Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2022, Vol. 16 Issue (2) : 216-226    https://doi.org/10.1007/s11684-022-0920-7
RESEARCH ARTICLE
Serum mitochondrial tsRNA serves as a novel biomarker for hepatocarcinoma diagnosis
Shoubin Zhan1, Ping Yang2, Shengkai Zhou1, Ye Xu1, Rui Xu1, Gaoli Liang1, Chenyu Zhang1, Xi Chen1, Liuqing Yang4(), Fangfang Jin3(), Yanbo Wang1()
1. Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210023, China
2. Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210023, China
3. School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
4. Department of Infectious Diseases, The First People’s Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang 222000, China
 Download: PDF(2696 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hepatocellular carcinoma (HCC), which makes up the majority of liver cancer, is induced by the infection of hepatitis B/C virus. Biomarkers are needed to facilitate the early detection of HCC, which is often diagnosed too late for effective therapy. The tRNA-derived small RNAs (tsRNAs) play vital roles in tumorigenesis and are stable in circulation. However, the diagnostic values and biological functions of circulating tsRNAs, especially for HCC, are still unknown. In this study, we first utilized RNA sequencing followed by quantitative reverse-transcription PCR to analyze tsRNA signatures in HCC serum. We identified tRF-Gln-TTG-006, which was remarkably upregulated in HCC serum (training cohort: 24 HCC patients vs. 24 healthy controls). In the validation stage, we found that tRF-Gln-TTG-006 signature could distinguish HCC cases from healthy subjects with high sensitivity (80.4%) and specificity (79.4%) even in the early stage (Stage I: sensitivity, 79.0%; specificity, 74.8%; 155 healthy controls vs. 153 HCC patients from two cohorts). Moreover, in vitro studies indicated that circulating tRF-Gln-TTG-006 was released from tumor cells, and its biological function was predicted by bioinformatics assay and validated by colony formation and apoptosis assays. In summary, our study demonstrated that serum tsRNA signature may serve as a novel biomarker of HCC.

Keywords tsRNA      biomarker      hepatocarcinoma     
Corresponding Author(s): Liuqing Yang,Fangfang Jin,Yanbo Wang   
About author:

Mingsheng Sun and Mingxiao Yang contributed equally to this work.

Just Accepted Date: 25 February 2022   Online First Date: 11 April 2022    Issue Date: 26 April 2022
 Cite this article:   
Shoubin Zhan,Ping Yang,Shengkai Zhou, et al. Serum mitochondrial tsRNA serves as a novel biomarker for hepatocarcinoma diagnosis[J]. Front. Med., 2022, 16(2): 216-226.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-022-0920-7
https://academic.hep.com.cn/fmd/EN/Y2022/V16/I2/216
The First People’s Hospital of Lianyungang The Affiliated Drum Tower Hospital of Nanjing University Medical School
Screening cohort Training cohort Validation cohort 1 Validation cohort 2
Number 30 24 80 73
Age (year) 59.07 ± 11.48 61.67 ± 9.98 59.63 ± 10.14 58.45 ± 10.02
Sex
Male 21 19 65 67
Female 9 5 15 6
Viral status(BC/B+C/BC+/B+C+ )a 7/11/4/8 6/7/3/5 15/50/6/9 13/58/1/1
Tumor stage
I 19 16 41 40
II 6 4 19 19
III 3 2 16 10
IV 2 2 4 4
Tab.1  Information of the HCC patients of the two hospitals cohorts
Fig.1  Flowchart of the study design.
Fig.2  Analysis of differentially expressed serum tsRNAs in HCC. (A) The scatter plot expressed the changes in tsRNAs expression. (B) Heat map of 17 significant differentially expressed tsRNAs. (C−G) qRT-PCR data on the tsRNA expression levels in the screen phases (nHCC = 24, ncontrol = 24) of tRF-Val-CAC-010 (C), tRF-Pro-AGG-005 (D), tRF-Gln-TTG-006 (E), tRF-His-GTG-009 (F), and tRF-Ser-GCT-024 (G). **P < 0.01; **** P < 0.0001.
Fig.3  Training phase of tRF-Gln-TTG-006 in the two cohorts from different hospitals. (A and B) qRT-PCR shows the concentrations of tRF-Gln-TTG-006 in serum from The First People’s Hospital of Lianyungang (cohort 1) (A) and The Affiliated Drum Tower Hospital of Nanjing University Medical School (cohort 2) (B). (C–E) ROC curves analysis compared the diagnosis value of tRF-Gln-TTG-006 and AFP concentration in serum in the cohort 1 (green line, AUC = 0.919) (C), cohort 2 (green line, AUC = 0.825) (D), cohort 1 + 2 (blue line, AUC = 0.875; gray line AUC = 0.737) (E). (F) ROC curves of tRF-Gln-TTG-006 and AFP concentration in serum from clinical stage I cases and controls in all sets (orange line, AUC = 0.858; gray line, AUC = 0.710). ****P < 0.0001.
Fig.4  Biological functions of tRF-Gln-TTG-006. (A) Quantitative analysis of tRF-Gln-TTG-006 expression in HCC tissues and paired serum from same patients (n = 11). (B) Expression status of tRF-Gln-TTG-006 in HepG2 cell culture medium. The amount of tRF-Gln-TTG-006 excreted in the culture medium increased depending on the cell number. (C) Position of tRF-Gln-TTG-006 in the cloverleaf secondary structure of trnaMT_GlnTTG_MT_-_4329_4400. (D) Colony formation assay was performed on HuH-7 and HepG2 cells transfected with mimic nc or tRF-Gln-TTG-006 mimic. (E and F) Quantitative analysis of the colony number of HuH-7 (E) and HepG2 cells (F). (G and H) tRF-Gln-TTG-006 inhibited apoptosis in HuH-7 cells (G) and quantitative analysis of apoptosis (H). *P < 0.05; ** P < 0.01.
1 H Sung, J Ferlay, RL Siegel, M Laversanne, I Soerjomataram, A Jemal, F Bray. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71( 3): 209– 249
https://doi.org/10.3322/caac.21660
2 TH Kim, SY Kim, A Tang, JM Lee. Comparison of international guidelines for noninvasive diagnosis of hepatocellular carcinoma: 2018 update. Clin Mol Hepatol 2019; 25( 3): 245– 263
https://doi.org/10.3350/cmh.2018.0090
3 JM Llovet, RK Kelley, A Villanueva, AG Singal, E Pikarsky, S Roayaie, R Lencioni, K Koike, J Zucman-Rossi, RS Finn. Hepatocellular carcinoma. Nat Rev Dis Primers 2021; 7( 1): 6
https://doi.org/10.1038/s41572-020-00240-3
4 Y Zhang, D Liu, X Chen, J Li, L Li, Z Bian, F Sun, J Lu, Y Yin, X Cai, Q Sun, K Wang, Y Ba, Q Wang, D Wang, J Yang, P Liu, T Xu, Q Yan, J Zhang, K Zen, CY Zhang. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 2010; 39( 1): 133– 144
https://doi.org/10.1016/j.molcel.2010.06.010
5 X Chen, Y Ba, L Ma, X Cai, Y Yin, K Wang, J Guo, Y Zhang, J Chen, X Guo, Q Li, X Li, W Wang, Y Zhang, J Wang, X Jiang, Y Xiang, C Xu, P Zheng, J Zhang, R Li, H Zhang, X Shang, T Gong, G Ning, J Wang, K Zen, J Zhang, CY Zhang. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008; 18( 10): 997– 1006
https://doi.org/10.1038/cr.2008.282
6 Y Wang, H Liang, F Jin, X Yan, G Xu, H Hu, G Liang, S Zhan, X Hu, Q Zhao, Y Liu, ZY Jiang, CY Zhang, X Chen, K Zen. Injured liver-released miRNA-122 elicits acute pulmonary inflammation via activating alveolar macrophage TLR7 signaling pathway. Proc Natl Acad Sci USA 2019; 116( 13): 6162– 6171
https://doi.org/10.1073/pnas.1814139116
7 SJ Dawson, DWY Tsui, M Murtaza, H Biggs, OM Rueda, SF Chin, MJ Dunning, D Gale, T Forshew, B Mahler-Araujo, S Rajan, S Humphray, J Becq, D Halsall, M Wallis, D Bentley, C Caldas, N Rosenfeld. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 2013; 368( 13): 1199– 1209
https://doi.org/10.1056/NEJMoa1213261
8 T Forshew, M Murtaza, C Parkinson, D Gale, DW Tsui, F Kaper, SJ Dawson, AM Piskorz, M Jimenez-Linan, D Bentley, J Hadfield, AP May, C Caldas, JD Brenton, N Rosenfeld. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 2012; 4( 136): 136ra68
https://doi.org/10.1126/scitranslmed.3003726
9 C Cole, A Sobala, C Lu, SR Thatcher, A Bowman, JW Brown, PJ Green, GJ Barton, G Hutvagner. Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 2009; 15( 12): 2147– 2160
https://doi.org/10.1261/rna.1738409
10 H Peng, J Shi, Y Zhang, H Zhang, S Liao, W Li, L Lei, C Han, L Ning, Y Cao, Q Zhou, Q Chen, E Duan. A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. Cell Res 2012; 22( 11): 1609– 1612
https://doi.org/10.1038/cr.2012.141
11 F Jin, Z Guo. Emerging role of a novel small non-coding regulatory RNA: tRNA-derived small RNA. ExRNA 2019; 1 : 39
https://doi.org/10.1186/s41544-019-0036-7
12 P Kumar, C Kuscu, A Dutta. Biogenesis and function of transfer RNA-related fragments (tRFs). Trends Biochem Sci 2016; 41( 8): 679– 689
https://doi.org/10.1016/j.tibs.2016.05.004
13 P Ivanov, MM Emara, J Villen, SP Gygi, P Anderson. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell 2011; 43( 4): 613– 623
https://doi.org/10.1016/j.molcel.2011.06.022
14 DM Thompson, R Parker. The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol 2009; 185( 1): 43– 50
https://doi.org/10.1083/jcb.200811119
15 S Honda, P Loher, M Shigematsu, JP Palazzo, R Suzuki, I Imoto, I Rigoutsos, Y Kirino. Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. Proc Natl Acad Sci USA 2015; 112( 29): E3816– E3825
https://doi.org/10.1073/pnas.1510077112
16 RL Maute, C Schneider, P Sumazin, A Holmes, A Califano, K Basso, R Dalla-Favera. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc Natl Acad Sci USA 2013; 110( 4): 1404– 1409
https://doi.org/10.1073/pnas.1206761110
17 V Balatti, Y Pekarsky, CM Croce. Role of the tRNA-derived small RNAs in cancer: new potential biomarkers and target for therapy. Adv Cancer Res 2017; 135 : 173– 187
https://doi.org/10.1016/bs.acr.2017.06.007
18 Y Pekarsky, V Balatti, A Palamarchuk, L Rizzotto, D Veneziano, G Nigita, LZ Rassenti, HI Pass, TJ Kipps, CG Liu, CM Croce. Dysregulation of a family of short noncoding RNAs, tsRNAs, in human cancer. Proc Natl Acad Sci USA 2016; 113( 18): 5071– 5076
https://doi.org/10.1073/pnas.1604266113
19 V Balatti, L Rizzotto, C Miller, A Palamarchuk, P Fadda, R Pandolfo, LZ Rassenti, E Hertlein, AS Ruppert, A Lozanski, G Lozanski, TJ Kipps, JC Byrd, CM Croce, Y Pekarsky. TCL1 targeting miR-3676 is codeleted with tumor protein p53 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2015; 112( 7): 2169– 2174
https://doi.org/10.1073/pnas.1500010112
20 F Jin, L Yang, W Wang, N Yuan, S Zhan, P Yang, X Chen, T Ma, Y Wang. A novel class of tsRNA signatures as biomarkers for diagnosis and prognosis of pancreatic cancer. Mol Cancer 2021; 20 : 95
https://doi.org/10.1186/s12943-021-01389-5
21 H Goodarzi, X Liu, HCB Nguyen, S Zhang, L Fish, SF Tavazoie. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell 2015; 161( 4): 790– 802
https://doi.org/10.1016/j.cell.2015.02.053
22 Y Zhang, Y Zhang, J Shi, H Zhang, Z Cao, X Gao, W Ren, Y Ning, L Ning, Y Cao, Y Chen, W Ji, ZJ Chen, Q Chen, E Duan. Identification and characterization of an ancient class of small RNAs enriched in serum associating with active infection. J Mol Cell Biol 2014; 6( 2): 172– 174
https://doi.org/10.1093/jmcb/mjt052
23 J Wang, G Ma, M Li, X Han, J Xu, M Liang, X Mao, X Chen, T Xia, X Liu, S Wang. Plasma tRNA fragments derived from 5′ ends as novel diagnostic biomarkers for early-stage breast cancer. Mol Ther Nucleic Acids 2020; 21 : 954– 964
https://doi.org/10.1016/j.omtn.2020.07.026
24 X Gu, L Wang, PJ Coates, L Boldrup, R Fåhraeus, T Wilms, N Sgaramella, K Nylander. Transfer-RNA-derived fragments are potential prognostic factors in patients with squamous cell carcinoma of the head and neck. Genes (Basel) 2020; 11( 11): 1344
https://doi.org/10.3390/genes11111344
25 M Yu, Z Liu, Y Liu, X Zhou, F Sun, Y Liu, L Li, S Hua, Y Zhao, H Gao, Z Zhu, M Na, Q Zhang, R Yang, J Zhang, Y Yao, X Chen. PTP1B markedly promotes breast cancer progression and is regulated by miR-193a-3p. FEBS J 2019; 286( 6): 1136– 1153
https://doi.org/10.1111/febs.14724
26 J Krüger, M Rehmsmeier. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 2006; 34(Web Server issue): W451− 454 doi: 10.1093/nar/gkl243
pmid: 16845047
27 C Xie, X Mao, J Huang, Y Ding, J Wu, S Dong, L Kong, G Gao, CY Li, L Wei. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 2011; 39(Web Server issue): W316– 322 doi: 10.1093/nar/gkr483
pmid: 21715386
28 K Hur, Y Toiyama, Y Okugawa, S Ide, H Imaoka, CR Boland, A Goel. Circulating microRNA-203 predicts prognosis and metastasis in human colorectal cancer. Gut 2017; 66( 4): 654– 665
https://doi.org/10.1136/gutjnl-2014-308737
29 A Yamada, T Horimatsu, Y Okugawa, N Nishida, H Honjo, H Ida, T Kou, T Kusaka, Y Sasaki, M Yagi, T Higurashi, N Yukawa, Y Amanuma, O Kikuchi, M Muto, Y Ueno, A Nakajima, T Chiba, CR Boland, A Goel. Serum miR-21, miR-29a, and miR-125b are promising biomarkers for the early detection of colorectal neoplasia. Clin Cancer Res 2015; 21( 18): 4234– 4242
https://doi.org/10.1158/1078-0432.CCR-14-2793
30 C Kuscu, P Kumar, M Kiran, Z Su, A Malik, A Dutta. tRNA fragments (tRFs) guide Ago to regulate gene expression post-transcriptionally in a Dicer-independent manner. RNA 2018; 24( 8): 1093– 1105
https://doi.org/10.1261/rna.066126.118
31 V Pliatsika, P Loher, R Magee, AG Telonis, E Londin, M Shigematsu, Y Kirino, I Rigoutsos. MINTbase v2.0: a comprehensive database for tRNA-derived fragments that includes nuclear and mitochondrial fragments from all The Cancer Genome Atlas projects. Nucleic Acids Res 2018; 46( D1): D152– D159
https://doi.org/10.1093/nar/gkx1075
32 M Rehmsmeier, P Steffen, M Hochsmann, R Giegerich. Fast and effective prediction of microRNA/target duplexes. RNA 2004; 10( 10): 1507– 1517
https://doi.org/10.1261/rna.5248604
33 RO Hynes. The extracellular matrix: not just pretty fibrils. Science 2009; 326( 5957): 1216– 1219
https://doi.org/10.1126/science.1176009
34 M Seiki. Membrane-type 1 matrix metalloproteinase: a key enzyme for tumor invasion. Cancer Lett 2003; 194( 1): 1– 11
https://doi.org/10.1016/S0304-3835(02)00699-7
35 RM Brandão-Costa, E Helal-Neto, AM Vieira, P Barcellos-de-Souza, J Morgado-Diaz, C Barja-Fidalgo. Extracellular matrix derived from high metastatic human breast cancer triggers epithelial-mesenchymal transition in epithelial breast cancer cells through αvβ3 integrin. Int J Mol Sci 2020; 21( 8): 2995
https://doi.org/10.3390/ijms21082995
36 L Ma, J Young, H Prabhala, E Pan, P Mestdagh, D Muth, J Teruya-Feldstein, F Reinhardt, TT Onder, S Valastyan, F Westermann, F Speleman, J Vandesompele, RA Weinberg. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 2010; 12( 3): 247– 256
https://doi.org/10.1038/ncb2024
37 MR Rubinstein, X Wang, W Liu, Y Hao, G Cai, YW Han. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 2013; 14( 2): 195– 206
https://doi.org/10.1016/j.chom.2013.07.012
38 O Schmalhofer, S Brabletz, T Brabletz. E-cadherin, β-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 2009; 28(1−2): 151− 166 doi:10.1007/s10555-008-9179-y
pmid: 19153669
39 D Ren, B Lin, X Zhang, Y Peng, Z Ye, Y Ma, Y Liang, L Cao, X Li, R Li, L Sun, Q Liu, J Wu, K Zhou, J Zeng. Maintenance of cancer stemness by miR-196b-5p contributes to chemoresistance of colorectal cancer cells via activating STAT3 signaling pathway. Oncotarget 2017; 8( 30): 49807– 49823
https://doi.org/10.18632/oncotarget.17971
40 DF Calvisi, S Ladu, A Gorden, M Farina, EA Conner, JS Lee, VM Factor, SS Thorgeirsson. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 2006; 130( 4): 1117– 1128
https://doi.org/10.1053/j.gastro.2006.01.006
41 K Shuai, B Liu. Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 2003; 3( 11): 900– 911
https://doi.org/10.1038/nri1226
42 JD Yang, P Hainaut, GJ Gores, A Amadou, A Plymoth, LR Roberts. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 2019; 16( 10): 589– 604
https://doi.org/10.1038/s41575-019-0186-y
43 F Trevisani, PE D’Intino, AM Morselli-Labate, G Mazzella, E Accogli, P Caraceni, M Domenicali, Notariis S De, E Roda, M Bernardi. Serum alpha-fetoprotein for diagnosis of hepatocellular carcinoma in patients with chronic liver disease: influence of HBsAg and anti-HCV status. J Hepatol 2001; 34( 4): 570– 575
https://doi.org/10.1016/S0168-8278(00)00053-2
44 A Colli, M Fraquelli, G Casazza, S Massironi, A Colucci, D Conte, P Duca. Accuracy of ultrasonography, spiral CT, magnetic resonance, and alpha-fetoprotein in diagnosing hepatocellular carcinoma: a systematic review. Am J Gastroenterol 2006; 101( 3): 513– 523
https://doi.org/10.1111/j.1572-0241.2006.00467.x
45 AS Lok, RK Sterling, JE Everhart, EC Wright, JC Hoefs, Bisceglie AM Di, TR Morgan, HY Kim, WM Lee, HL Bonkovsky, JL; HALT-C Trial Group Dienstag. Des-γ-carboxy prothrombin and α-fetoprotein as biomarkers for the early detection of hepatocellular carcinoma. Gastroenterology 2010; 138( 2): 493– 502
https://doi.org/10.1053/j.gastro.2009.10.031
46 J Hayes, PP Peruzzi, S Lawler. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 2014; 20( 8): 460– 469
https://doi.org/10.1016/j.molmed.2014.06.005
47 H Schwarzenbach, DSB Hoon, K Pantel. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 2011; 11( 6): 426– 437
https://doi.org/10.1038/nrc3066
48 S Giordano, A Columbano. MicroRNAs: new tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma? Hepatology 2013; 57(2): 840− 847 doi:10.1002/hep.26095
pmid: 23081718
49 F Fornari, M Ferracin, D Trerè, M Milazzo, S Marinelli, M Galassi, L Venerandi, D Pollutri, C Patrizi, A Borghi, FG Foschi, GF Stefanini, M Negrini, L Bolondi, L Gramantieri. Circulating microRNAs, miR-939, miR-595, miR-519d and miR-494, identify cirrhotic patients with HCC. PLoS One 2015; 10( 10): e0141448
https://doi.org/10.1371/journal.pone.0141448
50 S Bhattacharya, R Steele, S Shrivastava, S Chakraborty, AM Di Bisceglie, RB Ray. Serum miR-30e and miR-223 as novel noninvasive biomarkers for hepatocellular carcinoma. Am J Pathol 2016; 186( 2): 242– 247
https://doi.org/10.1016/j.ajpath.2015.10.003
51 J Cai, L Chen, Z Zhang, X Zhang, X Lu, W Liu, G Shi, Y Ge, P Gao, Y Yang, A Ke, L Xiao, R Dong, Y Zhu, X Yang, J Wang, T Zhu, D Yang, X Huang, C Sui, S Qiu, F Shen, H Sun, W Zhou, J Zhou, J Nie, C Zeng, EK Stroup, X Zhang, BCH Chiu, WY Lau, C He, H Wang, W Zhang, J Fan. Genome-wide mapping of 5-hydroxymethylcytosines in circulating cell-free DNA as a non-invasive approach for early detection of hepatocellular carcinoma. Gut 2019; 68( 12): 2195– 2205
https://doi.org/10.1136/gutjnl-2019-318882
52 L Wen, J Li, H Guo, X Liu, S Zheng, D Zhang, W Zhu, J Qu, L Guo, D Du, X Jin, Y Zhang, Y Gao, J Shen, H Ge, F Tang, Y Huang, J Peng. Genome-scale detection of hypermethylated CpG islands in circulating cell-free DNA of hepatocellular carcinoma patients. Cell Res 2015; 25( 11): 1250– 1264
https://doi.org/10.1038/cr.2015.126
53 J Shi, Y Zhang, T Zhou, Q Chen. tsRNAs: the Swiss army knife for translational regulation. Trends Biochem Sci 2019; 44( 3): 185– 189
https://doi.org/10.1016/j.tibs.2018.09.007
54 YS Lee, Y Shibata, A Malhotra, A Dutta. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 2009; 23( 22): 2639– 2649
https://doi.org/10.1101/gad.1837609
55 DM Thompson, R Parker. Stressing out over tRNA cleavage. Cell 2009; 138( 2): 215– 219
https://doi.org/10.1016/j.cell.2009.07.001
56 H Fu, J Feng, Q Liu, F Sun, Y Tie, J Zhu, R Xing, Z Sun, X Zheng. Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett 2009; 583( 2): 437– 442
https://doi.org/10.1016/j.febslet.2008.12.043
57 Y Yin, X Cai, X Chen, H Liang, Y Zhang, J Li, Z Wang, X Chen, W Zhang, S Yokoyama, C Wang, L Li, L Li, D Hou, L Dong, T Xu, T Hiroi, F Yang, H Ji, J Zhang, K Zen, CY Zhang. Tumor-secreted miR-214 induces regulatory T cells: a major link between immune evasion and tumor growth. Cell Res 2014; 24( 10): 1164– 1180
https://doi.org/10.1038/cr.2014.121
58 SD Blackburn, H Shin, WN Haining, T Zou, CJ Workman, A Polley, MR Betts, GJ Freeman, DAA Vignali, EJ Wherry. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 2009; 10( 1): 29– 37
https://doi.org/10.1038/ni.1679
59 S Kusmartsev, Y Nefedova, D Yoder, DI Gabrilovich. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 2004; 172( 2): 989– 999
https://doi.org/10.4049/jimmunol.172.2.989
[1] FMD-21074-OF-WYB_suppl_1 Download
[1] Ziqi Chen, Xiaoqi Huang, Qiyong Gong, Bharat B. Biswal. Translational application of neuroimaging in major depressive disorder: a review of psychoradiological studies[J]. Front. Med., 2021, 15(4): 528-540.
[2] Solmaz Ohadian Moghadam, Seyed Ali Momeni. Human microbiome and prostate cancer development: current insights into the prevention and treatment[J]. Front. Med., 2021, 15(1): 11-32.
[3] Weiqi Rong, Yang Zhang, Lei Yang, Lin Feng, Baojun Wei, Fan Wu, Liming Wang, Yanning Gao, Shujun Cheng, Jianxiong Wu, Ting Xiao. Post-surgical resection prognostic value of combined OPN, MMP7, and PSG9 plasma biomarkers in hepatocellular carcinoma[J]. Front. Med., 2019, 13(2): 250-258.
[4] Chenyang Wang, Qiurong Li, Jieshou Li. Gut microbiota and its implications in small bowel transplantation[J]. Front. Med., 2018, 12(3): 239-248.
[5] Shuye Zhang, Fusheng Wang, Zheng Zhang. Current advances in the elimination of hepatitis B in China by 2030[J]. Front. Med., 2017, 11(4): 490-501.
[6] Changlin Cao, Jingxian Gu, Jingyao Zhang. Soluble triggering receptor expressed on myeloid cell-1 (sTREM-1): a potential biomarker for the diagnosis of infectious diseases[J]. Front. Med., 2017, 11(2): 169-177.
[7] Lei Huang,Aman Xu. Detection of digestive malignancies and post-gastrectomy complications via gastrointestinal fluid examination[J]. Front. Med., 2017, 11(1): 20-31.
[8] Yi Cao. Environmental pollution and DNA methylation: carcinogenesis, clinical significance, and practical applications[J]. Front. Med., 2015, 9(3): 261-274.
[9] Feng Wang,Chen Chen,Daowen Wang. Circulating microRNAs in cardiovascular diseases: from biomarkers to therapeutic targets[J]. Front. Med., 2014, 8(4): 404-418.
[10] Xiao Liu, Hui Ren, Daizhi Peng. Sepsis biomarkers: an omics perspective[J]. Front Med, 2014, 8(1): 58-67.
[11] Lunxiu Qin. Osteopontin is a promoter for hepatocellular carcinoma metastasis: a summary of 10 years of studies[J]. Front Med, 2014, 8(1): 24-32.
[12] Chuanbao Zhang, Zhaoshi Bao, Wei Zhang, Tao Jiang. Progress on molecular biomarkers and classification of malignant gliomas[J]. Front Med, 2013, 7(2): 150-156.
[13] Chen WANG PhD, MD, Zhen-Guo ZHAI PhD, MD, Ying H. SHEN PhD, MD, Lan ZHAO PhD, MD, . Clinical and genetic risk factors for venous thromboembolism in Chinese population[J]. Front. Med., 2010, 4(1): 29-35.
[14] Hongying ZHANG, Jianwu TANG, Wenting ZHU, Chunxiu HU, Guowang XU. Establishment and drug sensitivity evaluation of murine ascites hepatocarcinoma cell line with high lymphatic metastatic potential (Hca-P/L6)[J]. Front Med Chin, 2009, 3(2): 119-129.
[15] GAO Yu, TIAN Ying, SHEN Xiaoming. Current techniques for assessing developmental neurotoxicity of pesticides[J]. Front. Med., 2008, 2(4): 337-343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed