Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2023, Vol. 17 Issue (1) : 132-142    https://doi.org/10.1007/s11684-022-0938-x
RESEARCH ARTICLE
Knockdown of RFC4 inhibits the cell proliferation of nasopharyngeal carcinoma in vitro and in vivo
Shuzhen Guan1, Lin Feng2, Jinrui Wei3, Guizhen Wang4(), Lichuan Wu1()
1. Medical College of Guangxi University, Nanning 530004, China
2. Department of Pathology, The First Medical Center of PLA General Hospital, Beijing 100853, China
3. Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
4. State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
 Download: PDF(3966 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nasopharyngeal carcinoma (NPC) is a malignant tumor that mainly occurs in East and Southeast Asia. Although patients benefit from the main NPC treatments (e.g., radiotherapy and concurrent chemotherapy), persistent and recurrent diseases still occur in some NPC patients. Therefore, investigating the pathogenesis of NPC is of great clinical significance. In the present study, replication factor c subunit 4 (RFC4) is a key potential target involved in NPC progression via bioinformatics analysis. Furthermore, the expression and mechanism of RFC4 in NPC were investigated in vitro and in vivo. Our results revealed that RFC4 was more elevated in NPC tumor tissues than in normal tissues. RFC4 knockdown induced G2/M cell cycle arrest and inhibited NPC cell proliferation in vitro and in vivo. Interestingly, HOXA10 was confirmed as a downstream target of RFC4, and the overexpression of HOXA10 attenuated the silencing of RFC4-induced cell proliferation, colony formation inhibition, and cell cycle arrest. For the first time, this study reveals that RFC4 is required for NPC cell proliferation and may play a pivotal role in NPC tumorigenesis.

Keywords nasopharyngeal carcinoma      WGCNA      RFC4      proliferation     
Corresponding Author(s): Guizhen Wang,Lichuan Wu   
Just Accepted Date: 28 October 2022   Online First Date: 22 December 2022    Issue Date: 15 March 2023
 Cite this article:   
Shuzhen Guan,Lin Feng,Jinrui Wei, et al. Knockdown of RFC4 inhibits the cell proliferation of nasopharyngeal carcinoma in vitro and in vivo[J]. Front. Med., 2023, 17(1): 132-142.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-022-0938-x
https://academic.hep.com.cn/fmd/EN/Y2023/V17/I1/132
Fig.1  RFC4 was identified as a potential key gene in NPC via bioinformatic analysis. (A–D) Network visualization of WGCNA analysis. (A) Sample dendrogram of 57 NPC tumor and normal samples. (B) Appropriate soft threshold power = 12 was selected. (C) Gene cluster tree. (D) Heatmap of the correlation between modules eigengenes and clinical traits. Numbers in the upper and round brackets of each rectangle show correlation and P value, respectively. Red represents positive correlation, whereas green indicates a negative correlation. (E) Identification of the largest and most dense cluster via PPI and MCODE analysis. (F) Expression of 7 genes in the inner circle of Cluster 1 was significantly correlated with patient survival. (G) Gene alteration analysis.
Fig.2  RFC4 was overexpressed in NPC. (A) Expression of RFC4 in NPC tumor and normal tissues via analyzing data from GEO data sets. (B) IHC results of RFC4 expression in normal and NPC tumors. *P < 0.05; **P < 0.01; ***P < 0.001.
Fig.3  RFC4 regulated NPC cell proliferation in vitro. (A) Growth curve of CNE2 and HK-1 cells transfected with siRFC4 or control siRNAs. (B) Colony formation of CNE2 and HK-1 cells transfected with siRFC4 or control siRNAs. (C) Cell cycle distribution after downregulating RFC4 in CNE2 and HK-1 cells. (D) Expression of CDK1 and CCNB1 was downregulated in CNE2 and HK-1 cells upon siRFC4 treatment. (E) Growth curve of HK-1 transfected with RFC4 overexpressing or control plasmids. (F) Colony formation of HK-1 cells transfected with RFC4 overexpressing or control plasmids. (G) Expression of CDK1 and CCNB1 was upregulated in HK-1 cells treated with RFC4 overexpressing plasmid. *P < 0.05; **P < 0.01; ***P < 0.001. ns, non-significance.
Fig.4  RFC4 regulated the expression of HOXA10 in NPC. (A) Volcano plot of DEGs. (B) Pathway enrichment analysis of 557 DEGs. (C) Expressions of 13 TFs. (D) Expression validation of 5 TFs in CNE2 and HK-1 cells via qPCR. (E) Correlation analysis between HOXA10/RELB and RFC4 via analyzing data from GEO and TCGA data sets. (F) HOXA10 was downregulated in CNE and HK-1 cells upon siRFC4 treatment. (G) HOXA10 was upregulated in HK-1 cells transfected with RFC4 overexpressing plasmid. *P < 0.05; **P < 0.01; ***P < 0.001. ns, non-significance.
Fig.5  Overexpressing of HOXA10 attenuated RFC4 silencing-induced inhibition of NPC cell proliferation. (A) Growth cure of CNE2 cells transfected with relative plasmids. (B) Colony formation of CNE2 cells transfected with relative plasmids. (C) Cell cycle distribution of CNE2 cells transfected with relative plasmids. (D) Expressions of CCNB1, CDK1, HOXA10, and RFC4 in CNE2 cells transfected with relative plasmids. *P < 0.05; **P < 0.01; ***P < 0.001.
Fig.6  Downregulation of RFC4 suppressed NPC tumor growth. (A) Image of tumor tissues after anatomy. (B) Curves of tumor volumes at various times. (C) Statistic of tumor weight. (D) Representative expression image of Ki67 in tumor tissues from each group. (E) The expressions of CCNB1, CDK1, HOXA10, and RFC4 in tumor tissues from each group. *P < 0.05; **P < 0.01; ***P < 0.001.
1 YP Chen, ATC Chan, QT Le, P Blanchard, Y Sun, J Ma. Nasopharyngeal carcinoma. Lancet 2019; 394(10192): 64–80
https://doi.org/10.1016/S0140-6736(19)30956-0 pmid: 31178151
2 M Wang, B Gu, X Chen, Y Wang, P Li, K Wang. The function and therapeutic potential of Epstein-Barr virus-encoded microRNAs in cancer. Mol Ther Nucleic Acids 2019; 17: 657–668
https://doi.org/10.1016/j.omtn.2019.07.002 pmid: 31400608
3 H Sung, J Ferlay, RL Siegel, M Laversanne, I Soerjomataram, A Jemal, F Bray. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209–249
https://doi.org/10.3322/caac.21660 pmid: 33538338
4 YP Chen, N Ismaila, MLK Chua, AD Colevas, R Haddad, SH Huang, JTS Wee, AC Whitley, JL Yi, SS Yom, ATC Chan, CS Hu, JY Lang, QT Le, AWM Lee, N Lee, JC Lin, B Ma, TJ Morgan, J Shah, Y Sun, J Ma. Chemotherapy in combination with radiotherapy for definitive-intent treatment of stage II-IVA nasopharyngeal carcinoma: CSCO and ASCO Guideline. J Clin Oncol 2021; 39(7): 840–859
https://doi.org/10.1200/JCO.20.03237 pmid: 33405943
5 S Guan, J Wei, L Huang, L Wu. Chemotherapy and chemo-resistance in nasopharyngeal carcinoma. Eur J Med Chem 2020; 207: 112758
https://doi.org/10.1016/j.ejmech.2020.112758 pmid: 32858472
6 S Wang, FX Claret, W Wu. MicroRNAs as therapeutic targets in nasopharyngeal carcinoma. Front Oncol 2019; 9: 756
https://doi.org/10.3389/fonc.2019.00756 pmid: 31456943
7 GD Bowman, M O’Donnell, J Kuriyan. Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Nature 2004; 429(6993): 724–730
https://doi.org/10.1038/nature02585 pmid: 15201901
8 K Okumura, M Nogami, H Taguchi, FB Dean, M Chen, ZQ Pan, J Hurwitz, A Shiratori, Y Murakami, K Ozawa, T Eki. Assignment of the 36.5-kDa (RFC5), 37-kDa (RFC4), 38-kDa (RFC3), and 40-kDa (RFC2) subunit genes of human replication factor C to chromosome bands 12q24.2-q24.3, 3q27, 13q12.3-q13, and 7q11.23. Genomics 1995; 25(1): 274–278
https://doi.org/10.1016/0888-7543(95)80135-9 pmid: 7774928
9 C Gaubitz, X Liu, J Magrino, NP Stone, J Landeck, M Hedglin, BA Kelch. Structure of the human clamp loader reveals an autoinhibited conformation of a substrate-bound AAA+ switch. Proc Natl Acad Sci USA 2020; 117(38): 23571–23580
https://doi.org/10.1073/pnas.2007437117 pmid: 32907938
10 W Zhu, Q Zhang, M Liu, M Yan, X Chu, Y Li. Identification of DNA repair-related genes predicting pathogenesis and prognosis for liver cancer. Cancer Cell Int 2021; 21(1): 81
https://doi.org/10.1186/s12935-021-01779-1 pmid: 33516217
11 J Xiang, L Fang, Y Luo, Z Yang, Y Liao, J Cui, M Huang, Z Yang, Y Huang, X Fan, H Wang, L Wang, J Peng, J Wang. Levels of human replication factor C4, a clamp loader, correlate with tumor progression and predict the prognosis for colorectal cancer. J Transl Med 2014; 12(1): 320
https://doi.org/10.1186/s12967-014-0320-0 pmid: 25407051
12 J Zhang, L Wang, X Xie. RFC4 promotes the progression and growth of oral tongue squamous cell carcinoma in vivo and vitro. J Clin Lab Anal 2021; 35(5): e23761
https://doi.org/10.1002/jcla.23761 pmid: 33783864
13 M Arai, N Kondoh, N Imazeki, A Hada, K Hatsuse, O Matsubara, M Yamamoto. The knockdown of endogenous replication factor C4 decreases the growth and enhances the chemosensitivity of hepatocellular carcinoma cells. Liver Int 2009; 29(1): 55–62
https://doi.org/10.1111/j.1478-3231.2008.01792.x pmid: 18492021
14 XC Wang, X Yue, RX Zhang, TY Liu, ZZ Pan, MJ Yang, ZH Lu, ZY Wang, JH Peng, LY Le, GY Wang, QH Peng, Y Meng, W Huang, RY Liu. Genome-wide RNAi screening identifies RFC4 as a factor that mediates radioresistance in colorectal cancer by facilitating nonhomologous end joining repair. Clin Cancer Res 2019; 25(14): 4567–4579
https://doi.org/10.1158/1078-0432.CCR-18-3735 pmid: 30979744
15 JH Bushweller. Targeting transcription factors in cancer—from undruggable to reality. Nat Rev Cancer 2019; 19(11): 611–624
https://doi.org/10.1038/s41568-019-0196-7 pmid: 31511663
16 L Xie, L Xu, Z He, W Zhou, L Wang, L Zhang, K Lan, C Ren, W Liu, K Yao. Identification of differentially expressed genes in nasopharyngeal carcinoma by means of the Atlas human cancer cDNA expression array. J Cancer Res Clin Oncol 2000; 126(7): 400–406
https://doi.org/10.1007/PL00008488 pmid: 10929762
17 Q Zhu, Q Zhang, M Gu, K Zhang, T Xia, S Zhang, W Chen, H Yin, H Yao, Y Fan, S Pan, H Xie, H Liu, T Cheng, P Zhang, T Zhang, B You, Y You. MIR106A-5p upregulation suppresses autophagy and accelerates malignant phenotype in nasopharyngeal carcinoma. Autophagy 2021; 17(7): 1667–1683
https://doi.org/10.1080/15548627.2020.1781368 pmid: 32627648
18 Y Sang, C Cheng, YX Zeng, T Kang. Snail promotes metastasis of nasopharyngeal carcinoma partly by down-regulating TEL2. Cancer Commun (Lond) 2018; 38(1): 58
https://doi.org/10.1186/s40880-018-0328-6 pmid: 30253797
19 M Shikata, F Ishikawa, J Kanoh. Tel2 is required for activation of the Mrc1-mediated replication checkpoint. J Biol Chem 2007; 282(8): 5346–5355
https://doi.org/10.1074/jbc.M607432200 pmid: 17189249
20 Y Sang, MY Chen, D Luo, RH Zhang, L Wang, M Li, R Luo, CN Qian, JY Shao, YX Zeng, T Kang. TEL2 suppresses metastasis by down-regulating SERPINE1 in nasopharyngeal carcinoma. Oncotarget 2015; 6(30): 29240–29253
https://doi.org/10.18632/oncotarget.5074 pmid: 26335051
21 H Li, J You, H Xue, X Tan, C Chao. CircCTDP1 promotes nasopharyngeal carcinoma progression via a microRNA-320b/HOXA10/TGFβ2 pathway. Int J Mol Med 2020; 45(3): 836–846
https://doi.org/10.3892/ijmm.2020.4467 pmid: 31985027
22 ZH Shen, KM Zhao, T Du. HOXA10 promotes nasopharyngeal carcinoma cell proliferation and invasion via inducing the expression of ZIC2. Eur Rev Med Pharmacol Sci 2017; 21(5): 945–952
pmid: 28338202
23 W Huang, W Song, Y Jiang, L Chen, H Lu. c-Myc-induced circ-NOTCH1 promotes aggressive phenotypes of nasopharyngeal carcinoma cells by regulating the miR-34c-5p/c-Myc axis. Cell Biol Int 2021; 45(7): 1436–1447
https://doi.org/10.1002/cbin.11582 pmid: 33675278
24 J Liu, Y Wen, Z Liu, S Liu, P Xu, Y Xu, S Deng, S Hu, R Luo, J Jiang, G Yu. VPS33B modulates c-Myc/p53/miR-192-3p to target CCNB1 suppressing the growth of non-small cell lung cancer. Mol Ther Nucleic Acids 2021; 23: 324–335
https://doi.org/10.1016/j.omtn.2020.11.010 pmid: 33425490
25 GT Chung, WP Lou, C Chow, KF To, KW Choy, AW Leung, CY Tong, JW Yuen, CW Ko, TT Yip, P Busson, KW Lo. Constitutive activation of distinct NF-κB signals in EBV-associated nasopharyngeal carcinoma. J Pathol 2013; 231(3): 311–322
https://doi.org/10.1002/path.4239 pmid: 23868181
26 F Ma, C Zhi, M Wang, T Li, SA Khan, Z Ma, Z Jing, C Bo, Q Zhou, S Xia, S Huang, S Huang, Z Zhang, H Jia, X Cui, M Yao, T Ji. Dysregulated NF-κB signal promotes the hub gene PCLAF expression to facilitate nasopharyngeal carcinoma proliferation and metastasis. Biomed Pharmacother 2020; 125: 109905
https://doi.org/10.1016/j.biopha.2020.109905 pmid: 32070873
27 YX Huang, XT Chen, KY Guo, YH Li, BY Wu, CY Song, YJ He. Sunitinib induces NK-κB-dependent NKG2D ligand expression in nasopharyngeal carcinoma and hepatoma cells. J Immunother 2017; 40(5): 164–174
https://doi.org/10.1097/CJI.0000000000000168 pmid: 28452850
28 ZH Ren, GP Shang, K Wu, CY Hu, T Ji. WGCNA co-expression network analysis reveals ILF3-AS1 functions as a ceRNA to regulate PTBP1 expression by sponging miR-29a in gastric cancer. Front Genet 2020; 11: e.g.39
https://doi.org/10.3389/fgene.2020.00039 pmid: 32117452
29 F Tian, J Zhao, X Fan, Z Kang. Weighted gene co-expression network analysis in identification of metastasis-related genes of lung squamous cell carcinoma based on the Cancer Genome Atlas database. J Thorac Dis 2017; 9(1): 42–53
https://doi.org/10.21037/jtd.2017.01.04 pmid: 28203405
30 J Liu, S Li, L Lin, Y Jiang, Y Wan, S Zhou, W Cheng. Co-expression network analysis identified atypical chemokine receptor 1 (ACKR1) association with lymph node metastasis and prognosis in cervical cancer. Cancer Biomark 2020; 27(2): 213–223
https://doi.org/10.3233/CBM-190533 pmid: 32083574
31 H Cui, Q Wang, Z Lei, M Feng, Z Zhao, Y Wang, G Wei. DTL promotes cancer progression by PDCD4 ubiquitin-dependent degradation. J Exp Clin Cancer Res 2019; 38(1): 350
https://doi.org/10.1186/s13046-019-1358-x pmid: 31409387
32 Y Luo, X Qu, D Kan, B Cai. The microRNA-451a/chromosome segregation 1-like axis suppresses cell proliferation, migration, and invasion and induces apoptosis in nasopharyngeal carcinoma. Bioengineered 2021; 12(1): 6967–6980
https://doi.org/10.1080/21655979.2021.1975018 pmid: 34516344
33 B Wang, W Wang, H Wang, W Liu. Microarray analysis of novel genes involved in nasopharyngeal carcinoma. Bull Exp Biol Med 2021; 170(5): 658–664
https://doi.org/10.1007/s10517-021-05127-1 pmid: 33788105
34 X Ding, H Duan, H Luo. Identification of core gene expression signature and key pathways in colorectal cancer. Front Genet 2020; 11: 45
https://doi.org/10.3389/fgene.2020.00045 pmid: 32153633
35 W Chen, S Zhu, Y Zhang, J Xiao, D Tian. Identification of key candidate tumor biomarkers in non-small-cell lung cancer by in silico analysis. Oncol Lett 2020; 19(1): 1008–1016
pmid: 31897214
36 HZ Qiu, J Huang, CC Xiang, R Li, ED Zuo, Y Zhang, L Shan, X Cheng. Screening and discovery of new potential biomarkers and small molecule drugs for cervical cancer: a bioinformatics analysis. Technol Cancer Res Treat 2020; 19: 1533033820980112
https://doi.org/10.1177/1533033820980112 pmid: 33302814
37 H Yoshida, R Broaddus, W Cheng, S Xie, H Naora. Deregulation of the HOXA10 homeobox gene in endometrial carcinoma: role in epithelial-mesenchymal transition. Cancer Res 2006; 66(2): 889–897
https://doi.org/10.1158/0008-5472.CAN-05-2828 pmid: 16424022
38 Y Hatanaka, MA de Velasco, T Oki, N Shimizu, M Nozawa, K Yoshimura, K Yoshikawa, K Nishio, H Uemura. HOXA10 expression profiling in prostate cancer. Prostate 2019; 79(5): 554–563
https://doi.org/10.1002/pros.23761 pmid: 30614022
39 Y Han, S Lu, YG Wen, FD Yu, XW Zhu, GQ Qiu, HM Tang, ZH Peng, CZ Zhou. Overexpression of HOXA10 promotes gastric cancer cells proliferation and HOXA10+/CD44+ is potential prognostic biomarker for gastric cancer. Eur J Cell Biol 2015; 94(12): 642–652
https://doi.org/10.1016/j.ejcb.2015.08.004 pmid: 26552644
40 D Gong, H Zhu, L Zeng, R Hu, J Hu, J Ding. Overexpression of HOXA10 promotes the growth and metastasis of nasopharyngeal carcinoma. Exp Biol Med (Maywood) 2021; 246(23): 2454–2462
https://doi.org/10.1177/15353702211030854 pmid: 34293937
[1] FMD-22015-OF-WLC_suppl_1 Download
[1] Ronghui Yang, Guoguang Ying, Binghui Li. Potential of electron transfer and its application in dictating routes of biochemical processes associated with metabolic reprogramming[J]. Front. Med., 2021, 15(5): 679-692.
[2] Jiahui Zhang, Yanan Yin, Jiahui Wang, Jingjing Zhang, Hua Liu, Weiwei Feng, Wen Yang, Bruce Zetter, Yingjie Xu. Prohibitin regulates mTOR pathway via interaction with FKBP8[J]. Front. Med., 2021, 15(3): 448-459.
[3] Jing Ma, Shiyu Chen, Lili Hao, Wei Sheng, Weicheng Chen, Xiaojing Ma, Bowen Zhang, Duan Ma, Guoying Huang. Long non-coding RNA SAP30-2:1 is downregulated in congenital heart disease and regulates cell proliferation by targeting HAND2[J]. Front. Med., 2021, 15(1): 91-100.
[4] Jiajia Hu, Wenbin Shen, Qian Qu, Xiaochun Fei, Ying Miao, Xinyun Huang, Jiajun Liu, Yingli Wu, Biao Li. NES1/KLK10 and hNIS gene therapy enhanced iodine-131 internal radiation in PC3 proliferation inhibition[J]. Front. Med., 2019, 13(6): 646-657.
[5] Xiaodong Duan, Daizhi Peng, Yilan Zhang, Yalan Huang, Xiao Liu, Ruifu Li, Xin Zhou, Jing Liu. Sub-cytotoxic concentrations of ionic silver promote the proliferation of human keratinocytes by inducing the production of reactive oxygen species[J]. Front. Med., 2018, 12(3): 289-300.
[6] Lijuan Hu,Zhirui Lin,Yanheng Wu,Juqin Dong,Bo Zhao,Yanbing Cheng,Peiyu Huang,Lihua Xu,Tianliang Xia,Dan Xiong,Hongbo Wang,Manzhi Li,Ling Guo,Elliott Kieff,Yixin Zeng,Qian Zhong,Musheng Zeng. Comprehensive profiling of EBV gene expression in nasopharyngeal carcinoma through paired-end transcriptome sequencing[J]. Front. Med., 2016, 10(1): 61-75.
[7] Lan Wang,Jueheng Wu,Jie Yuan,Xun Zhu,Hongmei Wu,Mengfeng Li. Midline2 is overexpressed and a prognostic indicator in human breast cancer and promotes breast cancer cell proliferation in vitro and in vivo[J]. Front. Med., 2016, 10(1): 41-51.
[8] Runlin Shi,Haibing Xiao,Tao Yang,Lei Chang,Yuanfeng Tian,Bolin Wu,Hua Xu. Effects of miR-200c on the migration and invasion abilities of human prostate cancer Du145 cells and the corresponding mechanism[J]. Front. Med., 2014, 8(4): 456-463.
[9] Hong-Lian RUAN, Feng-Hua XU, Wen-Sheng LIU, Qi-Sheng FENG, Li-Zhen CHEN, Yi-Xin ZENG, Wei-Hua JIA, . Alcohol and tea consumption in relation to the risk of nasopharyngeal carcinoma in Guangdong, China[J]. Front. Med., 2010, 4(4): 448-456.
[10] Jing CHEN MD, Guang-Yuan HU MD, Guo-Qing HU MD, Hua WU PhD, . Technetium-99m-sestamibi SPECT for the diagnosis and follow-up of nasopharyngeal carcinoma[J]. Front. Med., 2010, 4(1): 96-100.
[11] Xiaowei GONG MD, PhD, Xiaoyan MING MD, Xu WANG MM, Daan WANG MD, Peng DENG MM, Yong JIANG MD, PhD, Aihua LIU MD, PhD, . Effect of PRAK gene knockout on the proliferation of mouse embryonic fibroblasts[J]. Front. Med., 2009, 3(4): 379-383.
[12] Jianqing PAN PhD, Qin ZHANG MD, Daowen WANG MD, PhD, . Construction and humoral immune response of Epstein-Barr virus latent membrane protein 2 DNA vaccine in mice[J]. Front. Med., 2009, 3(4): 390-395.
[13] Xue LI MM , Ping HE MM , Jie XIA MM , Shiwei SONG BS , Jinhai LU BM , Yunde LIU MM , . Effect of lanthanum chloride on growth of breast cancer cells and regulation of transcription[J]. Front. Med., 2009, 3(3): 336-340.
[14] Gang WANG. NADPH oxidase and reactive oxygen species as signaling molecules in carcinogenesis[J]. Front Med Chin, 2009, 3(1): 1-7.
[15] ZHANG Shilong, ZENG Fuqing, PENG Shibo, WANG Liang. Effect on proliferation and apoptosis of T24 cell lines via silencing DNMT1 with RNA interference[J]. Front. Med., 2008, 2(4): 374-379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed