|
|
RGS16 regulated by let-7c-5p promotes glioma progression by activating PI3K-AKT pathway |
Chaochao Wang1,2, Hao Xue1,2, Rongrong Zhao1,2, Zhongzheng Sun2,3, Xiao Gao1,2, Yanhua Qi1,2, Huizhi Wang1,2, Jianye Xu1,2, Lin Deng1,2( ), Gang Li1,2( ) |
1. Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China 2. Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, China 3. The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China |
|
|
Abstract Gliomas are the most common central nervous system tumours; they are highly aggressive and have a poor prognosis. RGS16 belongs to the regulator of G-protein signalling (RGS) protein family, which plays an important role in promoting various cancers, such as breast cancer, pancreatic cancer, and colorectal cancer. Moreover, previous studies confirmed that let-7c-5p, a well-known microRNA, can act as a tumour suppressor to regulate the progression of various tumours by inhibiting the expression of its target genes. However, whether RGS16 can promote the progression of glioma and whether it is regulated by miR let-7c-5p are still unknown. Here, we confirmed that RGS16 is upregulated in glioma tissues and that high expression of RGS16 is associated with poor survival. Ectopic deletion of RGS16 significantly suppressed glioma cell proliferation and migration both in vitro and in vivo. Moreover, RGS16 was validated as a direct target gene of miR let-7c-5p. The overexpression of miR let-7c-5p obviously downregulated the expression of RGS16, and knocking down miR let-7c-5p had the opposite effect. Thus, we suggest that the suppression of RGS16 by miR let-7c-5p can promote glioma progression and may serve as a potential prognostic biomarker and therapeutic target in glioma.
|
Keywords
RGS16
let-7c-5p
glioma
proliferation
migration
|
Corresponding Author(s):
Lin Deng,Gang Li
|
Just Accepted Date: 30 August 2022
Online First Date: 23 November 2022
Issue Date: 15 March 2023
|
|
1 |
GP Dunn, ML Rinne, J Wykosky, G Genovese, SN Quayle, IF Dunn, PK Agarwalla, MG Chheda, B Campos, A Wang, C Brennan, KL Ligon, F Furnari, WK Cavenee, RA Depinho, L Chin, WC Hahn. Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev 2012; 26(8): 756–784
https://doi.org/10.1101/gad.187922.112
pmid: 22508724
|
2 |
C Villa, C Miquel, D Mosses, M Bernier, AL Di Stefano. The 2016 World Health Organization classification of tumours of the central nervous system. Presse Med 2018; 47(11–12): e187–e200
https://doi.org/10.1016/j.lpm.2018.04.015
pmid: 30449638
|
3 |
F Bray, J Ferlay, I Soerjomataram, RL Siegel, LA Torre, A Jemal. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394–424
https://doi.org/10.3322/caac.21492
pmid: 30207593
|
4 |
J Chen, RM McKay, LF Parada. Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell 2012; 149(1): 36–47
https://doi.org/10.1016/j.cell.2012.03.009
pmid: 22464322
|
5 |
EM Ross, TM Wilkie. GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem 2000; 69(1): 795–827
https://doi.org/10.1146/annurev.biochem.69.1.795
pmid: 10966476
|
6 |
KM Druey, KJ Blumer, VH Kang, JH Kehrl. Inhibition of G-protein-mediated MAP kinase activation by a new mammalian gene family. Nature 1996; 379(6567): 742–746
https://doi.org/10.1038/379742a0
pmid: 8602223
|
7 |
G Liang, G Bansal, Z Xie, KM Druey. RGS16 inhibits breast cancer cell growth by mitigating phosphatidylinositol 3-kinase signaling. J Biol Chem 2009; 284(32): 21719–21727
https://doi.org/10.1074/jbc.M109.028407
pmid: 19509421
|
8 |
EN Johnson, TM Seasholtz, AA Waheed, B Kreutz, N Suzuki, T Kozasa, TL Jones, JH Brown, KM Druey. RGS16 inhibits signalling through the G alpha 13-Rho axis. Nat Cell Biol 2003; 5(12): 1095–1103
https://doi.org/10.1038/ncb1065
pmid: 14634662
|
9 |
M Berthebaud, C Rivière, P Jarrier, A Foudi, Y Zhang, D Compagno, A Galy, W Vainchenker, F Louache. RGS16 is a negative regulator of SDF-1-CXCR4 signaling in megakaryocytes. Blood 2005; 106(9): 2962–2968
https://doi.org/10.1182/blood-2005-02-0526
pmid: 15998835
|
10 |
MB Carper, J Denvir, G Boskovic, DA Primerano, PP Claudio. RGS16, a novel p53 and pRb cross-talk candidate inhibits migration and invasion of pancreatic cancer cells. Genes Cancer 2014; 5(11–12): 420–435
https://doi.org/10.18632/genesandcancer.43
pmid: 25568667
|
11 |
N Miyoshi, H Ishii, M Sekimoto, Y Doki, M Mori. RGS16 is a marker for prognosis in colorectal cancer. Ann Surg Oncol 2009; 16(12): 3507–3514
https://doi.org/10.1245/s10434-009-0690-3
pmid: 19760045
|
12 |
X Sun, C Charbonneau, L Wei, Q Chen, RM Terek. miR-181a targets RGS16 to promote chondrosarcoma growth, angiogenesis, and metastasis. Mol Cancer Res 2015; 13(9): 1347–1357
https://doi.org/10.1158/1541-7786.MCR-14-0697
pmid: 26013170
|
13 |
D Sayed, M Abdellatif. MicroRNAs in development and disease. Physiol Rev 2011; 91(3): 827–887
https://doi.org/10.1152/physrev.00006.2010
pmid: 21742789
|
14 |
GA Calin, CM Croce. MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6(11): 857–866
https://doi.org/10.1038/nrc1997
pmid: 17060945
|
15 |
X Fu, X Mao, Y Wang, X Ding, Y Li. Let-7c-5p inhibits cell proliferation and induces cell apoptosis by targeting ERCC6 in breast cancer. Oncol Rep 2017; 38(3): 1851–1856
https://doi.org/10.3892/or.2017.5839
pmid: 28731186
|
16 |
M Huang, X Gong. Let-7c inhibits the proliferation, invasion, and migration of glioma cells via targeting E2F5. Oncol Res 2018; 26(7): 1103–1111
https://doi.org/10.3727/096504018X15164123839400
pmid: 29362021
|
17 |
PY Wen, S Kesari. Malignant gliomas in adults. N Engl J Med 2008; 359(5): 492–507
https://doi.org/10.1056/NEJMra0708126
pmid: 18669428
|
18 |
R Huang, G Li, Z Zhao, F Zeng, K Zhang, Y Liu, K Wang, H Hu. RGS16 promotes glioma progression and serves as a prognostic factor. CNS Neurosci Ther 2020; 26(8): 791–803
https://doi.org/10.1111/cns.13382
pmid: 32319728
|
19 |
I Chu, J Sun, A Arnaout, H Kahn, W Hanna, S Narod, P Sun, CK Tan, L Hengst, J Slingerland. p27 phosphorylation by Src regulates inhibition of cyclin E-Cdk2. Cell 2007; 128(2): 281–294
https://doi.org/10.1016/j.cell.2006.11.049
pmid: 17254967
|
20 |
G Choe, S Horvath, TF Cloughesy, K Crosby, D Seligson, A Palotie, L Inge, BL Smith, CL Sawyers, PS Mischel. Analysis of the phosphatidylinositol 3′-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res 2003; 63(11): 2742–2746
pmid: 12782577
|
21 |
L Wang, ZG Zhang, RL Zhang, SR Gregg, A Hozeska-Solgot, Y LeTourneau, Y Wang, M Chopp. Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration. J Neurosci 2006; 26(22): 5996–6003
https://doi.org/10.1523/JNEUROSCI.5380-05.2006
pmid: 16738242
|
22 |
QW Fan, C Cheng, C Hackett, M Feldman, BT Houseman, T Nicolaides, D Haas-Kogan, CD James, SA Oakes, J Debnath, KM Shokat, WA Weiss. Akt and autophagy cooperate to promote survival of drug-resistant glioma. Sci Signal 2010; 3(147): ra81
https://doi.org/10.1126/scisignal.2001017
pmid: 21062993
|
23 |
Y Suzuki, K Shirai, K Oka, A Mobaraki, Y Yoshida, SE Noda, M Okamoto, Y Suzuki, J Itoh, H Itoh, S Ishiuchi, T Nakano. Higher pAkt expression predicts a significant worse prognosis in glioblastomas. J Radiat Res (Tokyo) 2010; 51(3): 343–348
https://doi.org/10.1269/jrr.09109
pmid: 20410674
|
24 |
G Choe, S Horvath, TF Cloughesy, K Crosby, D Seligson, A Palotie, L Inge, BL Smith, CL Sawyers, PS Mischel. Analysis of the phosphatidylinositol 3′-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res 2003; 63(11): 2742–2746
pmid: 12782577
|
25 |
H Mure, K Matsuzaki, KT Kitazato, Y Mizobuchi, K Kuwayama, T Kageji, S Nagahiro. Akt2 and Akt3 play a pivotal role in malignant gliomas. Neuro-oncol 2010; 12(3): 221–232
https://doi.org/10.1093/neuonc/nop026
pmid: 20167810
|
26 |
DF Quail, JA Joyce. The microenvironmental landscape of brain tumors. Cancer Cell 2017; 31(3): 326–341
https://doi.org/10.1016/j.ccell.2017.02.009
pmid: 28292436
|
27 |
MD Jansson, AH Lund. MicroRNA and cancer. Mol Oncol 2012; 6(6): 590–610
https://doi.org/10.1016/j.molonc.2012.09.006
pmid: 23102669
|
28 |
A Esquela-Kerscher, FJ Slack. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 2006; 6(4): 259–269
https://doi.org/10.1038/nrc1840
pmid: 16557279
|
29 |
M Piwecka, K Rolle, A Belter, AM Barciszewska, M Żywicki, M Michalak, S Nowak, MZ Naskręt-Barciszewska, J Barciszewski. Comprehensive analysis of microRNA expression profile in malignant glioma tissues. Mol Oncol 2015; 9(7): 1324–1340
https://doi.org/10.1016/j.molonc.2015.03.007
pmid: 25864039
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|