Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2022, Vol. 16 Issue (4) : 507-517    https://doi.org/10.1007/s11684-022-0952-z
REVIEW
Unusual global outbreak of monkeypox: what should we do?
Miaojin Zhu1, Jia Ji1, Danrong Shi1, Xiangyun Lu1, Baohong Wang1,2, Nanping Wu1,2, Jie Wu1,2(), Hangping Yao1,2(), Lanjuan Li1,2()
1. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
2. Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
 Download: PDF(1238 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recently, monkeypox has become a global concern amid the ongoing COVID-19 pandemic. Monkeypox is an acute rash zoonosis caused by the monkeypox virus, which was previously concentrated in Africa. The re-emergence of this pathogen seems unusual on account of outbreaks in multiple nonendemic countries and the incline to spread from person to person. We need to revisit this virus to prevent the epidemic from getting worse. In this review, we comprehensively summarize studies on monkeypox, including its epidemiology, biological characteristics, pathogenesis, and clinical characteristics, as well as therapeutics and vaccines, highlighting its unusual outbreak attributed to the transformation of transmission. We also analyze the present situation and put forward countermeasures from both clinical and scientific research to address it.

Keywords monkeypox      poxviruses      vaccine      infectious diseases     
Corresponding Author(s): Jie Wu,Hangping Yao,Lanjuan Li   
About author: Tongcan Cui and Yizhe Hou contributed equally to this work.
Just Accepted Date: 13 July 2022   Online First Date: 09 August 2022    Issue Date: 02 September 2022
 Cite this article:   
Miaojin Zhu,Jia Ji,Danrong Shi, et al. Unusual global outbreak of monkeypox: what should we do?[J]. Front. Med., 2022, 16(4): 507-517.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-022-0952-z
https://academic.hep.com.cn/fmd/EN/Y2022/V16/I4/507
Fig.1  Structure and genome of monkeypox virus. The top left and right parts of the figure show the structures of enveloped virions (EVs) and mature virions (MVs) respectively. EVs have an extra envelope than MVs. The surface of the outer membrane consists of irregularly shaped tubules. The interior of the viral particle consists of a dumbbell-shaped nucleus and a pair of the lateral bodies between the concavities and the outer membrane. The bottom part of the figure shows the genome of the monkeypox virus (data from ViralZone, SIB Swiss Institute of Bioinformatics). It is approximately 197 kb of double-stranded DNA and contains an inverted terminal repeat (ITR) sequence at the end of the genome. In the central region of the genome are mostly genes encoding necessary replication enzymes and structural proteins of the virus, which are highly homologous compared to the smallpox virus.
Fig.2  Transmission routes and clinical symptoms of human monkeypox. The section on the left describes how the monkeypox virus is transmitted. Animals such as monkeys, rodents, and patients infected with monkeypox virus can be the source of infection. There are many modes of transmission: animal bites, respiratory droplets, sexual contact, and contact with body fluids of infected animals or patients. The section on the right describes the clinical signs of human monkeypox. Monkeypox virus infection can involve multiple body systems and is characterized by a centrifugal rash. The rash changes from macular papules to small blisters and pustules. Scabs formed after approximately 10 days and disappeared after approximately 3 weeks. Some patients with monkeypox have enlarged lymph nodes in the neck (submandibular and cervical), axillae, or groin during the rash phase, which is the clinical feature that distinguishes monkeypox from smallpox. This figure was drawn using Figdraw, an open access online scientific research drawing platform.
Name Manufacturer Mechanism of action Administration and dosage Clinical trial information Indications and usage References
Antiviral therapeutics
Tecovirimat SIGA Technologies Inhibits the activity of the orthopoxvirus VP37 envelope wrapping protein and prevents virus replication and intracellular viruses release PO, IVAdults: 600 mg twice daily for 14 daysPediatrics (13 kg or more): dosage reduction The completed phase 3 clinical trials to evaluate the safety, tolerability, and pharmacokinetics of tecovirimat showed the drug was safe with minor side effects Licensed by FDA for the treatment of human smallpox disease since July 2018 and urgently licensed by FDA for treatment of monkeypox in 2022 [61,62]
Brincidofovir Chimerix Phosphorylated cidofovir diphosphate acts as a competitive substrate inhibitor of DNA polymerase to reduce DNA synthesis and terminating chain elongation POMost frequently administered at an oral dose of 200 mg twice weekly The completed phase 1/2/3 clinical trials showed the drug had effective antiviral effects and the main dose-limiting toxic effects are gastrointestinal events Licensed by FDA for treatment of human smallpox disease in adult and pediatric patients in the US since June 2021 [63,64]
Cidofovir Gilead Inhibits CMV replication by selective inhibition of viral DNA polymerase, thereby preventing viral replication and transcription IV5 mg/kg once weekly for the first 2 weeks, and thereafter once every other week The completed phase 2/3 clinical trials to evaluate the effectiveness, safety of cidofovir in AIDS patients with CMV retinitis showed the drug was effective, but with the potential risk of nephrotoxicity Developed for the treatment of cytomegalovirus retinitis in patients with AIDS, which has been used in the treatment of poxvirus infections [6567]
Blood products
Vaccinia Immune Globulin Cangene Corporation/ DynPort Vaccine Antibodies isolated from blood of healthy adults vaccinated with vaccinia neutralize the virus to inhibit viral infection and provide passive immunity IVSevere complications of vaccinia vaccination: 6000 U/kg with a maximum speed of 2 mL/min as soon as symptoms appearPersistent or severe symptoms: considered repeated administration An open-label phase 4 study is under way to collect additional data to assess the safety and efficacy of VIGIV in healthy people Licensed by FDA for the treatment of complications caused by vaccinia vaccination since February 2005, considered emergency treatment of orthopoxviruses in the case of a serious outbreak [68,69]
Vaccines
MVA-BN Bavarian Nordic Based on a live, highly attenuated vaccinia virus, unable to achieve complete replication in humans but can induce an effective immune response IHA total of 2 doses (0.5 mL per dose) were injected subcutaneously with an interval of 4 weeksSubjects previously vaccinated against smallpox: a single 0.5 mL dose The completed phase 2/3 clinical trials showed it had excellent safety and tolerability in both healthy and low immunity people, and its immunogenicity was not inferior to ACAM2000 Licensed by FDA to prevent monkeypox in September 2019, applicable to adults over 18 years old with high risk of monkeypox infection [7073]
ACAM2000 Acambis A live, replication-competent vaccinia virus vaccine derived from a plaque-purified clone can induce an effective immune response TDDAdministered in a single 2.5 μL dose by the percutaneous route (scarification) using 15 jabs bifurcated needle to the deltoid muscle of the upper arm The completed phase 1/2/3 clinical trials have shown it had excellent immunogenicity and safety, but with the concerns about the incidence of vaccination-related myopericarditis Licensed by FDA for people at high risk of exposure to smallpox since August 2007 [70,74,75]
APSV Aventis Pasteur A liquid formulation of calf-lymph vaccine produced by vaccinia virus derived from the NYCBOH strain can induce an effective immune response TDDAdministered in a single 2.5 μL dose by the percutaneous route (scarification) using 15 jabs bifurcated needle to the deltoid muscle of the upper arm The completed phase 1/2 clinical trials to evaluate the safety, dose and preliminary efficacy of APSV in vaccinia-naive adults showed it was still effective at diluted doses, but its reactogenicity did not decrease Submitted a pre-EUA to FDA for the use of APSV diluted 1:5 to vaccinate persons during a declared public health emergency involving smallpox [70,76]
Tiantan Sinopharm A live, highly attenuated vaccinia virus isolated from the blister scab of patients with smallpox in 1926 can induce an effective immune response TDDAdministered in a single 10 μL dose by the acupuncture or scarification route inoculation on the deltoid muscle of the upper arm The completed phase 2 clinical trials of recombinant Tiantan vaccinia virus-vectored/HIV-1 booster in healthy people showed excellent performance in immunogenicity and safety Licensed for use in China. Novel smallpox vaccines constructed by deleting some genes of Tiantan strain, have been used in the research of vaccines such as HIV, HBV, HCV and so on [7780]
Tab.1  Prevention and treatment of monkeypox
1 CDC. 2022 Monkeypox Outbreak Global Map. 2022. Available at the US CDC website (accessed July 8, 2022)
2 SE Frey, RB Belshe. Poxvirus zoonoses—putting pocks into context. N Engl J Med 2004; 350( 4): 324– 327
https://doi.org/10.1056/NEJMp038208 pmid: 14736922
3 DA Henderson. The looming threat of bioterrorism. Science 1999; 283( 5406): 1279– 1282
https://doi.org/10.1126/science.283.5406.1279 pmid: 10037590
4 MM Weiss, PD Weiss, G Mathisen, P Guze. Rethinking smallpox. Clin Infect Dis 2004; 39( 11): 1668– 1673
https://doi.org/10.1086/425745 pmid: 15578369
5 SA Bozzette, R Boer, V Bhatnagar, JL Brower, EB Keeler, SC Morton, MA Stoto. A model for a smallpox-vaccination policy. N Engl J Med 2003; 348( 5): 416– 425
https://doi.org/10.1056/NEJMsa025075 pmid: 12496353
6 Health Assembly World. Report of the global commission for the certification of smallpox eradication. World Health Organization: Geneva, 1980
7 ID Ladnyj, P Ziegler, E Kima. A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo. Bull World Health Organ 1972; 46( 5): 593– 597
pmid: 4340218
8 PE Fine, Z Jezek, B Grab, H Dixon. The transmission potential of monkeypox virus in human populations. Int J Epidemiol 1988; 17( 3): 643– 650
https://doi.org/10.1093/ije/17.3.643 pmid: 2850277
9 R Grant, LL Nguyen, R Breban. Modelling human-to-human transmission of monkeypox. Bull World Health Organ 2020; 98( 9): 638– 640
https://doi.org/10.2471/BLT.19.242347 pmid: 33012864
10 Y Liu, J Rocklöv. The effective reproductive number of the Omicron variant of SARS-CoV-2 is several times relative to Delta. J Travel Med 2022; 29( 3): taac037
https://doi.org/10.1093/jtm/taac037 pmid: 35262737
11 P Magnus, EK Andersen, KB Petersen, A Birch-Andersen. A pox-like disease in cynomolgus monkeys. Acta Pathol Microbiol Scand 1959; 46( 2): 156– 176
https://doi.org/10.1111/j.1699-0463.1959.tb00328.x
12 N Sklenovská, Ranst M Van. Emergence of monkeypox as the most important orthopoxvirus infection in humans. Front Public Health 2018; 6 : 241
https://doi.org/10.3389/fpubh.2018.00241 pmid: 30234087
13 MG Reynolds, DS Carroll, KL Karem. Factors affecting the likelihood of monkeypox’s emergence and spread in the post-smallpox era. Curr Opin Virol 2012; 2( 3): 335– 343
https://doi.org/10.1016/j.coviro.2012.02.004 pmid: 22709519
14 KA Schneider M Eichner. Does it matter who is spreading monkeypox? Lancet Infect Dis 2022; [Epub ahead of print] doi:10.1016/S1473-3099(22)00431-5
pmid: 35777384" target="_blank">35777384
15 HA Wenner, FD Macasaet, PS Kamitsuka, P Kidd. Monkey pox. I. Clinical, virologic and immunologic studies. Am J Epidemiol 1968; 87( 3): 551– 566
https://doi.org/10.1093/oxfordjournals.aje.a120846 pmid: 4297615
16 JE Prier, RM Sauer. A pox disease of monkeys. Ann N Y Acad Sci 1960; 85( 3): 951– 959
https://doi.org/10.1111/j.1749-6632.1960.tb50015.x pmid: 13737997
17 E Nakoune, E Lampaert, SG Ndjapou, C Janssens, I Zuniga, M Van Herp, JP Fongbia, TD Koyazegbe, B Selekon, GF Komoyo, SM Garba-Ouangole, C Manengu, JC Manuguerra, M Kazanji, A Gessain, N Berthet. A nosocomial outbreak of human monkeypox in the Central African Republic. Open Forum Infect Dis 2017; 4( 4): ofx168
https://doi.org/10.1093/ofid/ofx168 pmid: 29732376
18 SS Marennikova, EM Seluhina, NN Mal’ceva, KL Cimiskjan, GR Macevic. Isolation and properties of the causal agent of a new variola-like disease (monkeypox) in man. Bull World Health Organ 1972; 46( 5): 599– 611
pmid: 4340219
19 N Sklenovská, Ranst M Van. Emergence of monkeypox as the most important orthopoxvirus infection in humans. Front Public Health 2018; 6 : 241
https://doi.org/10.3389/fpubh.2018.00241 pmid: 30234087
20 KN Durski, AM McCollum, Y Nakazawa, BW Petersen, MG Reynolds, S Briand, MH Djingarey, V Olson, IK Damon, A Khalakdina. Emergence of monkeypox—West and Central Africa, 1970–2017. MMWR Morb Mortal Wkly Rep 2018; 67( 10): 306– 310
https://doi.org/10.15585/mmwr.mm6710a5 pmid: 29543790
21 CA Quiner, C Moses, BP Monroe, Y Nakazawa, JB Doty, CM Hughes, AM McCollum, S Ibata, J Malekani, E Okitolonda, DS Carroll, MG Reynolds. Presumptive risk factors for monkeypox in rural communities in the Democratic Republic of the Congo. PLoS One 2017; 12( 2): e0168664
https://doi.org/10.1371/journal.pone.0168664 pmid: 28192435
22 EM Bunge, B Hoet, L Chen, F Lienert, H Weidenthaler, LR Baer, R Steffen. The changing epidemiology of human monkeypox—a potential threat? A systematic review. PLoS Negl Trop Dis 2022; 16( 2): e0010141
https://doi.org/10.1371/journal.pntd.0010141 pmid: 35148313
23 Adegboye OA, Eugenia Castellanos M, Alele FO, Pak A, Ezechukwu HC, Hou K, Emeto TI. Travel-related monkeypox outbreaks in the era of COVID-19 pandemic: are we prepared? Viruses 2022; 14(6): 1283 doi:10.3390/v14061283
pmid: 35746754
24 AL Hughes, S Irausquin, R Friedman. The evolutionary biology of poxviruses. Infect Genet Evol 2010; 10( 1): 50– 59
https://doi.org/10.1016/j.meegid.2009.10.001 pmid: 19833230
25 L Zheng, J Meng, M Lin, R Lv, H Cheng, L Zou, J Sun, L Li, R Ren, S Wang. Structure prediction of the entire proteome of monkeypox variants. Acta Materia Medica 2022; 1( 2): 260– 264
https://doi.org/10.15212/AMM-2022-0017
26 M Vandenbogaert, A Kwasiborski, E Gonofio, S Descorps-Declère, B Selekon, Meyong AA Nkili, RS Ouilibona, A Gessain, JC Manuguerra, V Caro, E Nakoune, N Berthet. Nanopore sequencing of a monkeypox virus strain isolated from a pustular lesion in the Central African Republic. Sci Rep 2022; 12( 1): 10768
https://doi.org/10.1038/s41598-022-15073-1 pmid: 35750759
27 SN Shchelkunov, AV Totmenin, PF Safronov, MV Mikheev, VV Gutorov, OI Ryazankina, NA Petrov, IV Babkin, EA Uvarova, LS Sandakhchiev, JR Sisler, JJ Esposito, IK Damon, PB Jahrling, B Moss. Analysis of the monkeypox virus genome. Virology 2002; 297( 2): 172– 194
https://doi.org/10.1006/viro.2002.1446 pmid: 12083817
28 IV Babkin, IN Babkina, NV Tikunova. An update of orthopoxvirus molecular evolution. Viruses 2022; 14( 2): 388
https://doi.org/10.3390/v14020388 pmid: 35215981
29 J Isidro V Borges M Pinto D Sobral JD Santos A Nunes V Mixão R Ferreira D Santos S Duarte L Vieira MJ Borrego S Núncio Carvalho IL de A Pelerito R Cordeiro JP Gomes. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat Med 2022; [Epub ahead of print] doi:10.1038/s41591-022-01907-y
pmid: 35750157
30 S Parker, A Nuara, RM Buller, DA Schultz. Human monkeypox: an emerging zoonotic disease. Future Microbiol 2007; 2( 1): 17– 34
https://doi.org/10.2217/17460913.2.1.17 pmid: 17661673
31 A Nalca, AW Rimoin, S Bavari, CA Whitehouse. Reemergence of monkeypox: prevalence, diagnostics, and countermeasures. Clin Infect Dis 2005; 41( 12): 1765– 1771
https://doi.org/10.1086/498155 pmid: 16288402
32 AW Rimoin, PM Mulembakani, SC Johnston, JO Lloyd Smith, NK Kisalu, TL Kinkela, S Blumberg, HA Thomassen, BL Pike, JN Fair, ND Wolfe, RL Shongo, BS Graham, P Formenty, E Okitolonda, LE Hensley, H Meyer, LL Wright, JJ Muyembe. Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proc Natl Acad Sci USA 2010; 107( 37): 16262– 16267
https://doi.org/10.1073/pnas.1005769107 pmid: 20805472
33 CL Hutson, VA Olson, DS Carroll, JA Abel, CM Hughes, ZH Braden, S Weiss, J Self, JE Osorio, PN Hudson, M Dillon, KL Karem, IK Damon, RL Regnery. A prairie dog animal model of systemic orthopoxvirus disease using West African and Congo Basin strains of monkeypox virus. J Gen Virol 2009; 90( 2): 323– 333
https://doi.org/10.1099/vir.0.005108-0 pmid: 19141441
34 AK Rao, J Schulte, TH Chen, CM Hughes, W Davidson, JM Neff, M Markarian, KC Delea, S Wada, A Liddell, S Alexander, B Sunshine, P Huang, HT Honza, A Rey, B Monroe, J Doty, B Christensen, L Delaney, J Massey, M Waltenburg, CA Schrodt, D Kuhar, PS Satheshkumar, A Kondas, Y Li, K Wilkins, KM Sage, Y Yu, P Yu, A Feldpausch, J McQuiston, IK Damon, AM; July 2021 Monkeypox Response Team McCollum. Monkeypox in a traveler returning from Nigeria—Dallas, Texas, July 2021. MMWR Morb Mortal Wkly Rep 2022; 71( 14): 509– 516
https://doi.org/10.15585/mmwr.mm7114a1 pmid: 35389974
35 NK Kisalu, JL Mokili. Toward understanding the outcomes of monkeypox infection in human pregnancy. J Infect Dis 2017; 216( 7): 795– 797
https://doi.org/10.1093/infdis/jix342 pmid: 29029238
36 NIO Silva, JS de Oliveira, EG Kroon, GS Trindade, BP Drumond. Here, there, and everywhere: the wide host range and geographic distribution of zoonotic orthopoxviruses. Viruses 2020; 13( 1): 43
https://doi.org/10.3390/v13010043 pmid: 33396609
37 Bonilla-Aldana DK, Rodriguez-Morales AJ. Is monkeypox another reemerging viral zoonosis with many animal hosts yet to be defined? Vet Q 2022; 42(1): 148–150 doi:10.1080/01652176.2022.2088881
pmid: 35686457
38 K Kupferschmidt. Why monkeypox is mostly hitting men who have sex with men. Science 2022; 376( 6600): 1364– 1365
https://doi.org/10.1126/science.add5966 pmid: 35737802
39 J Heskin A Belfield C Milne N Brown Y Walters C Scott M Bracchi LS Moore N Mughal T Rampling A Winston M Nelson S Duncan R Jones DA Price B Mora-Peris. Transmission of monkeypox virus through sexual contact — a novel route of infection. J Infect 2022; [Epub ahead of print] doi:10.1016/j.jinf.2022.05.028
pmid: 35659548
40 F Bellinato P Gisondi G Girolomoni. Monkeypox virus infection: what dermatologist needs to know? J Eur Acad Dermatol Venereol 2022; [Epub ahead of print] doi:10.1111/jdv.18299
pmid: 35675087" target="_blank">35675087
41 AI Kabuga, ME El Zowalaty. A review of the monkeypox virus and a recent outbreak of skin rash disease in Nigeria. J Med Virol 2019; 91( 4): 533– 540
https://doi.org/10.1002/jmv.25348 pmid: 30357851
42 N Girometti R Byrne M Bracchi J Heskin A McOwan V Tittle K Gedela C Scott S Patel J Gohil D Nugent T Suchak M Dickinson M Feeney B Mora-Peris K Stegmann K Plaha G Davies LSP Moore N Mughal D Asboe M Boffito R Jones G Whitlock. Demographic and clinical characteristics of confirmed human monkeypox virus cases in individuals attending a sexual health centre in London, UK: an observational analysis. Lancet Infect Dis 2022; [Epub ahead of print] doi:10.1016/S1473-3099(22)00411-X
pmid: 35785793
43 F Fenner. The pathogenesis of the acute exanthems; an interpretation based on experimental investigations with mousepox; infectious ectromelia of mice. Lancet 1948; 252( 6537): 915– 920
https://doi.org/10.1016/S0140-6736(48)91599-2 pmid: 18101995
44 KM Shepardson, B Schwarz, K Larson, RV Morton, J Avera, K McCoy, A Caffrey, A Harmsen, T Douglas, A Rynda-Apple. Induction of antiviral immune response through recognition of the repeating subunit pattern of viral capsids is Toll-like receptor 2 dependent. MBio 2017; 8( 6): e01356– e01317
https://doi.org/10.1128/mBio.01356-17 pmid: 29138299
45 H Yu, RC Bruneau, G Brennan, S Rothenburg. Battle royale: innate recognition of poxviruses and viral immune evasion. Biomedicines 2021; 9( 7): 765
https://doi.org/10.3390/biomedicines9070765 pmid: 34356829
46 E Hammarlund, A Dasgupta, C Pinilla, P Norori, K Früh, MK Slifka. Monkeypox virus evades antiviral CD4+ and CD8+ T cell responses by suppressing cognate T cell activation. Proc Natl Acad Sci USA 2008; 105( 38): 14567– 14572
https://doi.org/10.1073/pnas.0800589105 pmid: 18796610
47 J Kindrachuk, R Arsenault, A Kusalik, KN Kindrachuk, B Trost, S Napper, PB Jahrling, JE Blaney. Systems kinomics demonstrates Congo Basin monkeypox virus infection selectively modulates host cell signaling responses as compared to West African monkeypox virus. Mol Cell Proteomics 2012; 11( 6): M111.015701
https://doi.org/10.1074/mcp.M111.015701
48 RD Estep, I Messaoudi, MA O’Connor, H Li, J Sprague, A Barron, F Engelmann, B Yen, MF Powers, JM Jones, BA Robinson, BU Orzechowska, M Manoharan, A Legasse, S Planer, J Wilk, MK Axthelm, SW Wong. Deletion of the monkeypox virus inhibitor of complement enzymes locus impacts the adaptive immune response to monkeypox virus in a nonhuman primate model of infection. J Virol 2011; 85( 18): 9527– 9542
https://doi.org/10.1128/JVI.00199-11 pmid: 21752919
49 F Miura, CE van Ewijk, JA Backer, M Xiridou, E Franz, E Op de Coul, D Brandwagt, B van Cleef, G van Rijckevorsel, C Swaan, S van den Hof, J Wallinga. Estimated incubation period for monkeypox cases confirmed in the Netherlands, May 2022. Euro Surveill 2022; 27( 24): 2200448
https://doi.org/10.2807/1560-7917.ES.2022.27.24.2200448 pmid: 35713026
50 E Petersen, A Kantele, M Koopmans, D Asogun, A Yinka-Ogunleye, C Ihekweazu, A Zumla. Human monkeypox: epidemiologic and clinical characteristics, diagnosis, and prevention. Infect Dis Clin North Am 2019; 33( 4): 1027– 1043
https://doi.org/10.1016/j.idc.2019.03.001 pmid: 30981594
51 H Adler S Gould P Hine LB Snell W Wong CF Houlihan JC Osborne T Rampling MB Beadsworth CJ Duncan J Dunning TE Fletcher ER Hunter M Jacobs SH Khoo W Newsholme D Porter RJ Porter L Ratcliffe ML Schmid MG Semple AJ Tunbridge T Wingfield NM; NHS England High Consequence Infectious Diseases (Airborne) Network Price. Clinical features and management of human monkeypox: a retrospective observational study in the UK. Lancet Infect Dis 2022; [Epub ahead of print] doi:10.1016/S1473-3099(22)00228-6
pmid: 35623380
52 AM McCollum, IK Damon. Human monkeypox. Clin Infect Dis 2014; 58( 2): 260– 267
https://doi.org/10.1093/cid/cit703 pmid: 24158414
53 N Erez, H Achdout, E Milrot, Y Schwartz, Y Wiener-Well, N Paran, B Politi, H Tamir, T Israely, S Weiss, A Beth-Din, O Shifman, O Israeli, S Yitzhaki, SC Shapira, S Melamed, E Schwartz. Diagnosis of imported monkeypox, Israel, 2018. Emerg Infect Dis 2019; 25( 5): 980– 983
https://doi.org/10.3201/eid2505.190076 pmid: 30848724
54 A Yinka-Ogunleye, O Aruna, M Dalhat, D Ogoina, A McCollum, Y Disu, I Mamadu, A Akinpelu, A Ahmad, J Burga, A Ndoreraho, E Nkunzimana, L Manneh, A Mohammed, O Adeoye, D Tom-Aba, B Silenou, O Ipadeola, M Saleh, A Adeyemo, I Nwadiutor, N Aworabhi, P Uke, D John, P Wakama, M Reynolds, MR Mauldin, J Doty, K Wilkins, J Musa, A Khalakdina, A Adedeji, N Mba, O Ojo, G Krause, C; CDC Monkeypox Outbreak Team Ihekweazu. Outbreak of human monkeypox in Nigeria in 2017–18: a clinical and epidemiological report. Lancet Infect Dis 2019; 19( 8): 872– 879
https://doi.org/10.1016/S1473-3099(19)30294-4 pmid: 31285143
55 A Macneil, MG Reynolds, Z Braden, DS Carroll, V Bostik, K Karem, SK Smith, W Davidson, Y Li, A Moundeli, JV Mombouli, AO Jumaan, DS Schmid, RL Regnery, IK Damon. Transmission of atypical varicella-zoster virus infections involving palm and sole manifestations in an area with monkeypox endemicity. Clin Infect Dis 2009; 48( 1): e6– e8
https://doi.org/10.1086/595552 pmid: 19025497
56 R Patrocinio-Jesus, F Peruzzu. Monkeypox genital lesions. N Engl J Med 2022; 387( 1): 66
https://doi.org/10.1056/NEJMicm2206893 pmid: 35704421
57 K Walter PN Malani. What is monkeypox? JAMA 2022; [Epub ahead of print] doi:10.1001/jama.2022.10259
pmid: 35679066" target="_blank">35679066
58 CM Hughes, L Liu, WB Davidson, KW Radford, K Wilkins, B Monroe, MG Metcalfe, T Likafi, RS Lushima, J Kabamba, B Nguete, J Malekani, E Pukuta, S Karhemere, JJ Muyembe Tamfum, E Okitolonda Wemakoy, MG Reynolds, DS Schmid, AM McCollum. A tale of two viruses: coinfections of monkeypox and varicella zoster virus in the Democratic Republic of Congo. Am J Trop Med Hyg 2021; 104( 2): 604– 611
https://doi.org/10.4269/ajtmh.20-0589 pmid: 33289470
59 DB Di Giulio, PB Eckburg. Human monkeypox: an emerging zoonosis. Lancet Infect Dis 2004; 4( 1): 15– 25
https://doi.org/10.1016/S1473-3099(03)00856-9 pmid: 14720564
60 JG Rizk G Lippi BM Henry DN Forthal Y Rizk. Prevention and treatment of monkeypox. Drugs 2022; [Epub ahead of print] doi:10.1007/s40265-022-01742-y
pmid: 35763248
61 SM Hoy. Tecovirimat: first global approval. Drugs 2018; 78( 13): 1377– 1382
https://doi.org/10.1007/s40265-018-0967-6 pmid: 30120738
62 DW Grosenbach, K Honeychurch, EA Rose, J Chinsangaram, A Frimm, B Maiti, C Lovejoy, I Meara, P Long, DE Hruby. Oral Tecovirimat for the treatment of smallpox. N Engl J Med 2018; 379( 1): 44– 53
https://doi.org/10.1056/NEJMoa1705688 pmid: 29972742
63 JJ Alvarez-Cardona, LK Whited, RF Chemaly. Brincidofovir: understanding its unique profile and potential role against adenovirus and other viral infections. Future Microbiol 2020; 15( 6): 389– 400
https://doi.org/10.2217/fmb-2019-0288 pmid: 32166967
64 G Chittick, M Morrison, T Brundage, WG Nichols. Short-term clinical safety profile of brincidofovir: a favorable benefit-risk proposition in the treatment of smallpox. Antiviral Res 2017; 143 : 269– 277
https://doi.org/10.1016/j.antiviral.2017.01.009 pmid: 28093339
65 E De Clercq. Cidofovir in the therapy and short-term prophylaxis of poxvirus infections. Trends Pharmacol Sci 2002; 23( 10): 456– 458
https://doi.org/10.1016/S0165-6147(02)02091-6 pmid: 12368068
66 S Kravcik. Cidofovir for cytomegalovirus retinitis. Ann Intern Med 1997; 127( 6): 490– 491
https://doi.org/10.7326/0003-4819-127-6-199709150-00015 pmid: 9313009
67 GN Holland, Natta ML Van, DT Goldenberg, R Jr Ritts, RP Danis, DA; Studies of Ocular Complications of AIDS Research Group Jabs. Relationship between opacity of cytomegalovirus retinitis lesion borders and severity of immunodeficiency among people with AIDS. Invest Ophthalmol Vis Sci 2019; 60( 6): 1853– 1862
https://doi.org/10.1167/iovs.18-26517 pmid: 31042791
68 R Wittek. Vaccinia immune globulin: current policies, preparedness, and product safety and efficacy. Int J Infect Dis 2006; 10( 3): 193– 201
https://doi.org/10.1016/j.ijid.2005.12.001 pmid: 16564720
69 RJ Hopkins, WG Kramer, WC Blackwelder, M Ashtekar, L Hague, SD Winker-La Roche, G Berezuk, D Smith, PT Leese. Safety and pharmacokinetic evaluation of intravenous vaccinia immune globulin in healthy volunteers. Clin Infect Dis 2004; 39( 6): 759– 766
https://doi.org/10.1086/422998 pmid: 15472804
70 BW Petersen, IK Damon, CA Pertowski, D Meaney-Delman, JT Guarnizo, RH Beigi, KM Edwards, MC Fisher, SE Frey, R Lynfield, RE Willoughby. Clinical guidance for smallpox vaccine use in a postevent vaccination program. MMWR Recomm Rep 2015; 64( RR–02): 1– 26
pmid: 25695372
71 SC Gilbert. Clinical development of Modified Vaccinia virus Ankara vaccines. Vaccine 2013; 31( 39): 4241– 4246
https://doi.org/10.1016/j.vaccine.2013.03.020 pmid: 23523410
72 ET Overton, SJ Lawrence, JT Stapleton, H Weidenthaler, D Schmidt, B Koenen, G Silbernagl, K Nopora, P Chaplin. A randomized phase II trial to compare safety and immunogenicity of the MVA-BN smallpox vaccine at various doses in adults with a history of AIDS. Vaccine 2020; 38( 11): 2600– 2607
https://doi.org/10.1016/j.vaccine.2020.01.058 pmid: 32057574
73 A Volz, G Sutter. Modified Vaccinia virus Ankara: history, value in basic research, and current perspectives for vaccine development. Adv Virus Res 2017; 97 : 187– 243
https://doi.org/10.1016/bs.aivir.2016.07.001 pmid: 28057259
74 RN Greenberg, JS Kennedy. ACAM2000: a newly licensed cell culture-based live vaccinia smallpox vaccine. Expert Opin Investig Drugs 2008; 17( 4): 555– 564
https://doi.org/10.1517/13543784.17.4.555 pmid: 18363519
75 PK Russell. Vaccines in civilian defense against bioterrorism. Emerg Infect Dis 1999; 5( 4): 531– 533
https://doi.org/10.3201/eid0504.990413 pmid: 10458959
76 TR Talbot, JT Stapleton, RC Brady, PL Winokur, DI Bernstein, T Germanson, SM Yoder, MT Rock, JE Jr Crowe, KM Edwards. Vaccination success rate and reaction profile with diluted and undiluted smallpox vaccine: a randomized controlled trial. JAMA 2004; 292( 10): 1205– 1212
https://doi.org/10.1001/jama.292.10.1205 pmid: 15353533
77 J Hou, S Wang, D Li, LN Carpp, T Zhang, Y Liu, M Jia, H Peng, C Liu, H Wu, Y Huang, Y Shao. Early pro-inflammatory signal and T-cell activation associate with vaccine-induced anti-vaccinia protective neutralizing antibodies. Front Immunol 2021; 12 : 737487
https://doi.org/10.3389/fimmu.2021.737487 pmid: 34707608
78 B Wen, Y Deng, H Chen, J Guan, X Chuai, L Ruan, W Kong, W Tan. The novel replication-defective vaccinia virus (Tiantan strain)-based hepatitis C virus vaccine induces robust immunity in macaques. Mol Ther 2013; 21( 9): 1787– 1795
https://doi.org/10.1038/mt.2013.122 pmid: 23774793
79 Y Deng, X Chuai, P Chen, H Chen, W Wang, L Ruan, W Li, W Tan. Recombinant vaccinia vector-based vaccine (Tiantan) boosting a novel HBV subunit vaccine induced more robust and lasting immunity in rhesus macaques. Vaccine 2017; 35( 25): 3347– 3353
https://doi.org/10.1016/j.vaccine.2017.04.059 pmid: 28487055
80 Q Liu, Y Li, Z Luo, G Yang, Y Liu, Y Liu, M Sun, J Dai, Q Li, C Qin, Y Shao. HIV-1 vaccines based on replication-competent Tiantan vaccinia protected Chinese rhesus macaques from simian HIV infection. AIDS 2015; 29( 6): 649– 658
https://doi.org/10.1097/QAD.0000000000000595 pmid: 25849828
81 M Merchlinsky, A Albright, V Olson, H Schiltz, T Merkeley, C Hughes, B Petersen, M Challberg. The development and approval of tecoviromat (TPOXX®), the first antiviral against smallpox. Antiviral Res 2019; 168 : 168– 174
https://doi.org/10.1016/j.antiviral.2019.06.005 pmid: 31181284
82 AT Russo, A Berhanu, CB Bigger, J Prigge, PM Silvera, DW Grosenbach, D Hruby. Co-administration of tecovirimat and ACAM2000™ in non-human primates: effect of tecovirimat treatment on ACAM2000 immunogenicity and efficacy versus lethal monkeypox virus challenge. Vaccine 2020; 38( 3): 644– 654
https://doi.org/10.1016/j.vaccine.2019.10.049 pmid: 31677948
83 AT Russo, DW Grosenbach, TL Brasel, RO Baker, AG Cawthon, E Reynolds, T Bailey, PJ Kuehl, V Sugita, K Agans, DE Hruby. Effects of treatment delay on efficacy of Tecovirimat following lethal aerosol monkeypox virus challenge in cynomolgus macaques. J Infect Dis 2018; 218( 9): 1490– 1499
https://doi.org/10.1093/infdis/jiy326 pmid: 29982575
84 A Berhanu, JT Prigge, PM Silvera, KM Honeychurch, DE Hruby, DW Grosenbach. Treatment with the smallpox antiviral tecovirimat (ST-246) alone or in combination with ACAM2000 vaccination is effective as a postsymptomatic therapy for monkeypox virus infection. Antimicrob Agents Chemother 2015; 59( 7): 4296– 4300
https://doi.org/10.1128/AAC.00208-15 pmid: 25896687
85 ER Whitehouse, AK Rao, YC Yu, PA Yu, M Griffin, S Gorman, KA Angel, EC McDonald, AL Manlutac, MA de Perio, AM McCollum, W Davidson, K Wilkins, E Ortega, PS Satheshkumar, MB Townsend, M Isakari, BW Petersen. Novel treatment of a vaccinia virus infection from an occupational needlestick—San Diego, California, 2019. MMWR Morb Mortal Wkly Rep 2019; 68( 42): 943– 946
https://doi.org/10.15585/mmwr.mm6842a2 pmid: 31647789
86 DW Grosenbach, K Honeychurch, EA Rose, J Chinsangaram, A Frimm, B Maiti, C Lovejoy, I Meara, P Long, DE Hruby. Oral Tecovirimat for the treatment of smallpox. N Engl J Med 2018; 379( 1): 44– 53
https://doi.org/10.1056/NEJMoa1705688 pmid: 29972742
87 PL Earl, JL Americo, LS Wyatt, LA Eller, JC Whitbeck, GH Cohen, RJ Eisenberg, CJ Hartmann, DL Jackson, DA Kulesh, MJ Martinez, DM Miller, EM Mucker, JD Shamblin, SH Zwiers, JW Huggins, PB Jahrling, B Moss. Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox. Nature 2004; 428( 6979): 182– 185
https://doi.org/10.1038/nature02331 pmid: 15014500
88 PL Earl, JL Americo, LS Wyatt, O Espenshade, J Bassler, K Gong, S Lin, E Peters, L Jr Rhodes, YE Spano, PM Silvera, B Moss. Rapid protection in a monkeypox model by a single injection of a replication-deficient vaccinia virus. Proc Natl Acad Sci USA 2008; 105( 31): 10889– 10894
https://doi.org/10.1073/pnas.0804985105 pmid: 18678911
89 KJ Stittelaar, G van Amerongen, I Kondova, T Kuiken, RF van Lavieren, FHM Pistoor, HGM Niesters, G van Doornum, BAM van der Zeijst, L Mateo, PJ Chaplin, ADME Osterhaus. Modified vaccinia virus Ankara protects macaques against respiratory challenge with monkeypox virus. J Virol 2005; 79( 12): 7845– 7851
https://doi.org/10.1128/JVI.79.12.7845-7851.2005 pmid: 15919938
90 LH McCurdy, BD Larkin, JE Martin, BS Graham. Modified vaccinia Ankara: potential as an alternative smallpox vaccine. Clin Infect Dis 2004; 38( 12): 1749– 1753
https://doi.org/10.1086/421266 pmid: 15227622
91 AL Phelps, AJ Gates, M Hillier, L Eastaugh, DO Ulaeto. Comparative efficacy of modified vaccinia Ankara (MVA) as a potential replacement smallpox vaccine. Vaccine 2007; 25( 1): 34– 42
https://doi.org/10.1016/j.vaccine.2006.07.022 pmid: 16950548
92 ET Overton, SJ Lawrence, E Wagner, K Nopora, S Rösch, P Young, D Schmidt, C Kreusel, Carli S De, TP Meyer, H Weidenthaler, N Samy, P Chaplin. Immunogenicity and safety of three consecutive production lots of the non replicating smallpox vaccine MVA: a randomised, double blind, placebo controlled phase III trial. PLoS One 2018; 13( 4): e0195897
https://doi.org/10.1371/journal.pone.0195897 pmid: 29652929
93 RN Greenberg, CM Hay, JT Stapleton, TC Marbury, E Wagner, E Kreitmeir, S Röesch, Krempelhuber A von, P Young, R Nichols, TP Meyer, D Schmidt, J Weigl, G Virgin, N Arndtz-Wiedemann, P Chaplin. A randomized, double-blind, placebo-controlled phase II trial investigating the safety and immunogenicity of Modified Vaccinia Ankara Smallpox Vaccine (MVA-BN®) in 56-80-year-old subjects. PLoS One 2016; 11( 6): e0157335
https://doi.org/10.1371/journal.pone.0157335 pmid: 27327616
94 K Brown, PA Leggat. Human monkeypox: current state of knowledge and implications for the future. Trop Med Infect Dis 2016; 1( 1): 8
https://doi.org/10.3390/tropicalmed1010008 pmid: 30270859
[1] Yi Zhang, Haocheng Zhang, Wenhong Zhang. SARS-CoV-2 variants, immune escape, and countermeasures[J]. Front. Med., 2022, 16(2): 196-207.
[2] Zehong Huang, Yingying Su, Tianying Zhang, Ningshao Xia. A review of the safety and efficacy of current COVID-19 vaccines[J]. Front. Med., 2022, 16(1): 39-55.
[3] Yuntao Zhang, Yunkai Yang, Niu Qiao, Xuewei Wang, Ling Ding, Xiujuan Zhu, Yu Liang, Zibo Han, Feng Liu, Xinxin Zhang, Xiaoming Yang. Early assessment of the safety and immunogenicity of a third dose (booster) of COVID-19 immunization in Chinese adults[J]. Front. Med., 2022, 16(1): 93-101.
[4] Hongyun Zhao, Fan Luo, Jinhui Xue, Su Li, Rui-Hua Xu. Emerging immunological strategies: recent advances and future directions[J]. Front. Med., 2021, 15(6): 805-828.
[5] William J. Liu, Haixia Xiao, Lianpan Dai, Di Liu, Jianjun Chen, Xiaopeng Qi, Yuhai Bi, Yi Shi, George F. Gao, Yingxia Liu. Avian influenza A (H7N9) virus: from low pathogenic to highly pathogenic[J]. Front. Med., 2021, 15(4): 507-527.
[6] Qian Wang, Linqi Zhang. Broadly neutralizing antibodies and vaccine design against HIV-1 infection[J]. Front. Med., 2020, 14(1): 30-42.
[7] Xiaoxin Wu, Lanlan Xiao, Lanjuan Li. Research progress on human infection with avian influenza H7N9[J]. Front. Med., 2020, 14(1): 8-20.
[8] Qiyong Liu, Wenbo Xu, Shan Lu, Jiafu Jiang, Jieping Zhou, Zhujun Shao, Xiaobo Liu, Lei Xu, Yanwen Xiong, Han Zheng, Sun Jin, Hai Jiang, Wuchun Cao, Jianguo Xu. Landscape of emerging and re-emerging infectious diseases in China: impact of ecology, climate, and behavior[J]. Front. Med., 2018, 12(1): 3-22.
[9] Biao Kan, Haijian Zhou, Pengcheng Du, Wen Zhang, Xin Lu, Tian Qin, Jianguo Xu. Transforming bacterial disease surveillance and investigation using whole-genome sequence to probe the trace[J]. Front. Med., 2018, 12(1): 23-33.
[10] Yujia Jin, Cheng Lei, Dan Hu, Dimiter S. Dimitrov, Tianlei Ying. Human monoclonal antibodies as candidate therapeutics against emerging viruses[J]. Front. Med., 2017, 11(4): 462-470.
[11] Daniel Stadlbauer, Raffael Nachbagauer, Philip Meade, Florian Krammer. Universal influenza virus vaccines: what can we learn from the human immune response following exposure to H7 subtype viruses?[J]. Front. Med., 2017, 11(4): 471-479.
[12] Ali A. Rabaan, Ali M. Bazzi, Shamsah H. Al-Ahmed, Jaffar A. Al-Tawfiq. Molecular aspects of MERS-CoV[J]. Front. Med., 2017, 11(3): 365-377.
[13] Changlin Cao, Jingxian Gu, Jingyao Zhang. Soluble triggering receptor expressed on myeloid cell-1 (sTREM-1): a potential biomarker for the diagnosis of infectious diseases[J]. Front. Med., 2017, 11(2): 169-177.
[14] Zeyu Chen,Rong Guo,Jianghong Xu,Chuangjun Qiu. Immunogenicity and protective immunity against otitis media caused by pneumococcus in mice of Hib conjugate vaccine with PsaA protein carrier[J]. Front. Med., 2016, 10(4): 490-498.
[15] Yumei Wen, Xuanyi Wang, Bin Wang, Zhenhong Yuan. Vaccine therapies for chronic hepatitis B: can we go further?[J]. Front Med, 2014, 8(1): 17-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed