, M Sorgine, CLA Passos, C Ferreira, IR de Andrade, JL Silva, GC Atella, CS Mermelstein, E Fialho. Increase in fatty acids and flotillins upon resveratrol treatment of human breast cancer cells. Sci Rep 2019; 9(1): 13960
https://doi.org/10.1038/s41598-019-50416-5 pmid: 31562347
40 M Gago-Dominguez, X Jiang, JE Castelao. Lipid peroxidation, oxidative stress genes and dietary factors in breast cancer protection: a hypothesis. Breast Cancer Res 2007; 9(1): 201
https://doi.org/10.1186/bcr1628 pmid: 17224037
41 Z Chen, Y Wang, C Warden, S Chen. Cross-talk between ER and HER2 regulates c-MYC-mediated glutamine metabolism in aromatase inhibitor resistant breast cancer cells. J Steroid Biochem Mol Biol 2015; 149: 118–127
https://doi.org/10.1016/j.jsbmb.2015.02.004 pmid: 25683269
42 RC Geck, A Toker. Nonessential amino acid metabolism in breast cancer. Adv Biol Regul 2016; 62: 11–17
https://doi.org/10.1016/j.jbior.2016.01.001 pmid: 26838061
43 Z Wu, J Wu, Q Zhao, S Fu, J Jin. Emerging roles of aerobic glycolysis in breast cancer. Clin Transl Oncol 2020; 22(5): 631–646
https://doi.org/10.1007/s12094-019-02187-8 pmid: 31359335
44 ML Macheda, S Rogers, JD Best. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 2005; 202(3): 654–662
https://doi.org/10.1002/jcp.20166 pmid: 15389572
45 Y Deng, J Zou, T Deng, J Liu. Clinicopathological and prognostic significance of GLUT1 in breast cancer: a meta-analysis. Medicine (Baltimore) 2018; 97(48): e12961
https://doi.org/10.1097/MD.0000000000012961 pmid: 30508885
46 H Liu, A Ertay, P Peng, J Li, D Liu, H Xiong, Y Zou, H Qiu, D Hancock, X Yuan, WC Huang, RM Ewing, J Downward, Y Wang. SGLT1 is required for the survival of triple-negative breast cancer cells via potentiation of EGFR activity. Mol Oncol 2019; 13(9): 1874–1886
https://doi.org/10.1002/1878-0261.12530 pmid: 31199048
47 B Lai, Y Xiao, H Pu, Q Cao, H Jing, X Liu. Overexpression of SGLT1 is correlated with tumor development and poor prognosis of ovarian carcinoma. Arch Gynecol Obstet 2012; 285(5): 1455–1461
https://doi.org/10.1007/s00404-011-2166-5 pmid: 22159627
48 Y Hanabata, Y Nakajima, K Morita, K Kayamori, K Omura. Coexpression of SGLT1 and EGFR is associated with tumor differentiation in oral squamous cell carcinoma. Odontology 2012; 100(2): 156–163
https://doi.org/10.1007/s10266-011-0033-2 pmid: 21607591
49 VF Casneuf, P Fonteyne, N Van Damme, P Demetter, P Pauwels, B de Hemptinne, M De Vos, C Van de Wiele, M Peeters. Expression of SGLT1, Bcl-2 and p53 in primary pancreatic cancer related to survival. Cancer Invest 2008; 26(8): 852–859
https://doi.org/10.1080/07357900801956363 pmid: 18853313
50 RS Brown, TM Goodman, KR Zasadny, JK Greenson, RL Wahl. Expression of hexokinase II and Glut-1 in untreated human breast cancer. Nucl Med Biol 2002; 29(4): 443–453
https://doi.org/10.1016/S0969-8051(02)00288-3 pmid: 12031879
51 J O’Neal, A Clem, L Reynolds, S Dougherty, Y Imbert-Fernandez, S Telang, J Chesney, BF Clem. Inhibition of 6-phosphofructo-2-kinase (PFKFB3) suppresses glucose metabolism and the growth of HER2+ breast cancer. Breast Cancer Res Treat 2016; 160(1): 29–40
https://doi.org/10.1007/s10549-016-3968-8 pmid: 27613609
52 Y Lin, F Lv, F Liu, X Guo, Y Fan, F Gu, J Gu, L Fu. High expression of pyruvate kinase M2 is associated with chemosensitivity to epirubicin and 5-fluorouracil in breast cancer. J Cancer 2015; 6(11): 1130–1139
https://doi.org/10.7150/jca.12719 pmid: 26516361
53 KC Patra, Q Wang, PT Bhaskar, L Miller, Z Wang, W Wheaton, N Chandel, M Laakso, WJ Muller, EL Allen, AK Jha, GA Smolen, MF Clasquin, B Robey, N Hay. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 2013; 24(2): 213–228
https://doi.org/10.1016/j.ccr.2013.06.014 pmid: 23911236
54 D Mishra, D Banerjee. Lactate dehydrogenases as metabolic links between tumor and stroma in the tumor microenvironment. Cancers (Basel) 2019; 11(6): E750
https://doi.org/10.3390/cancers11060750 pmid: 31146503
55 JA Read, VJ Winter, CM Eszes, RB Sessions, RL Brady. Structural basis for altered activity of M- and H-isozyme forms of human lactate dehydrogenase. Proteins 2001; 43(2): 175–185
https://doi.org/10.1002/1097-0134(20010501)43:2<175::AID-PROT1029>3.0.CO;2-# pmid: 11276087
56 KC Patra, N Hay. The pentose phosphate pathway and cancer. Trends Biochem Sci 2014; 39(8): 347–354
https://doi.org/10.1016/j.tibs.2014.06.005 pmid: 25037503
57 H Pu, Q Zhang, C Zhao, L Shi, Y Wang, J Wang, M Zhang. Overexpression of G6PD is associated with high risks of recurrent metastasis and poor progression-free survival in primary breast carcinoma. World J Surg Oncol 2015; 13(1): 323
https://doi.org/10.1186/s12957-015-0733-0 pmid: 26607846
58 X Yang, X Peng, J Huang. Inhibiting 6-phosphogluconate dehydrogenase selectively targets breast cancer through AMPK activation. Clin Transl Oncol 2018; 20(9): 1145–1152
https://doi.org/10.1007/s12094-018-1833-4 pmid: 29340974
59 JQ Chen, J Russo. Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Biochim Biophys Acta 2012; 1826(2): 370–384
pmid: 22750268
60 LJ Castro-Vega, A Buffet, AA De Cubas, A Cascón, M Menara, E Khalifa, L Amar, S Azriel, I Bourdeau, O Chabre, M Currás-Freixes, V Franco-Vidal, M Guillaud-Bataille, C Simian, A Morin, R Letón, A Gómez-Graña, PJ Pollard, P Rustin, M Robledo, J Favier, AP Gimenez-Roqueplo. Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum Mol Genet 2014; 23(9): 2440–2446
https://doi.org/10.1093/hmg/ddt639 pmid: 24334767
61 GR Clark, M Sciacovelli, E Gaude, DM Walsh, G Kirby, MA Simpson, RC Trembath, JN Berg, ER Woodward, E Kinning, PJ Morrison, C Frezza, ER Maher. Germline FH mutations presenting with pheochromocytoma. J Clin Endocrinol Metab 2014; 99(10): E2046–E2050
https://doi.org/10.1210/jc.2014-1659 pmid: 25004247
62 J Zhang, MF Walsh, G Wu, MN Edmonson, TA Gruber, J Easton, D Hedges, X Ma, X Zhou, DA Yergeau, MR Wilkinson, B Vadodaria, X Chen, RB McGee, S Hines-Dowell, R Nuccio, E Quinn, SA Shurtleff, M Rusch, A Patel, JB Becksfort, S Wang, MS Weaver, L Ding, ER Mardis, RK Wilson, A Gajjar, DW Ellison, AS Pappo, CH Pui, KE Nichols, JR Downing. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med 2015; 373(24): 2336–2346
https://doi.org/10.1056/NEJMoa1508054 pmid: 26580448
63 A Fieuw, C Kumps, A Schramm, F Pattyn, B Menten, F Antonacci, P Sudmant, JH Schulte, N Van Roy, S Vergult, PG Buckley, A De Paepe, R Noguera, R Versteeg, R Stallings, A Eggert, J Vandesompele, K De Preter, F Speleman. Identification of a novel recurrent 1q42.2-1qter deletion in high risk MYCN single copy 11q deleted neuroblastomas. Int J Cancer 2012; 130(11): 2599–2606
https://doi.org/10.1002/ijc.26317 pmid: 21796619
64 S Jiménez-Morales, CJ Pérez-Amado, E Langley, A Hidalgo-Miranda. Overview of mitochondrial germline variants and mutations in human disease: focus on breast cancer. Int J Oncol 2018; 53(3): 923–936
pmid: 30015870
65 ED Montal, R Dewi, K Bhalla, L Ou, BJ Hwang, AE Ropell, C Gordon, WJ Liu, RJ DeBerardinis, J Sudderth, W Twaddel, LG Boros, KR Shroyer, S Duraisamy, R Drapkin, RS Powers, JM Rohde, MB Boxer, KK Wong, GD Girnun. PEPCK coordinates the regulation of central carbon metabolism to promote cancer cell growth. Mol Cell 2015; 60(4): 571–583
https://doi.org/10.1016/j.molcel.2015.09.025 pmid: 26481663
66 J Chen, HJ Lee, X Wu, L Huo, SJ Kim, L Xu, Y Wang, J He, LR Bollu, G Gao, F Su, J Briggs, X Liu, T Melman, JM Asara, IJ Fidler, LC Cantley, JW Locasale, Z Weihua. Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain. Cancer Res 2015; 75(3): 554–565
https://doi.org/10.1158/0008-5472.CAN-14-2268 pmid: 25511375
67 Y Cao. Obesity protects cancer from drugs targeting blood vessels. Cell Metab 2018; 27(6): 1163–1165
https://doi.org/10.1016/j.cmet.2018.05.014 pmid: 29874563
68 MG Vander Heiden, LC Cantley, CB Thompson. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324(5930): 1029–1033
https://doi.org/10.1126/science.1160809 pmid: 19460998
69 J Baumann, C Sevinsky, DS Conklin. Lipid biology of breast cancer. Biochim Biophys Acta 2013; 1831(10): 1509–1517
https://doi.org/10.1016/j.bbalip.2013.03.011 pmid: 23562840
70 J Zhao, Z Zhi, C Wang, H Xing, G Song, X Yu, Y Zhu, X Wang, X Zhang, Y Di. Exogenous lipids promote the growth of breast cancer cells via CD36. Oncol Rep 2017; 38(4): 2105–2115
https://doi.org/10.3892/or.2017.5864 pmid: 28765876
71 S Yue, J Li, SY Lee, HJ Lee, T Shao, B Song, L Cheng, TA Masterson, X Liu, TL Ratliff, JX Cheng. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab 2014; 19(3): 393–406
https://doi.org/10.1016/j.cmet.2014.01.019 pmid: 24606897
72 Y Cao. Adipocyte and lipid metabolism in cancer drug resistance. J Clin Invest 2019; 129(8): 3006–3017
https://doi.org/10.1172/JCI127201 pmid: 31264969
73 YY Jung, HM Kim, JS Koo. Expression of lipid metabolism-related proteins in metastatic breast cancer. PLoS One 2015; 10(9): e0137204
https://doi.org/10.1371/journal.pone.0137204 pmid: 26334757
74 H Iwamoto, M Abe, Y Yang, D Cui, T Seki, M Nakamura, K Hosaka, S Lim, J Wu, X He, X Sun, Y Lu, Q Zhou, W Shi, T Torimura, G Nie, Q Li, Y Cao. Cancer lipid metabolism confers antiangiogenic drug resistance. Cell Metab 2018; 28(1): 104–117.e5
75 A Luengo, DY Gui, MG Vander Heiden. Targeting metabolism for cancer therapy. Cell Chem Biol 2017; 24(9): 1161–1180
https://doi.org/10.1016/j.chembiol.2017.08.028 pmid: 28938091
76 HY Min, HY Lee. Oncogene-driven metabolic alterations in cancer. Biomol Ther (Seoul) 2018; 26(1): 45–56
https://doi.org/10.4062/biomolther.2017.211 pmid: 29212306
77 CM Metallo, PA Gameiro, EL Bell, KR Mattaini, J Yang, K Hiller, CM Jewell, ZR Johnson, DJ Irvine, L Guarente, JK Kelleher, MG Vander Heiden, O Iliopoulos, G Stephanopoulos. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 2012; 481(7381): 380–384
https://doi.org/10.1038/nature10602 pmid: 22101433
78 RJ DeBerardinis, A Mancuso, E Daikhin, I Nissim, M Yudkoff, S Wehrli, CB Thompson. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 2007; 104(49): 19345–19350
https://doi.org/10.1073/pnas.0709747104 pmid: 18032601
79 A Szutowicz, J Kwiatkowski, S Angielski. Lipogenetic and glycolytic enzyme activities in carcinoma and nonmalignant diseases of the human breast. Br J Cancer 1979; 39(6): 681–687
https://doi.org/10.1038/bjc.1979.120 pmid: 444407
80 JH Lee, H Jang, SM Lee, JE Lee, J Choi, TW Kim, EJ Cho, HD Youn. ATP-citrate lyase regulates cellular senescence via an AMPK- and p53-dependent pathway. FEBS J 2015; 282(2): 361–371
https://doi.org/10.1111/febs.13139 pmid: 25367309
81 D Carling, VA Zammit, DG Hardie. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett 1987; 223(2): 217–222
https://doi.org/10.1016/0014-5793(87)80292-2 pmid: 2889619
82 B Corominas-Faja, L Vellon, E Cuyàs, M Buxó, B Martin-Castillo, D Serra, J García, R Lupu, JA Menendez. Clinical and therapeutic relevance of the metabolic oncogene fatty acid synthase in HER2+ breast cancer. Histol Histopathol 2017; 32(7): 687–698
pmid: 27714708
83 R Singh, AM Cuervo. Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol 2012; 2012: 282041
https://doi.org/10.1155/2012/282041 pmid: 22536247
84 MC Yen, JY Kan, CJ Hsieh, PL Kuo, MF Hou, YL Hsu. Association of long-chain acyl-coenzyme A synthetase 5 expression in human breast cancer by estrogen receptor status and its clinical significance. Oncol Rep 2017; 37(6): 3253–3260
https://doi.org/10.3892/or.2017.5610 pmid: 28498416
85 UD Orlando, AF Castillo, MAR Medrano, AR Solano, PM Maloberti, EJ Podesta. Acyl-CoA synthetase-4 is implicated in drug resistance in breast cancer cell lines involving the regulation of energy-dependent transporter expression. Biochem Pharmacol 2019; 159: 52–63
https://doi.org/10.1016/j.bcp.2018.11.005 pmid: 30414939
86 FP Kuhajda, K Jenner, FD Wood, RA Hennigar, LB Jacobs, JD Dick, GR Pasternack. Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc Natl Acad Sci USA 1994; 91(14): 6379–6383
https://doi.org/10.1073/pnas.91.14.6379 pmid: 8022791
87 LS Freedman, C Clifford, M Messina. Analysis of dietary fat, calories, body weight, and the development of mammary tumors in rats and mice: a review. Cancer Res 1990; 50(18): 5710–5719
pmid: 2203521
88 AW Zimmerman, JH Veerkamp. New insights into the structure and function of fatty acid-binding proteins. Cell Mol Life Sci 2002; 59(7): 1096–1116
https://doi.org/10.1007/s00018-002-8490-y pmid: 12222958
89 KM Nieman, HA Kenny, CV Penicka, A Ladanyi, R Buell-Gutbrod, MR Zillhardt, IL Romero, MS Carey, GB Mills, GS Hotamisligil, SD Yamada, ME Peter, K Gwin, E Lengyel. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 2011; 17(11): 1498–1503
https://doi.org/10.1038/nm.2492 pmid: 22037646
90 HY Li, BB Lv, YH Bi. FABP4 accelerates glioblastoma cell growth and metastasis through Wnt10b signalling. Eur Rev Med Pharmacol Sci 2018; 22(22): 7807–7818
pmid: 30536325
91 S Guaita-Esteruelas, A Bosquet, P Saavedra, J Gumà, J Girona, EW Lam, K Amillano, J Borràs, L Masana. Exogenous FABP4 increases breast cancer cell proliferation and activates the expression of fatty acid transport proteins. Mol Carcinog 2017; 56(1): 208–217
https://doi.org/10.1002/mc.22485 pmid: 27061264
92 F Cheng, Z Wang, Y Huang, Y Duan, X Wang. Investigation of salivary free amino acid profile for early diagnosis of breast cancer with ultra performance liquid chromatography-mass spectrometry. Clin Chim Acta 2015; 447: 23–31
https://doi.org/10.1016/j.cca.2015.05.008 pmid: 25987308
93 JW Erickson, RA Cerione. Glutaminase: a hot spot for regulation of cancer cell metabolism? Oncotarget 2010; 1(8): 734–740
https://doi.org/10.18632/oncotarget.208 pmid: 21234284
94 AN Shajahan-Haq, KL Cook, JL Schwartz-Roberts, AE Eltayeb, DM Demas, AM Warri, CO Facey, LA Hilakivi-Clarke, R Clarke. MYC regulates the unfolded protein response and glucose and glutamine uptake in endocrine resistant breast cancer. Mol Cancer 2014; 13(1): 239
https://doi.org/10.1186/1476-4598-13-239 pmid: 25339305
95 J Fan, JJ Kamphorst, R Mathew, MK Chung, E White, T Shlomi, JD Rabinowitz. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol Syst Biol 2013; 9(1): 712
https://doi.org/10.1038/msb.2013.65 pmid: 24301801
96 YJ Cha, ES Kim, JS Koo. Amino acid transporters and glutamine metabolism in breast cancer. Int J Mol Sci 2018; 19(3): E907
https://doi.org/10.3390/ijms19030907 pmid: 29562706
97 M van Geldermalsen, Q Wang, R Nagarajah, AD Marshall, A Thoeng, D Gao, W Ritchie, Y Feng, CG Bailey, N Deng, K Harvey, JM Beith, CI Selinger, SA O’Toole, JE Rasko, J Holst. ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene 2016; 35(24): 3201–3208
https://doi.org/10.1038/onc.2015.381 pmid: 26455325
98 M Furuya, J Horiguchi, H Nakajima, Y Kanai, T Oyama. Correlation of L-type amino acid transporter 1 and CD98 expression with triple negative breast cancer prognosis. Cancer Sci 2012; 103(2): 382–389
https://doi.org/10.1111/j.1349-7006.2011.02151.x pmid: 22077314
99 S Pollari, SM Käkönen, H Edgren, M Wolf, P Kohonen, H Sara, T Guise, M Nees, O Kallioniemi. Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res Treat 2011; 125(2): 421–430
https://doi.org/10.1007/s10549-010-0848-5 pmid: 20352489
100 R Possemato, KM Marks, YD Shaul, ME Pacold, D Kim, K Birsoy, S Sethumadhavan, HK Woo, HG Jang, AK Jha, WW Chen, FG Barrett, N Stransky, ZY Tsun, GS Cowley, J Barretina, NY Kalaany, PP Hsu, K Ottina, AM Chan, B Yuan, LA Garraway, DE Root, M Mino-Kenudson, EF Brachtel, EM Driggers, DM Sabatini. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 2011; 476(7360): 346–350
https://doi.org/10.1038/nature10350 pmid: 21760589
101 M Jain, R Nilsson, S Sharma, N Madhusudhan, T Kitami, AL Souza, R Kafri, MW Kirschner, CB Clish, VK Mootha. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 2012; 336(6084): 1040–1044
https://doi.org/10.1126/science.1218595 pmid: 22628656
102 SK Kim, WH Jung, JS Koo. Differential expression of enzymes associated with serine/glycine metabolism in different breast cancer subtypes. PLoS One 2014; 9(6): e101004
https://doi.org/10.1371/journal.pone.0101004 pmid: 24979213
103 CF Labuschagne, NJ van den Broek, GM Mackay, KH Vousden, OD Maddocks. Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep 2014; 7(4): 1248–1258
https://doi.org/10.1016/j.celrep.2014.04.045 pmid: 24813884
104 L Schito, GL Semenza. Hypoxia-inducible factors: master regulators of cancer progression. Trends Cancer 2016; 2(12): 758–770
https://doi.org/10.1016/j.trecan.2016.10.016 pmid: 28741521
105 S Rey, L Schito, M Koritzinsky, BG Wouters. Molecular targeting of hypoxia in radiotherapy. Adv Drug Deliv Rev 2017; 109: 45–62
https://doi.org/10.1016/j.addr.2016.10.002 pmid: 27771366
106 R Bos, P van der Groep, AE Greijer, A Shvarts, S Meijer, HM Pinedo, GL Semenza, PJ van Diest, E van der Wall. Levels of hypoxia-inducible factor-1α independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer 2003; 97(6): 1573–1581
https://doi.org/10.1002/cncr.11246 pmid: 12627523
107 G Gruber, RH Greiner, R Hlushchuk, DM Aebersold, HJ Altermatt, G Berclaz, V Djonov. Hypoxia-inducible factor 1 α in high-risk breast cancer: an independent prognostic parameter? Breast Cancer Res 2004; 6(3): R191–R198
https://doi.org/10.1186/bcr775 pmid: 15084243
108 X Guo, S Lee, P Cao. The inhibitive effect of sh-HIF1A-AS2 on the proliferation, invasion, and pathological damage of breast cancer via targeting miR-548c-3p through regulating HIF-1α/VEGF pathway in vitro and vivo. OncoTargets Ther 2019; 12: 825–834
https://doi.org/10.2147/OTT.S192377 pmid: 30774370
109 Y Wang, G Zhang, J Han. HIF1A-AS2 predicts poor prognosis and regulates cell migration and invasion in triple-negative breast cancer. J Cell Biochem 2019; 120(6): 10513–10518
https://doi.org/10.1002/jcb.28337 pmid: 30635931
110 HS Zhang, GY Du, ZG Zhang, Z Zhou, HL Sun, XY Yu, YT Shi, DN Xiong, H Li, YH Huang. NRF2 facilitates breast cancer cell growth via HIF1ɑ-mediated metabolic reprogramming. Int J Biochem Cell Biol 2018; 95: 85–92
https://doi.org/10.1016/j.biocel.2017.12.016 pmid: 29275212
111 M Ponente, L Campanini, R Cuttano, A Piunti, GA Delledonne, N Coltella, R Valsecchi, A Villa, U Cavallaro, L Pattini, C Doglioni, R Bernardi. PML promotes metastasis of triple-negative breast cancer through transcriptional regulation of HIF1A target genes. JCI Insight 2017; 2(4): e87380
https://doi.org/10.1172/jci.insight.87380 pmid: 28239645
112 A Sethuraman, M Brown, TN Seagroves, ZH Wu, LM Pfeffer, M Fan. SMARCE1 regulates metastatic potential of breast cancer cells through the HIF1A/PTK2 pathway. Breast Cancer Res 2016; 18(1): 81
https://doi.org/10.1186/s13058-016-0738-9 pmid: 27495308
113 S Deb, I Johansson, D Byrne, C Nilsson, kConFab Investigators, L Constable, ML Fjällskog, A Dobrovic, I Hedenfalk, SB Fox. Nuclear HIF1A expression is strongly prognostic in sporadic but not familial male breast cancer. Mod Pathol 2014; 27(9): 1223–1230
https://doi.org/10.1038/modpathol.2013.231 pmid: 24457463
114 H Zhang, CC Wong, H Wei, DM Gilkes, P Korangath, P Chaturvedi, L Schito, J Chen, B Krishnamachary, PT Winnard Jr, V Raman, L Zhen, WA Mitzner, S Sukumar, GL Semenza. HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene 2012; 31(14): 1757–1770
https://doi.org/10.1038/onc.2011.365 pmid: 21860410
115 E Laughner, P Taghavi, K Chiles, PC Mahon, GL Semenza. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1α (HIF-1α) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 2001; 21(12): 3995–4004
https://doi.org/10.1128/MCB.21.12.3995-4004.2001 pmid: 11359907
116 T Kamura, S Sato, K Iwai, M Czyzyk-Krzeska, RC Conaway, JW Conaway. Activation of HIF1α ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci USA 2000; 97(19): 10430–10435
https://doi.org/10.1073/pnas.190332597 pmid: 10973499
117 SW Park, NG Chung, SY Hur, HS Kim, NJ Yoo, SH Lee. Mutational analysis of hypoxia-related genes HIF1α and CUL2 in common human cancers. APMIS 2009; 117(12): 880–885
https://doi.org/10.1111/j.1600-0463.2009.02550.x pmid: 20078552
118 M Montagner, E Enzo, M Forcato, F Zanconato, A Parenti, E Rampazzo, G Basso, G Leo, A Rosato, S Bicciato, M Cordenonsi, S Piccolo. SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia-inducible factors. Nature 2012; 487(7407): 380–384
https://doi.org/10.1038/nature11207 pmid: 22801492
119 S Koyasu, M Kobayashi, Y Goto, M Hiraoka, H Harada. Regulatory mechanisms of hypoxia-inducible factor 1 activity: two decades of knowledge. Cancer Sci 2018; 109(3): 560–571
https://doi.org/10.1111/cas.13483 pmid: 29285833
120 R Courtnay, DC Ngo, N Malik, K Ververis, SM Tortorella, TC Karagiannis. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Mol Biol Rep 2015; 42(4): 841–851
https://doi.org/10.1007/s11033-015-3858-x pmid: 25689954
121 M Stubbs, JR Griffiths. The altered metabolism of tumors: HIF-1 and its role in the Warburg effect. Adv Enzyme Regul 2010; 50(1): 44–55
https://doi.org/10.1016/j.advenzreg.2009.10.027 pmid: 19896967
122 BL Ebert, JD Firth, PJ Ratcliffe. Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct Cis-acting sequences. J Biol Chem 1995; 270(49): 29083–29089
https://doi.org/10.1074/jbc.270.49.29083 pmid: 7493931
123 Y Tang, J Zhu, D Huang, X Hu, Y Cai, X Song, Z Song, C Hong, Z Feng, F Kang. Mandibular osteotomy-induced hypoxia enhances osteoclast activation and acid secretion by increasing glycolysis. J Cell Physiol 2019; 234(7): 11165–11175
https://doi.org/10.1002/jcp.27765 pmid: 30548595
124 J Chiche, S Pommier, M Beneteau, L Mondragón, O Meynet, B Zunino, A Mouchotte, E Verhoeyen, M Guyot, G Pagès, N Mounier, V Imbert, P Colosetti, D Goncalvès, S Marchetti, J Brière, M Carles, C Thieblemont, JE Ricci. GAPDH enhances the aggressiveness and the vascularization of non-Hodgkin’s B lymphomas via NF-kB-dependent induction of HIF-1α. Leukemia 2015; 29(5): 1163–1176
https://doi.org/10.1038/leu.2014.324 pmid: 25394713
125 T Zhang, X Zhu, H Wu, K Jiang, G Zhao, A Shaukat, G Deng, C Qiu. Targeting the ROS/PI3K/AKT/HIF-1α/HK2 axis of breast cancer cells: combined administration of Polydatin and 2-Deoxy-d-glucose. J Cell Mol Med 2019; 23(5): 3711–3723
https://doi.org/10.1111/jcmm.14276 pmid: 30920152
126 T Hamaguchi, N Iizuka, R Tsunedomi, Y Hamamoto, T Miyamoto, M Iida, Y Tokuhisa, K Sakamoto, M Takashima, T Tamesa, M Oka. Glycolysis module activated by hypoxia-inducible factor 1alpha is related to the aggressive phenotype of hepatocellular carcinoma. Int J Oncol 2008; 33(4): 725–731
pmid: 18813785
127 LD Kraemer, PM Schulte. Prior PCB exposure suppresses hypoxia-induced up-regulation of glycolytic enzymes in Fundulus heteroclitus. Comp Biochem Physiol C Toxicol Pharmacol 2004; 139(1-3): 23–29
https://doi.org/10.1016/j.cca.2004.08.015 pmid: 15556062
128 XG Cui, ZT Han, SH He, XD Wu, TR Chen, CH Shao, DL Chen, N Su, YM Chen, T Wang, J Wang, DW Song, WJ Yan, XH Yang, T Liu, HF Wei, J Xiao. HIF1/2α mediates hypoxia-induced LDHA expression in human pancreatic cancer cells. Oncotarget 2017; 8(15): 24840–24852
https://doi.org/10.18632/oncotarget.15266 pmid: 28193910
129 Y Sun, W He, M Luo, Y Zhou, G Chang, W Ren, K Wu, X Li, J Shen, X Zhao, Y Hu. SREBP1 regulates tumorigenesis and prognosis of pancreatic cancer through targeting lipid metabolism. Tumour Biol 2015; 36(6): 4133–4141
https://doi.org/10.1007/s13277-015-3047-5 pmid: 25589463
130 S Li, YT Oh, P Yue, FR Khuri, SY Sun. Inhibition of mTOR complex 2 induces GSK3/FBXW7-dependent degradation of sterol regulatory element-binding protein 1 (SREBP1) and suppresses lipogenesis in cancer cells. Oncogene 2016; 35(5): 642–650
https://doi.org/10.1038/onc.2015.123 pmid: 25893295
131 T Porstmann, CR Santos, B Griffiths, M Cully, M Wu, S Leevers, JR Griffiths, YL Chung, A Schulze. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 2008; 8(3): 224–236
https://doi.org/10.1016/j.cmet.2008.07.007 pmid: 18762023
132 J Krishnan, M Suter, R Windak, T Krebs, A Felley, C Montessuit, M Tokarska-Schlattner, E Aasum, A Bogdanova, E Perriard, JC Perriard, T Larsen, T Pedrazzini, W Krek. Activation of a HIF1α-PPARγ axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. Cell Metab 2009; 9(6): 512–524
https://doi.org/10.1016/j.cmet.2009.05.005 pmid: 19490906
133 H Wang, MV Airola, K Reue. How lipid droplets “TAG” along: Glycerolipid synthetic enzymes and lipid storage. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862(10 Pt B): 1131–1145
https://doi.org/10.1016/j.bbalip.2017.06.010 pmid: 28642195
134 I Mylonis, H Sembongi, C Befani, P Liakos, S Siniossoglou, G Simos. Hypoxia causes triglyceride accumulation by HIF-1-mediated stimulation of lipin 1 expression. J Cell Sci 2012; 125(Pt 14): 3485–3493
https://doi.org/10.1242/jcs.106682 pmid: 22467849
135 EA Triantafyllou, E Georgatsou, I Mylonis, G Simos, E Paraskeva. Expression of AGPAT2, an enzyme involved in the glycerophospholipid/triacylglycerol biosynthesis pathway, is directly regulated by HIF-1 and promotes survival and etoposide resistance of cancer cells under hypoxia. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863(9): 1142–1152
https://doi.org/10.1016/j.bbalip.2018.06.015 pmid: 29908837
136 B Kucejova, N E Sunny, A D Nguyen, R Hallac, X Fu, S Pena-Llopis, RP Mason, RJ Deberardinis, XJ Xie, R Debose-Boyd, VD Kodibagkar, SC Burgess, J Brugarolas. Uncoupling hypoxia signaling from oxygen sensing in the liver results in hypoketotic hypoglycemic death. Oncogene 2011; 30(18): 2147–2160
https://doi.org/10.1038/onc.2010.587 pmid: 21217781
137 D Huang, T Li, X Li, L Zhang, L Sun, X He, X Zhong, D Jia, L Song, GL Semenza, P Gao, H Zhang. HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation is critical for cancer progression. Cell Rep 2014; 8(6): 1930–1942
https://doi.org/10.1016/j.celrep.2014.08.028 pmid: 25242319
138 Y Liu, Z Ma, C Zhao, Y Wang, G Wu, J Xiao, CJ McClain, X Li, W Feng. HIF-1α and HIF-2α are critically involved in hypoxia-induced lipid accumulation in hepatocytes through reducing PGC-1α-mediated fatty acid β-oxidation. Toxicol Lett 2014; 226(2): 117–123
https://doi.org/10.1016/j.toxlet.2014.01.033 pmid: 24503013
139 I Mylonis, G Simos, E Paraskeva. Hypoxia-inducible factors and the regulation of lipid metabolism. Cells 2019; 8(3): E214
https://doi.org/10.3390/cells8030214 pmid: 30832409
140 C Chen, N Pore, A Behrooz, F Ismail-Beigi, A Maity. Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem 2001; 276(12): 9519–9525
https://doi.org/10.1074/jbc.M010144200 pmid: 11120745
141 Q Liu, U Möller, D Flügel, T Kietzmann. Induction of plasminogen activator inhibitor I gene expression by intracellular calcium via hypoxia-inducible factor-1. Blood 2004; 104(13): 3993–4001
https://doi.org/10.1182/blood-2004-03-1017 pmid: 15328163
142 SP Mathupala, A Rempel, PL Pedersen. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J Biol Chem 2001; 276(46): 43407–43412
https://doi.org/10.1074/jbc.M108181200 pmid: 11557773
143 NC Denko. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 2008; 8(9): 705–713
https://doi.org/10.1038/nrc2468 pmid: 19143055
144 YK Jeon, DR Yoo, YH Jang, SY Jang, MJ Nam. Sulforaphane induces apoptosis in human hepatic cancer cells through inhibition of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase4, mediated by hypoxia inducible factor-1-dependent pathway. Biochim Biophys Acta 2011; 1814(10): 1340–1348
https://doi.org/10.1016/j.bbapap.2011.05.015 pmid: 21640852
145 MS Ullah, AJ Davies, AP Halestrap. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1α-dependent mechanism. J Biol Chem 2006; 281(14): 9030–9037
https://doi.org/10.1074/jbc.M511397200 pmid: 16452478
146 J Castellano, R Aledo, J Sendra, P Costales, O Juan-Babot, L Badimon, V Llorente-Cortés. Hypoxia stimulates low-density lipoprotein receptor-related protein-1 expression through hypoxia-inducible factor-1α in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2011; 31(6): 1411–1420
https://doi.org/10.1161/ATVBAHA.111.225490 pmid: 21454812
147 JC Perman, P Boström, M Lindbom, U Lidberg, M StÅhlman, D Hägg, H Lindskog, M Scharin Täng, E Omerovic, L Mattsson Hultén, A Jeppsson, P Petursson, J Herlitz, G Olivecrona, DK Strickland, K Ekroos, SO Olofsson, J Borén. The VLDL receptor promotes lipotoxicity and increases mortality in mice following an acute myocardial infarction. J Clin Invest 2011; 121(7): 2625–2640
https://doi.org/10.1172/JCI43068 pmid: 21670500
148 E Furuta, SK Pai, R Zhan, S Bandyopadhyay, M Watabe, YY Mo, S Hirota, S Hosobe, T Tsukada, K Miura, S Kamada, K Saito, M Iiizumi, W Liu, J Ericsson, K Watabe. Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res 2008; 68(4): 1003–1011
https://doi.org/10.1158/0008-5472.CAN-07-2489 pmid: 18281474
149 T Gimm, M Wiese, B Teschemacher, A Deggerich, J Schödel, KX Knaup, T Hackenbeck, C Hellerbrand, K Amann, MS Wiesener, S Höning, KU Eckardt, C Warnecke. Hypoxia-inducible protein 2 is a novel lipid droplet protein and a specific target gene of hypoxia-inducible factor-1. FASEB J 2010; 24(11): 4443–4458
https://doi.org/10.1096/fj.10-159806 pmid: 20624928
150 L Xiang, J Mou, B Shao, Y Wei, H Liang, N Takano, GL Semenza, G Xie. Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization. Cell Death Dis 2019; 10(2): 40
https://doi.org/10.1038/s41419-018-1291-5 pmid: 30674873
151 SL Deming, SJ Nass, RB Dickson, BJ Trock. C-myc amplification in breast cancer: a meta-analysis of its occurrence and prognostic relevance. Br J Cancer 2000; 83(12): 1688–1695
https://doi.org/10.1054/bjoc.2000.1522 pmid: 11104567
152 Y Fallah, J Brundage, P Allegakoen, AN Shajahan-Haq. MYC-driven pathways in breast cancer subtypes. Biomolecules 2017; 7(3): E53
https://doi.org/10.3390/biom7030053 pmid: 28696357
153 H Shim, C Dolde, BC Lewis, CS Wu, G Dang, RA Jungmann, R Dalla-Favera, CV Dang. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci USA 1997; 94(13): 6658–6663
https://doi.org/10.1073/pnas.94.13.6658 pmid: 9192621
154 Y Zhang, X Zhang, X Wang, L Gan, G Yu, Y Chen, K Liu, P Li, J Pan, J Wang, S Qin. Inhibition of LDH-A by lentivirus-mediated small interfering RNA suppresses intestinal-type gastric cancer tumorigenicity through the downregulation of Oct4. Cancer Lett 2012; 321(1): 45–54
https://doi.org/10.1016/j.canlet.2012.03.013 pmid: 22429998
155 JW Kim, KI Zeller, Y Wang, AG Jegga, BJ Aronow, KA O’Donnell, CV Dang. Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Mol Cell Biol 2004; 24(13): 5923–5936
https://doi.org/10.1128/MCB.24.13.5923-5936.2004 pmid: 15199147
156 RC Osthus, H Shim, S Kim, Q Li, R Reddy, M Mukherjee, Y Xu, D Wonsey, LA Lee, CV Dang. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 2000; 275(29): 21797–21800
https://doi.org/10.1074/jbc.C000023200 pmid: 10823814
157 PG Corn, MS Ricci, KA Scata, AM Arsham, MC Simon, DT Dicker, WS El-Deiry. Mxi1 is induced by hypoxia in a HIF-1-dependent manner and protects cells from c-Myc-induced apoptosis. Cancer Biol Ther 2005; 4(11): 1285–1294
https://doi.org/10.4161/cbt.4.11.2299 pmid: 16319523
158 JD Gordan, CB Thompson, MC Simon. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 2007; 12(2): 108–113
https://doi.org/10.1016/j.ccr.2007.07.006 pmid: 17692803
159 MW Dewhirst. Intermittent hypoxia furthers the rationale for hypoxia-inducible factor-1 targeting. Cancer Res 2007; 67(3): 854–855
https://doi.org/10.1158/0008-5472.CAN-06-4744 pmid: 17283112
160 CV Dang. The interplay between MYC and HIF in the Warburg effect.Ernst Schering Found Symp Proc 2007; (4): 35–53
https://doi.org/10.1007/2789_2008_088 pmid: 18811052
161 JW Kim, I Tchernyshyov, GL Semenza, CV Dang. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006; 3(3): 177–185
https://doi.org/10.1016/j.cmet.2006.02.002 pmid: 16517405
162 MJ Lukey, KF Wilson, RA Cerione. Therapeutic strategies impacting cancer cell glutamine metabolism. Future Med Chem 2013; 5(14): 1685–1700
https://doi.org/10.4155/fmc.13.130 pmid: 24047273
163 EH Shroff, LS Eberlin, VM Dang, AM Gouw, M Gabay, SJ Adam, DI Bellovin, PT Tran, WM Philbrick, A Garcia-Ocana, SC Casey, Y Li, CV Dang, RN Zare, DW Felsher. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. Proc Natl Acad Sci USA 2015; 112(21): 6539–6544
https://doi.org/10.1073/pnas.1507228112 pmid: 25964345
164 D Xiao, P Ren, H Su, M Yue, R Xiu, Y Hu, H Liu, G Qing. Myc promotes glutaminolysis in human neuroblastoma through direct activation of glutaminase 2. Oncotarget 2015; 6(38): 40655–40666
https://doi.org/10.18632/oncotarget.5821 pmid: 26528759
165 SJ Deng, HY Chen, Z Zeng, S Deng, S Zhu, Z Ye, C He, ML Liu, K Huang, JX Zhong, FY Xu, Q Li, Y Liu, C Wang, G Zhao. Nutrient stress-dysregulated antisense lncRNA GLS-AS impairs GLS-mediated metabolism and represses pancreatic cancer progression. Cancer Res 2019; 79(7): 1398–1412
https://doi.org/10.1158/0008-5472.CAN-18-0419 pmid: 30563888
166 ML Craze, H Cheung, N Jewa, NDM Coimbra, D Soria, R El-Ansari, MA Aleskandarany, K Wai Cheng, M Diez-Rodriguez, CC Nolan, IO Ellis, EA Rakha, AR Green. MYC regulation of glutamine-proline regulatory axis is key in luminal B breast cancer. Br J Cancer 2018; 118(2): 258–265
https://doi.org/10.1038/bjc.2017.387 pmid: 29169183
167 S Qie, C Chu, W Li, C Wang, N Sang. ErbB2 activation upregulates glutaminase 1 expression which promotes breast cancer cell proliferation. J Cell Biochem 2014; 115(3): 498–509
https://doi.org/10.1002/jcb.24684 pmid: 24122876
168 HM Haikala, E Marques, M Turunen, J Klefström. Myc requires RhoA/SRF to reprogram glutamine metabolism. Small GTPases 2018; 9(3): 274–282
https://doi.org/10.1080/21541248.2016.1224287 pmid: 27532209
169 HS Sabnis, RR Somasagara, KD Bunting. Targeting MYC dependence by metabolic inhibitors in cancer. Genes (Basel) 2017; 8(4): E114
https://doi.org/10.3390/genes8040114 pmid: 28362357
170 T Soga. Cancer metabolism: key players in metabolic reprogramming. Cancer Sci 2013; 104(3): 275–281
https://doi.org/10.1111/cas.12085 pmid: 23279446
171 R Liu, Y Li, L Tian, H Shi, J Wang, Y Liang, B Sun, S Wang, M Zhou, L Wu, J Nie, B Lin, S Tang, Y Zhang, G Wang, C Zhang, J Han, B Xu, L Liu, K Gong, T Zheng. Gankyrin drives metabolic reprogramming to promote tumorigenesis, metastasis and drug resistance through activating β-catenin/c-Myc signaling in human hepatocellular carcinoma. Cancer Lett 2019; 443: 34–46
https://doi.org/10.1016/j.canlet.2018.11.030 pmid: 30503555
172 MS Ritorto, H Rhode, A Vogel, J Borlak. Regulation of glycosylphosphatidylinositol-anchored proteins and GPI-phospholipase D in a c-Myc transgenic mouse model of hepatocellular carcinoma and human HCC. Biol Chem 2016; 397(11): 1147–1162
https://doi.org/10.1515/hsz-2016-0133 pmid: 27232633
173 MA Blevins, CG Towers, AN Patrick, R Zhao, HL Ford. The SIX1-EYA transcriptional complex as a therapeutic target in cancer. Expert Opin Ther Targets 2015; 19(2): 213–225
https://doi.org/10.1517/14728222.2014.978860 pmid: 25555392
174 L Hua, L Fan, W Aichun, Z Yongjin, C Qingqing, W Xiaojian. Inhibition of Six1 promotes apoptosis, suppresses proliferation, and migration of osteosarcoma cells. Tumour Biol 2014; 35(3): 1925–1931
https://doi.org/10.1007/s13277-013-1258-1 pmid: 24114014
175 Y Yu, E Davicioni, TJ Triche, G Merlino. The homeoprotein six1 transcriptionally activates multiple protumorigenic genes but requires ezrin to promote metastasis. Cancer Res 2006; 66(4): 1982–1989
https://doi.org/10.1158/0008-5472.CAN-05-2360 pmid: 16488997
176 H Jin, M Cui, J Kong, X Cui, Z Lin, Q Wu, S Liu. Sineoculis homeobox homolog 1 protein is associated with breast cancer progression and survival outcome. Exp Mol Pathol 2014; 97(2): 247–252
https://doi.org/10.1016/j.yexmp.2014.07.005 pmid: 25062904
177 Y Zhang, S Wang, Z Liu, L Yang, J Liu, M Xiu. Increased Six1 expression in macrophages promotes hepatocellular carcinoma growth and invasion by regulating MMP-9. J Cell Mol Med 2019; 23(7): 4523–4533
https://doi.org/10.1111/jcmm.14342 pmid: 31044528
178 Y Xie, P Jin, X Sun, T Jiao, Y Zhang, Y Li, M Sun. SIX1 is upregulated in gastric cancer and regulates proliferation and invasion by targeting the ERK pathway and promoting epithelial-mesenchymal transition. Cell Biochem Funct 2018; 36(8): 413–419
https://doi.org/10.1002/cbf.3361 pmid: 30379332
179 T Nishimura, M Tamaoki, R Komatsuzaki, N Oue, H Taniguchi, M Komatsu, K Aoyagi, K Minashi, F Chiwaki, H Shinohara, Y Tachimori, W Yasui, M Muto, T Yoshida, Y Sakai, H Sasaki. SIX1 maintains tumor basal cells via transforming growth factor-β pathway and associates with poor prognosis in esophageal cancer. Cancer Sci 2017; 108(2): 216–225
https://doi.org/10.1111/cas.13135 pmid: 27987372
180 A Dumay, JP Feugeas, E Wittmer, J Lehmann-Che, P Bertheau, M Espié, LF Plassa, P Cottu, M Marty, F André, C Sotiriou, L Pusztai, H de Thé. Distinct tumor protein p53 mutants in breast cancer subgroups. Int J Cancer 2013; 132(5): 1227–1231
https://doi.org/10.1002/ijc.27767 pmid: 22886769
181 K Schon, M Tischkowitz. Clinical implications of germline mutations in breast cancer: TP53. Breast Cancer Res Treat 2018; 167(2): 417–423
https://doi.org/10.1007/s10549-017-4531-y pmid: 29039119
182 F Schwartzenberg-Bar-Yoseph, M Armoni, E Karnieli. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res 2004; 64(7): 2627–2633
https://doi.org/10.1158/0008-5472.CAN-03-0846 pmid: 15059920
183 M Watanabe, H Naraba, T Sakyo, T Kitagawa. DNA damage-induced modulation of GLUT3 expression is mediated through p53-independent extracellular signal-regulated kinase signaling in HeLa cells. Mol Cancer Res 2010; 8(11): 1547–1557
https://doi.org/10.1158/1541-7786.MCR-10-0011 pmid: 20870738
184 T Contractor, CR Harris. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. Cancer Res 2012; 72(2): 560–567
https://doi.org/10.1158/0008-5472.CAN-11-1215 pmid: 22123926
185 T Mikawa, T Maruyama, K Okamoto, H Nakagama, ME Lleonart, T Tsusaka, K Hori, I Murakami, T Izumi, A Takaori-Kondo, M Yokode, G Peters, D Beach, H Kondoh. Senescence-inducing stress promotes proteolysis of phosphoglycerate mutase via ubiquitin ligase Mdm2. J Cell Biol 2014; 204(5): 729–745
https://doi.org/10.1083/jcb.201306149 pmid: 24567357
186 R Boidot, F Végran, A Meulle, A Le Breton, C Dessy, P Sonveaux, S Lizard-Nacol, O Feron. Regulation of monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors. Cancer Res 2012; 72(4): 939–948
https://doi.org/10.1158/0008-5472.CAN-11-2474 pmid: 22184616
187 YB Wang, O Xu, RJ Zhang, CG Shan. Study on the relationship between MCT-1 and p53 in laryngeal squamous cell carcinoma. J Clin Otorhinolaryngol Head Neck Surgery (Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi) 2017; 31(11): 825–829 (in Chinese)
pmid: 29774995
188 P Jiang, W Du, X Wang, A Mancuso, X Gao, M Wu, X Yang. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 2011; 13(3): 310–316
https://doi.org/10.1038/ncb2172 pmid: 21336310
189 J Geng, X Yuan, M Wei, J Wu, ZH Qin. The diverse role of TIGAR in cellular homeostasis and cancer. Free Radic Res 2018; 52(11–12): 1240–1249
https://doi.org/10.1080/10715762.2018.1489133 pmid: 30284488
190 YH Ko, M Domingo-Vidal, M Roche, Z Lin, D Whitaker-Menezes, E Seifert, C Capparelli, M Tuluc, RC Birbe, P Tassone, JM Curry, À Navarro-Sabaté, A Manzano, R Bartrons, J Caro, U Martinez-Outschoorn. TP53-inducible glycolysis and apoptosis regulator (TIGAR) metabolically reprograms carcinoma and stromal cells in breast cancer. J Biol Chem 2016; 291(51): 26291–26303
https://doi.org/10.1074/jbc.M116.740209 pmid: 27803158
191 JH Zhou, TT Zhang, DD Song, YF Xia, ZH Qin, R Sheng. TIGAR contributes to ischemic tolerance induced by cerebral preconditioning through scavenging of reactive oxygen species and inhibition of apoptosis. Sci Rep 2016; 6(1): 27096
https://doi.org/10.1038/srep27096 pmid: 27256465
192 KY Won, SJ Lim, GY Kim, YW Kim, SA Han, JY Song, DK Lee. Regulatory role of p53 in cancer metabolism via SCO2 and TIGAR in human breast cancer. Hum Pathol 2012; 43(2): 221–228
https://doi.org/10.1016/j.humpath.2011.04.021 pmid: 21820150
193 OD Maddocks, CR Berkers, SM Mason, L Zheng, K Blyth, E Gottlieb, KH Vousden. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 2013; 493(7433): 542–546
https://doi.org/10.1038/nature11743 pmid: 23242140
194 I Amelio, EK Markert, A Rufini, AV Antonov, BS Sayan, P Tucci, M Agostini, TC Mineo, AJ Levine, G Melino. p73 regulates serine biosynthesis in cancer. Oncogene 2014; 33(42): 5039–5046
https://doi.org/10.1038/onc.2013.456 pmid: 24186203
195 J Liu, C Zhang, Z Feng. Tumor suppressor p53 and its gain-of-function mutants in cancer. Acta Biochim Biophys Sin (Shanghai) 2014; 46(3): 170–179
https://doi.org/10.1093/abbs/gmt144 pmid: 24374774
196 A Parrales, T Iwakuma. p53 as a regulator of lipid metabolism in cancer. Int J Mol Sci 2016; 17(12): E2074
https://doi.org/10.3390/ijms17122074 pmid: 27973397
197 M Le Romancer, C Poulard, P Cohen, S Sentis, JM Renoir, L Corbo. Cracking the estrogen receptor’s posttranslational code in breast tumors. Endocr Rev 2011; 32(5): 597–622
https://doi.org/10.1210/er.2010-0016 pmid: 21680538
198 D Vasudevan, JR Hickok, RC Bovee, V Pham, LL Mantell, N Bahroos, P Kanabar, XJ Cao, M Maienschein-Cline, BA Garcia, DD Thomas. Nitric oxide regulates gene expression in cancers by controlling histone posttranslational modifications. Cancer Res 2015; 75(24): 5299–5308
https://doi.org/10.1158/0008-5472.CAN-15-1582 pmid: 26542213
199 S Matić, E Quaglino, L Arata, F Riccardo, M Pegoraro, M Vallino, F Cavallo, E Noris. The rat ErbB2 tyrosine kinase receptor produced in plants is immunogenic in mice and confers protective immunity against ErbB2+ mammary cancer. Plant Biotechnol J 2016; 14(1): 153–159
https://doi.org/10.1111/pbi.12367 pmid: 25865255
200 Y Ji, C Yang, Z Tang, Y Yang, Y Tian, H Yao, X Zhu, Z Zhang, J Ji, X Zheng. Adenylate kinase hCINAP determines self-renewal of colorectal cancer stem cells by facilitating LDHA phosphorylation. Nat Commun 2017; 8(1): 15308
https://doi.org/10.1038/ncomms15308 pmid: 28516914
201 D Zhao, SW Zou, Y Liu, X Zhou, Y Mo, P Wang, YH Xu, B Dong, Y Xiong, QY Lei, KL Guan. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell 2013; 23(4): 464–476
https://doi.org/10.1016/j.ccr.2013.02.005 pmid: 23523103
202 D Anastasiou, G Poulogiannis, JM Asara, MB Boxer, JK Jiang, M Shen, G Bellinger, AT Sasaki, JW Locasale, DS Auld, CJ Thomas, MG Vander Heiden, LC Cantley. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 2011; 334(6060): 1278–1283
https://doi.org/10.1126/science.1211485 pmid: 22052977
203 E Hu, JB Kim, P Sarraf, BM Spiegelman. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARγ. Science 1996; 274(5295): 2100–2103
https://doi.org/10.1126/science.274.5295.2100 pmid: 8953045
204 ZE Floyd, JM Stephens. Control of peroxisome proliferator-activated receptor g2 stability and activity by SUMOylation. Obes Res 2004; 12(6): 921–928
https://doi.org/10.1038/oby.2004.112 pmid: 15229330
205 M Watanabe, H Takahashi, Y Saeki, T Ozaki, S Itoh, M Suzuki, W Mizushima, K Tanaka, S Hatakeyama. The E3 ubiquitin ligase TRIM23 regulates adipocyte differentiation via stabilization of the adipogenic activator PPARg. eLife 2015; 4: e05615
https://doi.org/10.7554/eLife.05615 pmid: 25905670
206 R Brunmeir, F Xu. Functional regulation of PPARs through post-translational modifications. Int J Mol Sci 2018; 19(6): E1738
https://doi.org/10.3390/ijms19061738 pmid: 29895749
207 Z Xiaoping, Y Fajun. Regulation of SREBP-mediated gene expression. Sheng Wu Wu Li Hsueh Bao 2012; 28(4): 287–294
https://doi.org/10.3724/SP.J.1260.2012.20034 pmid: 23730104
208 CFR Ascenção, RSK Nagampalli, Z Islam, MP Pinheiro, L Menezes Dos Reis, BA Pauletti, CA de Guzzi Cassago, DC Granato, AF Paes Leme, SMG Dias. N-terminal phosphorylation of glutaminase C decreases its enzymatic activity and cancer cell migration. Biochimie 2018; 154: 69–76
https://doi.org/10.1016/j.biochi.2018.07.022 pmid: 30092248
209 T Han, W Zhan, M Gan, F Liu, B Yu, YE Chin, JB Wang. Phosphorylation of glutaminase by PKCε is essential for its enzymatic activity and critically contributes to tumorigenesis. Cell Res 2018; 28(6): 655–669
https://doi.org/10.1038/s41422-018-0021-y pmid: 29515166
210 S Miyamoto, AN Murphy, JH Brown. Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. Cell Death Differ 2008; 15(3): 521–529
https://doi.org/10.1038/sj.cdd.4402285 pmid: 18064042
211 W Yi, PM Clark, DE Mason, MC Keenan, C Hill, WA Goddard 3rd, EC Peters, EM Driggers, LC Hsieh-Wilson. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science 2012; 337(6097): 975–980
https://doi.org/10.1126/science.1222278 pmid: 22923583
212 L Bertrand, DR Alessi, J Deprez, M Deak, E Viaene, MH Rider, L Hue. Heart 6-phosphofructo-2-kinase activation by insulin results from Ser-466 and Ser-483 phosphorylation and requires 3-phosphoinositide-dependent kinase-1, but not protein kinase B. J Biol Chem 1999; 274(43): 30927–30933
https://doi.org/10.1074/jbc.274.43.30927 pmid: 10521487
213 T Hitosugi, L Zhou, J Fan, S Elf, L Zhang, J Xie, Y Wang, TL Gu, M Alečković, G LeRoy, Y Kang, HB Kang, JH Seo, C Shan, P Jin, W Gong, S Lonial, ML Arellano, HJ Khoury, GZ Chen, DM Shin, FR Khuri, TJ Boggon, S Kang, C He, J Chen. Tyr26 phosphorylation of PGAM1 provides a metabolic advantage to tumours by stabilizing the active conformation. Nat Commun 2013; 4(1): 1790
https://doi.org/10.1038/ncomms2759 pmid: 23653202
214 WC Hallows, W Yu, JM Denu. Regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation. J Biol Chem 2012; 287(6): 3850–3858
https://doi.org/10.1074/jbc.M111.317404 pmid: 22157007
215 T Hitosugi, S Kang, MG Vander Heiden, TW Chung, S Elf, K Lythgoe, S Dong, S Lonial, X Wang, GZ Chen, J Xie, TL Gu, RD Polakiewicz, JL Roesel, TJ Boggon, FR Khuri, DG Gilliland, LC Cantley, J Kaufman, J Chen. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal 2009; 2(97): ra73
https://doi.org/10.1126/scisignal.2000431 pmid: 19920251
216 W Yang, Y Zheng, Y Xia, H Ji, X Chen, F Guo, CA Lyssiotis, K Aldape, LC Cantley, Z Lu. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol 2012; 14(12): 1295–1304
https://doi.org/10.1038/ncb2629 pmid: 23178880
217 L Lv, D Li, D Zhao, R Lin, Y Chu, H Zhang, Z Zha, Y Liu, Z Li, Y Xu, G Wang, Y Huang, Y Xiong, KL Guan, QY Lei. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell 2011; 42(6): 719–730
https://doi.org/10.1016/j.molcel.2011.04.025 pmid: 21700219
218 J Fan, C Shan, HB Kang, S Elf, J Xie, M Tucker, TL Gu, M Aguiar, S Lonning, H Chen, M Mohammadi, LM Britton, BA Garcia, M Alečković, Y Kang, S Kaluz, N Devi, EG Van Meir, T Hitosugi, JH Seo, S Lonial, M Gaddh, M Arellano, HJ Khoury, FR Khuri, TJ Boggon, S Kang, J Chen. Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Mol Cell 2014; 53(4): 534–548
https://doi.org/10.1016/j.molcel.2013.12.026 pmid: 24486017
219 J Fan, T Hitosugi, TW Chung, J Xie, Q Ge, TL Gu, RD Polakiewicz, GZ Chen, TJ Boggon, S Lonial, FR Khuri, S Kang, J Chen. Tyrosine phosphorylation of lactate dehydrogenase A is important for NADH/NAD+ redox homeostasis in cancer cells. Mol Cell Biol 2011; 31(24): 4938–4950
https://doi.org/10.1128/MCB.06120-11 pmid: 21969607
220 T Hitosugi, J Fan, TW Chung, K Lythgoe, X Wang, J Xie, Q Ge, TL Gu, RD Polakiewicz, JL Roesel, GZ Chen, TJ Boggon, S Lonial, H Fu, FR Khuri, S Kang, J Chen. Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism. Mol Cell 2011; 44(6): 864–877
https://doi.org/10.1016/j.molcel.2011.10.015 pmid: 22195962
221 J Fan, HB Kang, C Shan, S Elf, R Lin, J Xie, TL Gu, M Aguiar, S Lonning, TW Chung, M Arellano, HJ Khoury, DM Shin, FR Khuri, TJ Boggon, S Kang, J Chen. Tyr-301 phosphorylation inhibits pyruvate dehydrogenase by blocking substrate binding and promotes the Warburg effect. J Biol Chem 2014; 289(38): 26533–26541
https://doi.org/10.1074/jbc.M114.593970 pmid: 25104357
222 TE Roche, Y Hiromasa. Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer. Cell Mol Life Sci 2007; 64(7-8): 830–849
https://doi.org/10.1007/s00018-007-6380-z pmid: 17310282
223 G Yi, Z He, X Zhou, L Xian, T Yuan, X Jia, J Hong, L He, J Liu. Low concentration of metformin induces a p53-dependent senescence in hepatoma cells via activation of the AMPK pathway. Int J Oncol 2013; 43(5): 1503–1510
https://doi.org/10.3892/ijo.2013.2077 pmid: 23982736
224 B Vogelstein, D Lane, AJ Levine. Surfing the p53 network. Nature 2000; 408(6810): 307–310
https://doi.org/10.1038/35042675 pmid: 11099028
225 JW Jeong, MK Bae, MY Ahn, SH Kim, TK Sohn, MH Bae, MA Yoo, EJ Song, KJ Lee, KW Kim. Regulation and destabilization of HIF-1α by ARD1-mediated acetylation. Cell 2002; 111(5): 709–720
https://doi.org/10.1016/S0092-8674(02)01085-1 pmid: 12464182
226 V Giandomenico, M Simonsson, E Grönroos, J Ericsson. Coactivator-dependent acetylation stabilizes members of the SREBP family of transcription factors. Mol Cell Biol 2003; 23(7): 2587–2599
https://doi.org/10.1128/MCB.23.7.2587-2599.2003 pmid: 12640139
227 CJ McDonald, E Acheff, R Kennedy, L Taylor, NP Curthoys. Effect of lysine to alanine mutations on the phosphate activation and BPTES inhibition of glutaminase. Neurochem Int 2015; 88: 10–14
https://doi.org/10.1016/j.neuint.2014.12.003 pmid: 25510640
228 A Engin. Obesity-associated breast cancer: analysis of risk factors. Adv Exp Med Biol 2017; 960: 571–606
https://doi.org/10.1007/978-3-319-48382-5_25 pmid: 28585217
229 P Haluska, M Menefee, ER Plimack, J Rosenberg, D Northfelt, T LaVallee, L Shi, XQ Yu, P Burke, J Huang, J Viner, J McDevitt, P LoRusso. Phase I dose-escalation study of MEDI-573, a bispecific, antiligand monoclonal antibody against IGFI and IGFII, in patients with advanced solid tumors. Clin Cancer Res 2014; 20(18): 4747–4757
https://doi.org/10.1158/1078-0432.CCR-14-0114 pmid: 25024259
230 J Liang, GB Mills. AMPK: a contextual oncogene or tumor suppressor? Cancer Res 2013; 73(10): 2929–2935
https://doi.org/10.1158/0008-5472.CAN-12-3876 pmid: 23644529
231 W Cao, J Li, Q Hao, JV Vadgama, Y Wu. AMP-activated protein kinase: a potential therapeutic target for triple-negative breast cancer. Breast Cancer Res 2019; 21(1): 29
https://doi.org/10.1186/s13058-019-1107-2 pmid: 30791936
232 JA Menendez, R Lupu. Fatty acid synthase (FASN) as a therapeutic target in breast cancer. Expert Opin Ther Targets 2017; 21(11): 1001–1016
https://doi.org/10.1080/14728222.2017.1381087 pmid: 28922023
233 S Kageyama, H Ii, K Taniguchi, S Kubota, T Yoshida, T Isono, T Chano, T Yoshiya, K Ito, T Yoshiki, A Kawauchi, S Nakata. Mechanisms of tumor growth inhibition by depletion of g-glutamylcyclotransferase (GGCT): a novel molecular target for anticancer therapy. Int J Mol Sci 2018; 19(7): E2054
https://doi.org/10.3390/ijms19072054 pmid: 30011933
234 H Ii, T Yoshiya, S Nakata, K Taniguchi, K Hidaka, S Tsuda, M Mochizuki, Y Nishiuchi, Y Tsuda, K Ito, S Kageyama, T Yoshiki. A novel prodrug of a g-glutamylcyclotransferase inhibitor suppresses cancer cell proliferation in vitro and inhibits tumor growth in a xenograft mouse model of prostate cancer. ChemMedChem 2018; 13(2): 155–163
https://doi.org/10.1002/cmdc.201700660 pmid: 29316360
235 NJ Curtin, AN Hughes. Pemetrexed disodium, a novel antifolate with multiple targets. Lancet Oncol 2001; 2(5): 298–306
https://doi.org/10.1016/S1470-2045(00)00325-9 pmid: 11905785
236 FM Burnet. The concept of immunological surveillance. Prog Exp Tumor Res 1970; 13: 1–27
pmid: 4921480
237 D Mittal, MM Gubin, RD Schreiber, MJ Smyth. New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr Opin Immunol 2014; 27: 16–25
https://doi.org/10.1016/j.coi.2014.01.004 pmid: 24531241
238 RD Schreiber, LJ Old, MJ Smyth. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 2011; 331(6024): 1565–1570
https://doi.org/10.1126/science.1203486 pmid: 21436444
239 S Ceeraz, EC Nowak, RJ Noelle. B7 family checkpoint regulators in immune regulation and disease. Trends Immunol 2013; 34(11): 556–563
https://doi.org/10.1016/j.it.2013.07.003 pmid: 23954143
240 SL Topalian, CG Drake, DM Pardoll. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 2015; 27(4): 450–461
https://doi.org/10.1016/j.ccell.2015.03.001 pmid: 25858804
241 AM Menzies, GV Long. Recent advances in melanoma systemic therapy. BRAF inhibitors, CTLA4 antibodies and beyond. Eur J Cancer 2013; 49(15): 3229–3241
https://doi.org/10.1016/j.ejca.2013.06.027 pmid: 23870385
242 T Takahashi, T Tagami, S Yamazaki, T Uede, J Shimizu, N Sakaguchi, TW Mak, S Sakaguchi. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000; 192(2): 303–310
https://doi.org/10.1084/jem.192.2.303 pmid: 10899917
243 H Yu, J Yang, S Jiao, Y Li, W Zhang, J Wang. Cytotoxic T lymphocyte antigen 4 expression in human breast cancer: implications for prognosis. Cancer Immunol Immunother 2015; 64(7): 853–860
https://doi.org/10.1007/s00262-015-1696-2 pmid: 25893809
244 FJ Ward, LN Dahal, SK Wijesekera, SK Abdul-Jawad, T Kaewarpai, H Xu, MA Vickers, RN Barker. The soluble isoform of CTLA-4 as a regulator of T-cell responses. Eur J Immunol 2013; 43(5): 1274–1285
https://doi.org/10.1002/eji.201242529 pmid: 23400950
245 S Laurent, P Queirolo, S Boero, S Salvi, P Piccioli, S Boccardo, S Minghelli, A Morabito, V Fontana, G Pietra, P Carrega, N Ferrari, F Tosetti, LJ Chang, MC Mingari, G Ferlazzo, A Poggi, MP Pistillo. The engagement of CTLA-4 on primary melanoma cell lines induces antibody-dependent cellular cytotoxicity and TNF-α production. J Transl Med 2013; 11(1): 108
https://doi.org/10.1186/1479-5876-11-108 pmid: 23634660
246 RH Vonderheide, PM LoRusso, M Khalil, EM Gartner, D Khaira, D Soulieres, P Dorazio, JA Trosko, J Rüter, GL Mariani, T Usari, SM Domchek. Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-associated modulation of inducible costimulator expression on patient T cells. Clin Cancer Res 2010; 16(13): 3485–3494
https://doi.org/10.1158/1078-0432.CCR-10-0505 pmid: 20479064
247 HL McArthur, A Diab, DB Page, J Yuan, SB Solomon, V Sacchini, C Comstock, JC Durack, M Maybody, J Sung, A Ginsberg, P Wong, A Barlas, Z Dong, C Zhao, B Blum, S Patil, D Neville, EA Comen, EA Morris, A Kotin, E Brogi, YH Wen, M Morrow, ME Lacouture, P Sharma, JP Allison, CA Hudis, JD Wolchok, L Norton. A pilot study of preoperative single-dose ipilimumab and/or cryoablation in women with early-stage breast cancer with comprehensive immune profiling. Clin Cancer Res 2016; 22(23): 5729–5737
https://doi.org/10.1158/1078-0432.CCR-16-0190 pmid: 27566765
248 BT Fife, JA Bluestone. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 2008; 224(1): 166–182
https://doi.org/10.1111/j.1600-065X.2008.00662.x pmid: 18759926
249 MJ Butte, ME Keir, TB Phamduy, AH Sharpe, GJ Freeman. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 2007; 27(1): 111–122
https://doi.org/10.1016/j.immuni.2007.05.016 pmid: 17629517
250 GJ Freeman, AJ Long, Y Iwai, K Bourque, T Chernova, H Nishimura, LJ Fitz, N Malenkovich, T Okazaki, MC Byrne, HF Horton, L Fouser, L Carter, V Ling, MR Bowman, BM Carreno, M Collins, CR Wood, T Honjo. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000; 192(7): 1027–1034
https://doi.org/10.1084/jem.192.7.1027 pmid: 11015443
251 SL Topalian, CG Drake, DM Pardoll. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 2012; 24(2): 207–212
https://doi.org/10.1016/j.coi.2011.12.009 pmid: 22236695
252 A Ribas. Tumor immunotherapy directed at PD-1. N Engl J Med 2012; 366(26): 2517–2519
https://doi.org/10.1056/NEJMe1205943 pmid: 22658126
253 R Sabatier, P Finetti, E Mamessier, J Adelaide, M Chaffanet, HR Ali, P Viens, C Caldas, D Birnbaum, F Bertucci. Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget 2015; 6(7): 5449–5464
https://doi.org/10.18632/oncotarget.3216 pmid: 25669979
254 LC Chang, TP Chen, WK Kuo, CC Hua. The protein expression of PDL1 is highly correlated with those of eIF2α and ATF4 in lung cancer. Dis Markers 2018; 2018: 5068701
https://doi.org/10.1155/2018/5068701 pmid: 30305853
255 J Chen, CC Jiang, L Jin, XD Zhang. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol 2016; 27(3): 409–416
https://doi.org/10.1093/annonc/mdv615 pmid: 26681673
256 AH Sharpe, EJ Wherry, R Ahmed, GJ Freeman. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 2007; 8(3): 239–245
https://doi.org/10.1038/ni1443 pmid: 17304234
257 T Shi, Y Ma, L Yu, J Jiang, S Shen, Y Hou, T Wang. Cancer immunotherapy: a focus on the regulation of immune checkpoints. Int J Mol Sci 2018; 19(5): E1389
https://doi.org/10.3390/ijms19051389 pmid: 29735917
258 D Bedognetti, W Hendrickx, FM Marincola, LD Miller. Prognostic and predictive immune gene signatures in breast cancer. Curr Opin Oncol 2015; 27(6): 433–444
https://doi.org/10.1097/CCO.0000000000000234 pmid: 26418235
259 D Bedognetti, C Maccalli, SB Bader, FM Marincola, B Seliger. Checkpoint inhibitors and their application in breast cancer. Breast Care (Basel) 2016; 11(2): 108–115
https://doi.org/10.1159/000445335 pmid: 27239172
260 G Planes-Laine, P Rochigneux, F Bertucci, AS Chrétien, P Viens, R Sabatier, A Gonçalves. PD-1/PD-L1 targeting in breast cancer: the first clinical evidences are emerging. a literature review. Cancers (Basel) 2019; 11(7): E1033
https://doi.org/10.3390/cancers11071033 pmid: 31336685
261 J Larkin, V Chiarion-Sileni, R Gonzalez, JJ Grob, CL Cowey, CD Lao, D Schadendorf, R Dummer, M Smylie, P Rutkowski, PF Ferrucci, A Hill, J Wagstaff, MS Carlino, JB Haanen, M Maio, I Marquez-Rodas, GA McArthur, PA Ascierto, GV Long, MK Callahan, MA Postow, K Grossmann, M Sznol, B Dreno, L Bastholt, A Yang, LM Rollin, C Horak, FS Hodi, JD Wolchok. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015; 373(1): 23–34
https://doi.org/10.1056/NEJMoa1504030 pmid: 26027431
262 EF Blackley, S Loi. Targeting immune pathways in breast cancer: review of the prognostic utility of TILs in early stage triple negative breast cancer (TNBC). Breast 2019; 48(Suppl 1): S44–S48
https://doi.org/10.1016/S0960-9776(19)31122-1 pmid: 31839159
263 DG DeNardo, LM Coussens. Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res 2007; 9(4): 212
https://doi.org/10.1186/bcr1746 pmid: 17705880
264 B Ruffell, A Au, HS Rugo, LJ Esserman, ES Hwang, LM Coussens. Leukocyte composition of human breast cancer. Proc Natl Acad Sci USA 2012; 109(8): 2796–2801
https://doi.org/10.1073/pnas.1104303108 pmid: 21825174
265 Y Chin, J Janseens, J Vandepitte, J Vandenbrande, L Opdebeek, J Raus. Phenotypic analysis of tumor-infiltrating lymphocytes from human breast cancer. Anticancer Res 1992; 12(5): 1463–1466
pmid: 1332579
266 SE Stanton, ML Disis. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J Immunother Cancer 2016; 4(1): 59
https://doi.org/10.1186/s40425-016-0165-6 pmid: 27777769
267 S Kurozumi, K Inoue, H Matsumoto, T Fujii, J Horiguchi, T Oyama, M Kurosumi, K Shirabe. Prognostic utility of tumor-infiltrating lymphocytes in residual tumor after neoadjuvant chemotherapy with trastuzumab for HER2-positive breast cancer. Sci Rep 2019; 9(1): 1583
https://doi.org/10.1038/s41598-018-38272-1 pmid: 30733496
268 S Aaltomaa, P Lipponen, M Eskelinen, VM Kosma, S Marin, E Alhava, K Syrjänen. Lymphocyte infiltrates as a prognostic variable in female breast cancer. Eur J Cancer 1992; 28(4–5): 859–864
https://doi.org/10.1016/0959-8049(92)90134-N pmid: 1524909
269 P Vikas, N Borcherding, W Zhang. The clinical promise of immunotherapy in triple-negative breast cancer. Cancer Manag Res 2018; 10: 6823–6833
https://doi.org/10.2147/CMAR.S185176 pmid: 30573992
270 L Galluzzi, L Senovilla, L Zitvogel, G Kroemer. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012; 11(3): 215–233
https://doi.org/10.1038/nrd3626 pmid: 22301798
271 SE Stanton, S Adams, ML Disis. Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes: a systematic review. JAMA Oncol 2016; 2(10): 1354–1360
https://doi.org/10.1001/jamaoncol.2016.1061 pmid: 27355489
272 MV Dieci, MC Mathieu, V Guarneri, P Conte, S Delaloge, F Andre, A Goubar. Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III randomized adjuvant breast cancer trials. Ann Oncol 2015; 26(8): 1698–1704
https://doi.org/10.1093/annonc/mdv239 pmid: 25995301
273 S Adams, RJ Gray, S Demaria, L Goldstein, EA Perez, LN Shulman, S Martino, M Wang, VE Jones, TJ Saphner, AC Wolff, WC Wood, NE Davidson, GW Sledge, JA Sparano, SS Badve. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol 2014; 32(27): 2959–2966
https://doi.org/10.1200/JCO.2013.55.0491 pmid: 25071121
274 L Zhang, XI Wang, J Ding, Q Sun, S Zhang. The predictive and prognostic value of Foxp3+/CD25+ regulatory T cells and PD-L1 expression in triple negative breast cancer. Ann Diagn Pathol 2019; 40: 143–151
https://doi.org/10.1016/j.anndiagpath.2019.04.004 pmid: 31096176
275 SJ Luen, R Salgado, MV Dieci, A Vingiani, G Curigliano, RE Gould, C Castaneda, T D’Alfonso, J Sanchez, E Cheng, E Andreopoulou, M Castillo, S Adams, S Demaria, WF Symmans, S Michiels, S Loi. Prognostic implications of residual disease tumor-infiltrating lymphocytes and residual cancer burden in triple-negative breast cancer patients after neoadjuvant chemotherapy. Ann Oncol 2019; 30(2): 236–242
https://doi.org/10.1093/annonc/mdy547 pmid: 30590484
276 C Criscitiello. Tumor-associated antigens in breast cancer. Breast Care (Basel) 2012; 7(4): 262–266
https://doi.org/10.1159/000342164 pmid: 23904827
277 CH Huber, T Wölfel. Immunotherapy of cancer: from vision to standard clinical practice. J Cancer Res Clin Oncol 2004; 130(7): 367–374
https://doi.org/10.1007/s00432-004-0550-2 pmid: 15067541
278 A Dols, JW Smith 2nd, SL Meijer, BA Fox, HM Hu, E Walker, S Rosenheim, T Moudgil, T Doran, W Wood, M Seligman, WG Alvord, D Schoof, WJ Urba. Vaccination of women with metastatic breast cancer, using a costimulatory gene (CD80)-modified, HLA-A2-matched, allogeneic, breast cancer cell line: clinical and immunological results. Hum Gene Ther 2003; 14(11): 1117–1123
https://doi.org/10.1089/104303403322124828 pmid: 12885350
279 R Cibotti, JM Kanellopoulos, JP Cabaniols, O Halle-Panenko, K Kosmatopoulos, E Sercarz, P Kourilsky. Tolerance to a self-protein involves its immunodominant but does not involve its subdominant determinants. Proc Natl Acad Sci USA 1992; 89(1): 416–420
https://doi.org/10.1073/pnas.89.1.416 pmid: 1370355
280 NM Shumway, N Ibrahim, S Ponniah, GE Peoples, JL Murray. Therapeutic breast cancer vaccines: a new strategy for early-stage disease. BioDrugs 2009; 23(5): 277–287
https://doi.org/10.2165/11313490-000000000-00000 pmid: 19754218
281 JW Park, ME Melisko, LJ Esserman, LA Jones, JB Wollan, R Sims. Treatment with autologous antigen-presenting cells activated with the HER-2 based antigen Lapuleucel-T: results of a phase I study in immunologic and clinical activity in HER-2 overexpressing breast cancer. J Clin Oncol 2007; 25(24): 3680–3687
https://doi.org/10.1200/JCO.2006.10.5718 pmid: 17704416
282 J Banchereau, AK Palucka. Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005; 5(4): 296–306
https://doi.org/10.1038/nri1592 pmid: 15803149
283 MZ Ladjemi, W Jacot, T Chardès, A Pèlegrin, I Navarro-Teulon. Anti-HER2 vaccines: new prospects for breast cancer therapy. Cancer Immunol Immunother 2010; 59(9): 1295–1312
https://doi.org/10.1007/s00262-010-0869-2 pmid: 20532501
284 MJ Cannon, MS Block, LC Morehead, KL Knutson. The evolving clinical landscape for dendritic cell vaccines and cancer immunotherapy. Immunotherapy 2019; 11(2): 75–79
https://doi.org/10.2217/imt-2018-0129 pmid: 30730268
285 M Saxena, S Balan, V Roudko, N Bhardwaj. Towards superior dendritic-cell vaccines for cancer therapy. Nat Biomed Eng 2018; 2(6): 341–346
https://doi.org/10.1038/s41551-018-0250-x pmid: 30116654
286 ME Eagles, F Nassiri, JH Badhiwala, S Suppiah, SA Almenawer, G Zadeh, KD Aldape. Dendritic cell vaccines for high-grade gliomas. Ther Clin Risk Manag 2018; 14: 1299–1313
https://doi.org/10.2147/TCRM.S135865 pmid: 30100728
287 Y Sakai, BJ Morrison, JD Burke, JM Park, M Terabe, JE Janik, G Forni, JA Berzofsky, JC Morris. Vaccination by genetically modified dendritic cells expressing a truncated neu oncogene prevents development of breast cancer in transgenic mice. Cancer Res 2004; 64(21): 8022–8028
https://doi.org/10.1158/0008-5472.CAN-03-3442 pmid: 15520211
288 GE Peoples, PS Goedegebuure, R Smith, DC Linehan, I Yoshino, TJ Eberlein. Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neu-derived peptide. Proc Natl Acad Sci USA 1995; 92(2): 432–436
https://doi.org/10.1073/pnas.92.2.432 pmid: 7831305
289 A Al-Awadhi, J Lee Murray, NK Ibrahim. Developing anti-HER2 vaccines: breast cancer experience. Int J Cancer 2018; 143(9): 2126–2132
https://doi.org/10.1002/ijc.31551 pmid: 29693245
290 JL Marshall, RJ Hoyer, MA Toomey, K Faraguna, P Chang, E Richmond, JE Pedicano, E Gehan, RA Peck, P Arlen, KY Tsang, J Schlom. Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J Clin Oncol 2000; 18(23): 3964–3973
https://doi.org/10.1200/JCO.2000.18.23.3964 pmid: 11099326
291 SA Rosenberg, Y Zhai, JC Yang, DJ Schwartzentruber, P Hwu, FM Marincola, SL Topalian, NP Restifo, CA Seipp, JH Einhorn, B Roberts, DE White. Immunizing patients with metastatic melanoma using recombinant adenoviruses encoding MART-1 or gp100 melanoma antigens. J Natl Cancer Inst 1998; 90(24): 1894–1900
https://doi.org/10.1093/jnci/90.24.1894 pmid: 9862627
292 B Yang, J Jeang, A Yang, TC Wu, CF Hung. DNA vaccine for cancer immunotherapy. Hum Vaccin Immunother 2014; 10(11): 3153–3164
https://doi.org/10.4161/21645515.2014.980686 pmid: 25625927
293 H Norell, I Poschke, J Charo, WZ Wei, C Erskine, MP Piechocki, KL Knutson, J Bergh, E Lidbrink, R Kiessling. Vaccination with a plasmid DNA encoding HER-2/neu together with low doses of GM-CSF and IL-2 in patients with metastatic breast carcinoma: a pilot clinical trial. J Transl Med 2010; 8(1): 53
https://doi.org/10.1186/1479-5876-8-53 pmid: 20529245
294 YC Chae, JH Kim. Cancer stem cell metabolism: target for cancer therapy. BMB Rep 2018; 51(7): 319–326
https://doi.org/10.5483/BMBRep.2018.51.7.112 pmid: 29764565
295 T Louhichi, S Ziadi, H Saad, MB Dhiab, S Mestiri, M Trimeche. Clinicopathological significance of cancer stem cell markers CD44 and ALDH1 expression in breast cancer. Breast Cancer 2018; 25(6): 698–705
https://doi.org/10.1007/s12282-018-0875-3 pmid: 29845398
296 M Tamada, O Nagano, S Tateyama, M Ohmura, T Yae, T Ishimoto, E Sugihara, N Onishi, T Yamamoto, H Yanagawa, M Suematsu, H Saya. Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells. Cancer Res 2012; 72(6): 1438–1448
https://doi.org/10.1158/0008-5472.CAN-11-3024 pmid: 22293754
297 PP Liu, J Liao, ZJ Tang, WJ Wu, J Yang, ZL Zeng, Y Hu, P Wang, HQ Ju, RH Xu, P Huang. Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway. Cell Death Differ 2014; 21(1): 124–135
https://doi.org/10.1038/cdd.2013.131 pmid: 24096870
298 A Viale, P Pettazzoni, CA Lyssiotis, H Ying, N Sánchez, M Marchesini, A Carugo, T Green, S Seth, V Giuliani, M Kost-Alimova, F Muller, S Colla, L Nezi, G Genovese, AK Deem, A Kapoor, W Yao, E Brunetto, Y Kang, M Yuan, JM Asara, YA Wang, TP Heffernan, AC Kimmelman, H Wang, JB Fleming, LC Cantley, RA DePinho, GF Draetta. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 2014; 514(7524): 628–632
https://doi.org/10.1038/nature13611 pmid: 25119024
299 C Gao, Y Shen, F Jin, Y Miao, X Qiu. Cancer stem cells in small cell lung cancer cell line H446: higher dependency on oxidative phosphorylation and mitochondrial substrate-level phosphorylation than non-stem cancer cells. PLoS One 2016; 11(5): e0154576
https://doi.org/10.1371/journal.pone.0154576 pmid: 27167619
300 KM Lee, JM Giltnane, JM Balko, LJ Schwarz, AL Guerrero-Zotano, KE Hutchinson, MJ Nixon, MV Estrada, V Sanchez, ME Sanders, T Lee, H Gomez, A Lluch, J A Perez-Fidalgo, MM Wolf, G Andrejeva, J C Rathmell, S W Fesik, CL Arteaga. MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell Metab 2017; 26(4): 633–647.e7
https://doi.org/10.1016/j.cmet.2017.09.009 pmid: 28978427
301 L Tirinato, C Liberale, S Di Franco, P Candeloro, A Benfante, R La Rocca, L Potze, R Marotta, R Ruffilli, VP Rajamanickam, M Malerba, F De Angelis, A Falqui, E Carbone, M Todaro, JP Medema, G Stassi, E Di Fabrizio. Lipid droplets: a new player in colorectal cancer stem cells unveiled by spectroscopic imaging. Stem Cells 2015; 33(1): 35–44
https://doi.org/10.1002/stem.1837 pmid: 25186497
302 T Wang, J F Fahrmann, H Lee, Y J Li, S C Tripathi, C Yue, C Zhang, V Lifshitz, J Song, Y Yuan, G Somlo, R Jandial, D Ann, S Hanash, R Jove, H Yu. JAK/STAT3-regulated fatty acid beta-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab 2018; 27(1): 136–150.e5
https://doi.org/10.1016/j.cmet.2017.11.001 pmid: 29249690
303 A Wu, J Wei, LY Kong, Y Wang, W Priebe, W Qiao, R Sawaya, AB Heimberger. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro-oncol 2010; 12(11): 1113–1125
https://doi.org/10.1093/neuonc/noq082 pmid: 20667896
304 JB Mitchem, DJ Brennan, BL Knolhoff, BA Belt, Y Zhu, DE Sanford, L Belaygorod, D Carpenter, L Collins, D Piwnica-Worms, S Hewitt, GM Udupi, WM Gallagher, C Wegner, BL West, A Wang-Gillam, P Goedegebuure, DC Linehan, DG DeNardo. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res 2013; 73(3): 1128–1141
https://doi.org/10.1158/0008-5472.CAN-12-2731 pmid: 23221383
305 C Bottino, R Castriconi, L Moretta, A Moretta. Cellular ligands of activating NK receptors. Trends Immunol 2005; 26(4): 221–226
https://doi.org/10.1016/j.it.2005.02.007 pmid: 15797513
306 T Di Tomaso, S Mazzoleni, E Wang, G Sovena, D Clavenna, A Franzin, P Mortini, S Ferrone, C Doglioni, FM Marincola, R Galli, G Parmiani, C Maccalli. Immunobiological characterization of cancer stem cells isolated from glioblastoma patients. Clin Cancer Res 2010; 16(3): 800–813
https://doi.org/10.1158/1078-0432.CCR-09-2730 pmid: 20103663
307 DJ Silver, M Sinyuk, MA Vogelbaum, MS Ahluwalia, JD Lathia. The intersection of cancer, cancer stem cells, and the immune system: therapeutic opportunities. Neuro-oncol 2016; 18(2): 153–159
https://doi.org/10.1093/neuonc/nov157 pmid: 26264894
308 S Almozyan, D Colak, F Mansour, A Alaiya, O Al-Harazi, A Qattan, F Al-Mohanna, M Al-Alwan, H Ghebeh. PD-L1 promotes OCT4 and Nanog expression in breast cancer stem cells by sustaining PI3K/AKT pathway activation. Int J Cancer 2017; 141(7): 1402–1412
https://doi.org/10.1002/ijc.30834 pmid: 28614911
309 SK Biswas. Metabolic reprogramming of immune cells in cancer progression. Immunity 2015; 43(3): 435–449
https://doi.org/10.1016/j.immuni.2015.09.001 pmid: 26377897
310 L Zhu, Q Zhao, T Yang, W Ding, Y Zhao. Cellular metabolism and macrophage functional polarization. Int Rev Immunol 2015; 34(1): 82–100
https://doi.org/10.3109/08830185.2014.969421 pmid: 25340307
311 PC Ho, PS Liu. Metabolic communication in tumors: a new layer of immunoregulation for immune evasion. J Immunother Cancer 2016; 4(1): 4
https://doi.org/10.1186/s40425-016-0109-1 pmid: 26885366
312 A Casazza, D Laoui, M Wenes, S Rizzolio, N Bassani, M Mambretti, S Deschoemaeker, JA Van Ginderachter, L Tamagnone, M Mazzone. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 2013; 24(6): 695–709
https://doi.org/10.1016/j.ccr.2013.11.007 pmid: 24332039
313 B Burke, A Giannoudis, KP Corke, D Gill, M Wells, L Ziegler-Heitbrock, CE Lewis. Hypoxia-induced gene expression in human macrophages: implications for ischemic tissues and hypoxia-regulated gene therapy. Am J Pathol 2003; 163(4): 1233–1243
https://doi.org/10.1016/S0002-9440(10)63483-9 pmid: 14507633
314 T Cramer, Y Yamanishi, BE Clausen, I Förster, R Pawlinski, N Mackman, VH Haase, R Jaenisch, M Corr, V Nizet, GS Firestein, HP Gerber, N Ferrara, RS Johnson. HIF-1α is essential for myeloid cell-mediated inflammation. Cell 2003; 112(5): 645–657
https://doi.org/10.1016/S0092-8674(03)00154-5 pmid: 12628185
315 OR Colegio, NQ Chu, AL Szabo, T Chu, AM Rhebergen, V Jairam, N Cyrus, CE Brokowski, SC Eisenbarth, GM Phillips, GW Cline, AJ Phillips, R Medzhitov. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014; 513(7519): 559–563
https://doi.org/10.1038/nature13490 pmid: 25043024
316 S Cassim, J Pouyssegur. Tumor microenvironment: a metabolic player that shapes the immune response. Int J Mol Sci 2019; 21(1): E157
https://doi.org/10.3390/ijms21010157 pmid: 31881671
317 W Zhang, G Wang, ZG Xu, H Tu, F Hu, J Dai, Y Chang, Y Chen, Y Lu, H Zeng, Z Cai, F Han, C Xu, G Jin, L Sun, BS Pan, S W Lai, CC Hsu, J Xu, ZZ Chen, HY Li, P Seth, J Hu, X Zhang, H Li, HK Lin. Lactate is a natural suppressor of RLR signaling by targeting MAVS. Cell 2019; 178(1): 176–189.e15
https://doi.org/10.1016/j.cell.2019.05.003 pmid: 31155231
318 CH Chang, JD Curtis, LB Maggi Jr, B Faubert, AV Villarino, D O’Sullivan, SC Huang, GJ van der Windt, J Blagih, J Qiu, JD Weber, EJ Pearce, RG Jones, EL Pearce. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 2013; 153(6): 1239–1251
https://doi.org/10.1016/j.cell.2013.05.016 pmid: 23746840
319 J Blagih, F Coulombe, EE Vincent, F Dupuy, G Galicia-Vázquez, E Yurchenko, TC Raissi, GJ van der Windt, B Viollet, EL Pearce, J Pelletier, CA Piccirillo, CM Krawczyk, M Divangahi, RG Jones. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 2015; 42(1): 41–54
https://doi.org/10.1016/j.immuni.2014.12.030 pmid: 25607458
320 RD Michalek, VA Gerriets, SR Jacobs, AN Macintyre, NJ MacIver, EF Mason, SA Sullivan, AG Nichols, JC Rathmell. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 2011; 186(6): 3299–3303
https://doi.org/10.4049/jimmunol.1003613 pmid: 21317389
321 PJ Siska, JC Rathmell. T cell metabolic fitness in antitumor immunity. Trends Immunol 2015; 36(4): 257–264
https://doi.org/10.1016/j.it.2015.02.007 pmid: 25773310
322 MZ Noman, G Desantis, B Janji, M Hasmim, S Karray, P Dessen, V Bronte, S Chouaib. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 2014; 211(5): 781–790
https://doi.org/10.1084/jem.20131916 pmid: 24778419
323 KA Frauwirth, JL Riley, MH Harris, RV Parry, JC Rathmell, DR Plas, RL Elstrom, CH June, CB Thompson. The CD28 signaling pathway regulates glucose metabolism. Immunity 2002; 16(6): 769–777
https://doi.org/10.1016/S1074-7613(02)00323-0 pmid: 12121659
324 N Patsoukis, K Bardhan, P Chatterjee, D Sari, B Liu, LN Bell, ED Karoly, GJ Freeman, V Petkova, P Seth, L Li, VA Boussiotis. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun 2015; 6(1): 6692
https://doi.org/10.1038/ncomms7692 pmid: 25809635
325 CH Chang, J Qiu, D O’Sullivan, MD Buck, T Noguchi, JD Curtis, Q Chen, M Gindin, MM Gubin, GJ van der Windt, E Tonc, RD Schreiber, EJ Pearce, EL Pearce. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 2015; 162(6): 1229–1241
https://doi.org/10.1016/j.cell.2015.08.016 pmid: 26321679
326 R Saleh, RZ Taha, V Sasidharan Nair, NM Alajez, E Elkord. PD-L1 blockade by atezolizumab downregulates signaling pathways associated with tumor growth, metastasis, and hypoxia in human triple negative breast cancer. Cancers (Basel) 2019; 11(8): E1050
https://doi.org/10.3390/cancers11081050 pmid: 31349612
327 S Lim, H Liu, L Madeira da Silva, R Arora, Z Liu, JB Phillips, DC Schmitt, T Vu, S McClellan, Y Lin, W Lin, GA Piazza, O Fodstad, M Tan. Immunoregulatory protein B7-H3 reprograms glucose metabolism in cancer cells by ROS-mediated stabilization of HIF1α. Cancer Res 2016; 76(8): 2231–2242
https://doi.org/10.1158/0008-5472.CAN-15-1538 pmid: 27197253
328 DG Franchina, F He, D Brenner. Survival of the fittest: cancer challenges T cell metabolism. Cancer Lett 2018; 412: 216–223
https://doi.org/10.1016/j.canlet.2017.10.014 pmid: 29074426
329 A Vazquez-Martin, C Oliveras-Ferraros, JA Menendez. The antidiabetic drug metformin suppresses HER2 (erbB-2) oncoprotein overexpression via inhibition of the mTOR effector p70S6K1 in human breast carcinoma cells. Cell Cycle 2009; 8(1): 88–96
https://doi.org/10.4161/cc.8.1.7499 pmid: 19106626
330 M Zakikhani, MJ Blouin, E Piura, MN Pollak. Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast Cancer Res Treat 2010; 123(1): 271–279
https://doi.org/10.1007/s10549-010-0763-9 pmid: 20135346
331 X Zhou, J Chen, G Yi, M Deng, H Liu, M Liang, B Shi, X Fu, Y Chen, L Chen, Z He, J Wang, J Liu. Metformin suppresses hypoxia-induced stabilization of HIF-1α through reprogramming of oxygen metabolism in hepatocellular carcinoma. Oncotarget 2016; 7(1): 873–884
https://doi.org/10.18632/oncotarget.6418 pmid: 26621849
332 J Xue, L Li, N Li, F Li, X Qin, T Li, M Liu. Metformin suppresses cancer cell growth in endometrial carcinoma by inhibiting PD-L1. Eur J Pharmacol 2019; 859: 172541
https://doi.org/10.1016/j.ejphar.2019.172541 pmid: 31319067
333 JH Cha, WH Yang, W Xia, Y Wei, LC Chan, SO Lim, CW Li, T Kim, SS Chang, HH Lee, JL Hsu, HL Wang, CW Kuo, WC Chang, S Hadad, CA Purdie, AM McCoy, S Cai, Y Tu, JK Litton, EA Mittendorf, SL Moulder, WF Symmans, AM Thompson, H Piwnica-Worms, CH Chen, KH Khoo, MC Hung. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol Cell 2018; 71(4): 606–620.e7
https://doi.org/10.1016/j.molcel.2018.07.030 pmid: 30118680
[1] Jingyue Zhang, Yawen Song, Qianqian Shi, Li Fu. Research progress on FASN and MGLL in the regulation of abnormal lipid metabolism and the relationship between tumor invasion and metastasis[J]. Front. Med., 2021, 15(5): 649-656.
[2] Ronghui Yang, Guoguang Ying, Binghui Li. Potential of electron transfer and its application in dictating routes of biochemical processes associated with metabolic reprogramming[J]. Front. Med., 2021, 15(5): 679-692.
[3] William J. Liu, Haixia Xiao, Lianpan Dai, Di Liu, Jianjun Chen, Xiaopeng Qi, Yuhai Bi, Yi Shi, George F. Gao, Yingxia Liu. Avian influenza A (H7N9) virus: from low pathogenic to highly pathogenic[J]. Front. Med., 2021, 15(4): 507-527.
[4] Jiayi Wu, Weiqi Gao, Xiaosong Chen, Chunxiao Fei, Lin Lin, Weiguo Chen, Ou Huang, Siji Zhu, Jianrong He, Yafen Li, Li Zhu, Kunwei Shen. Prognostic value of the 21-gene recurrence score in ER-positive, HER2-negative, node-positive breast cancer was similar in node-negative diseases: a single-center study of 800 patients[J]. Front. Med., 2021, 15(4): 621-628.
[5] Lei Lv, Qunying Lei. Proteins moonlighting in tumor metabolism and epigenetics[J]. Front. Med., 2021, 15(3): 383-403.
[6] Yao Yao, Rui Zhou, Rui Bai, Jing Wang, Mengjiao Tu, Jingjing Shi, Xiao He, Jinyun Zhou, Liu Feng, Yuanxue Gao, Fahuan Song, Feng Lan, Xingguo Liu, Mei Tian, Hong Zhang. Resveratrol promotes the survival and neuronal differentiation of hypoxia-conditioned neuronal progenitor cells in rats with cerebral ischemia[J]. Front. Med., 2021, 15(3): 472-485.
[7] Wenjie Zhu, Binghe Xu. Overcoming resistance to endocrine therapy in hormone receptor-positive human epidermal growth factor receptor 2-negative (HR+/HER2--) advanced breast cancer: a meta-analysis and systemic review of randomized clinical trials[J]. Front. Med., 2021, 15(2): 208-220.
[8] Wenwen Shang, Lei Wu, Rui Xu, Xian Chen, Shasha Yao, Peijun Huang, Fang Wang. Clinical laboratory features of Meigs’ syndrome: a retrospective study from 2009 to 2018[J]. Front. Med., 2021, 15(1): 116-124.
[9] Hudan Pan, Yanfang Zheng, Zhongqiu Liu, Zhongwen Yuan, Rutong Ren, Hua Zhou, Ying Xie, Liang Liu. Deciphering the pharmacological mechanism of Guan-Jie-Kang in treating rat adjuvant-induced arthritis using omics analysis[J]. Front. Med., 2019, 13(5): 564-574.
[10] Xiaokun Li. The FGF metabolic axis[J]. Front. Med., 2019, 13(5): 511-530.
[11] Nikolay V. Tsygan, Alexandr P. Trashkov, Igor V. Litvinenko, Viktoriya A. Yakovleva, Alexandr V. Ryabtsev, Andrey G. Vasiliev, Leonid P. Churilov. Autoimmunity in acute ischemic stroke and the role of blood--brain barrier: the dark side or the light one?[J]. Front. Med., 2019, 13(4): 420-426.
[12] Jiyu Tong, Richard A. Flavell, Hua-Bing Li. RNA m6A modification and its function in diseases[J]. Front. Med., 2018, 12(4): 481-489.
[13] Zhilin Hu, Qiang Zou, Bing Su. Regulation of T cell immunity by cellular metabolism[J]. Front. Med., 2018, 12(4): 463-472.
[14] Chenyang Wang, Qiurong Li, Jieshou Li. Gut microbiota and its implications in small bowel transplantation[J]. Front. Med., 2018, 12(3): 239-248.
[15] Lan Wang,Jueheng Wu,Jie Yuan,Xun Zhu,Hongmei Wu,Mengfeng Li. Midline2 is overexpressed and a prognostic indicator in human breast cancer and promotes breast cancer cell proliferation in vitro and in vivo[J]. Front. Med., 2016, 10(1): 41-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed