|
|
Aldolase B attenuates clear cell renal cell carcinoma progression by inhibiting CtBP2 |
Mingyue Tan1,2, Qi Pan1, Qi Wu1,3, Jianfa Li1, Jun Wang1,2,3( ) |
1. Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China 2. Urology Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China 3. Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People’s Hospital of Lishui), Lishui 323000, China |
|
|
Abstract Aldolase B (ALDOB), a glycolytic enzyme, is uniformly depleted in clear cell renal cell carcinoma (ccRCC) tissues. We previously showed that ALDOB inhibited proliferation through a mechanism independent of its enzymatic activity in ccRCC, but the mechanism was not unequivocally identified. We showed that the corepressor C-terminal-binding protein 2 (CtBP2) is a novel ALDOB-interacting protein in ccRCC. The CtBP2-to-ALDOB expression ratio in clinical samples was correlated with the expression of CtBP2 target genes and was associated with shorter survival. ALDOB inhibited CtBP2-mediated repression of multiple cell cycle inhibitor, proapoptotic, and epithelial marker genes. Furthermore, ALDOB overexpression decreased the proliferation and migration of ccRCC cells in an ALDOB-CtBP2 interaction-dependent manner. Mechanistically, our findings showed that ALDOB recruited acireductone dioxygenase 1, which catalyzes the synthesis of an endogenous inhibitor of CtBP2, 4-methylthio 2-oxobutyric acid. ALDOB functions as a scaffold to bring acireductone dioxygenase and CtBP2 in close proximity to potentiate acireductone dioxygenase-mediated inhibition of CtBP2, and this scaffolding effect was independent of ALDOB enzymatic activity. Moreover, increased ALDOB expression inhibited tumor growth in a xenograft model and decreased lung metastasis in vivo. Our findings reveal that ALDOB is a negative regulator of CtBP2 and inhibits tumor growth and metastasis in ccRCC.
|
Keywords
ALDOB
kidney cancer
cell proliferation
|
Corresponding Author(s):
Jun Wang
|
Just Accepted Date: 25 November 2022
Online First Date: 15 February 2023
Issue Date: 28 July 2023
|
|
1 |
RL Siegel, KD Miller, A Jemal. Cancer statistics, 2020. CA Cancer J Clin 2020; 70(1): 7–30
https://doi.org/10.3322/caac.21590
pmid: 31912902
|
2 |
TJ Mitchell, S Turajlic, A Rowan, D Nicol, JHR Farmery, T O’Brien, I Martincorena, P Tarpey, N Angelopoulos, LR Yates, AP Butler, K Raine, GD Stewart, B Challacombe, A Fernando, JI Lopez, S Hazell, A Chandra, S Chowdhury, S Rudman, A Soultati, G Stamp, N Fotiadis, L Pickering, L Au, L Spain, J Lynch, M Stares, J Teague, F Maura, DC Wedge, S Horswell, T Chambers, K Litchfield, H Xu, A Stewart, R Elaidi, S Oudard, N McGranahan, I Csabai, M Gore, PA Futreal, J Larkin, AG Lynch, Z Szallasi, C Swanton, PJ Campbell, TRR Consortium. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell 2018; 173(3): 611–623.e17
https://doi.org/10.1016/j.cell.2018.02.020
pmid: 29656891
|
3 |
J Schödel, S Grampp, ER Maher, H Moch, PJ Ratcliffe, P Russo, DR Mole. Hypoxia, hypoxia-inducible transcription factors, and renal cancer. Eur Urol 2016; 69(4): 646–657
https://doi.org/10.1016/j.eururo.2015.08.007
pmid: 26298207
|
4 |
L Lv, Q Lei. Proteins moonlighting in tumor metabolism and epigenetics. Front Med 2021; 15(3): 383–403
https://doi.org/10.1007/s11684-020-0818-1
pmid: 33387254
|
5 |
CS Zhang, SA Hawley, Y Zong, M Li, Z Wang, A Gray, T Ma, J Cui, JW Feng, M Zhu, YQ Wu, TY Li, Z Ye, SY Lin, H Yin, HL Piao, DG Hardie, SC Lin. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 2017; 548(7665): 112–116
https://doi.org/10.1038/nature23275
pmid: 28723898
|
6 |
M Li, X He, W Guo, H Yu, S Zhang, N Wang, G Liu, R Sa, X Shen, Y Jiang, Y Tang, Y Zhuo, C Yin, Q Tu, N Li, X Nie, Y Li, Z Hu, H Zhu, J Ding, Z Li, T Liu, F Zhang, H Zhou, S Li, J Yue, Z Yan, S Cheng, Y Tao, H Yin. Aldolase B suppresses hepatocellular carcinogenesis by inhibiting G6PD and pentose phosphate pathways. Nat Can 2020; 1(7): 735–747
https://doi.org/10.1038/s43018-020-0086-7
pmid: 35122041
|
7 |
J Huang, W Kong, J Zhang, Y Chen, W Xue, D Liu, Y Huang. c-Myc modulates glucose metabolism via regulation of miR-184/PKM2 pathway in clear-cell renal cell carcinoma. Int J Oncol 2016; 49(4): 1569–1575
https://doi.org/10.3892/ijo.2016.3622
pmid: 27431728
|
8 |
KD Courtney, D Bezwada, T Mashimo, K Pichumani, V Vemireddy, AM Funk, J Wimberly, SS McNeil, P Kapur, Y Lotan, V Margulis, JA Cadeddu, I Pedrosa, RJ DeBerardinis, CR Malloy, RM Bachoo, EA Maher. Isotope tracing of human clear cell renal cell carcinomas demonstrates suppressed glucose oxidation in vivo. Cell Metab 2018; 28(5): 793–800.e2
https://doi.org/10.1016/j.cmet.2018.07.020
pmid: 30146487
|
9 |
HI Wettersten, OA Aboud, PN Jr Lara, RH Weiss. Metabolic reprogramming in clear cell renal cell carcinoma. Nat Rev Nephrol 2017; 13(7): 410–419
https://doi.org/10.1038/nrneph.2017.59
pmid: 28480903
|
10 |
J Wang, Q Wu, J Qiu. Accumulation of fructose 1,6-bisphosphate protects clear cell renal cell carcinoma from oxidative stress. Lab Invest 2019; 99(6): 898–908
https://doi.org/10.1038/s41374-019-0203-3
pmid: 30760861
|
11 |
Y Lu, Y Li, Q Liu, N Tian, P Du, F Zhu, Y Han, X Liu, X Liu, X Peng, X Wang, Y Wu, L Tong, Y Li, Y Zhu, L Wu, P Zhang, Y Xu, H Chen, B Li, X Tong. MondoA-thioredoxin-interacting protein axis maintains regulatory T-cell identity and function in colorectal cancer microenvironment. Gastroenterology 2021; 161(2): 575–591.e16
https://doi.org/10.1053/j.gastro.2021.04.041
pmid: 33901495
|
12 |
P Martinelli, Santa Pau E Carrillo-de, T Cox, B Jr Sainz, N Dusetti, W Greenhalf, L Rinaldi, E Costello, P Ghaneh, N Malats, M Büchler, M Pajic, AV Biankin, J Iovanna, J Neoptolemos, FX Real. GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer. Gut 2017; 66(9): 1665–1676
https://doi.org/10.1136/gutjnl-2015-311256
pmid: 27325420
|
13 |
AA Ganaie, FH Beigh, M Astone, MG Ferrari, R Maqbool, S Umbreen, AS Parray, HR Siddique, T Hussain, P Murugan, C Morrissey, S Koochekpour, Y Deng, BR Konety, LH Hoeppner, M Saleem. BMI1 drives metastasis of prostate cancer in Caucasian and African-American men and is a potential therapeutic target: hypothesis tested in race-specific models. Clin Cancer Res 2018; 24(24): 6421–6432
https://doi.org/10.1158/1078-0432.CCR-18-1394
pmid: 30087142
|
14 |
EN Kouwenhoven, Heeringen SJ van, JJ Tena, M Oti, BE Dutilh, ME Alonso, la Calle-Mustienes E de, L Smeenk, T Rinne, L Parsaulian, E Bolat, R Jurgelenaite, MA Huynen, A Hoischen, JA Veltman, HG Brunner, T Roscioli, E Oates, M Wilson, M Manzanares, JL Gómez-Skarmeta, HG Stunnenberg, M Lohrum, Bokhoven H van, H Zhou. Genome-wide profiling of p63 DNA-binding sites identifies an element that regulates gene expression during limb development in the 7q21 SHFM1 locus. PLoS Genet 2010; 6(8): e1001065
https://doi.org/10.1371/journal.pgen.1001065
pmid: 20808887
|
15 |
C Lu, D Yang, ME Sabbatini, AH Colby, MW Grinstaff, NH Oberlies, C Pearce, K Liu. Contrasting roles of H3K4me3 and H3K9me3 in regulation of apoptosis and gemcitabine resistance in human pancreatic cancer cells. BMC Cancer 2018; 18(1): 149
https://doi.org/10.1186/s12885-018-4061-y
pmid: 29409480
|
16 |
X Hu, C Feng, Y Zhou, A Harrison, M Chen. DeepTrio: a ternary prediction system for protein-protein interaction using mask multiple parallel convolutional neural networks. Bioinformatics 2021; 38(3): 694–702
https://doi.org/10.1093/bioinformatics/btab737
pmid: 34694333
|
17 |
T Sakamoto, J S Weng, T Hara, S Yoshino, H Kozuka-Hata, M Oyama, M Seiki. Hypoxia-inducible factor 1 regulation through cross talk between mTOR and MT1-MMP. Mol Cell Biol. 2014; 34(1): 30–42
https://doi.org/10.1128/MCB.01169-13
pmid: 24164895
|
18 |
X Li, A Eberhardt, JN Hansen, D Bohmann, H Li, NF Schor. Methylation of the phosphatase-transcription activator EYA1 by protein arginine methyltransferase 1: mechanistic, functional, and structural studies. FASEB J 2017; 31(6): 2327–2339
https://doi.org/10.1096/fj.201601050RR
pmid: 28213359
|
19 |
R SantamariaG EspositoL VitaglianoV RaceI PaglionicoL ZancanA ZagariF Salvatore. Functional and molecular modelling studies of two hereditary fructose intolerance-causing mutations at arginine 303 in human liver aldolase. Biochem J 2000; 350 Pt 3(Pt 3): 823–828
|
20 |
Y Zhang, MH Heinsen, M Kostic, GM Pagani, TV Riera, I Perovic, L Hedstrom, BB Snider, TC Pochapsky. Analogs of 1-phosphonooxy-2,2-dihydroxy-3-oxo-5-(methylthio)pentane, an acyclic intermediate in the methionine salvage pathway: a new preparation and characterization of activity with E1 enolase/phosphatase from Klebsiella oxytoca. Bioorg Med Chem 2004; 12(14): 3847–3855
https://doi.org/10.1016/j.bmc.2004.05.002
pmid: 15210152
|
21 |
AR Deshpande, K Wagenpfeil, TC Pochapsky, GA Petsko, D Ringe. Metal-dependent function of a mammalian acireductone dioxygenase. Biochemistry 2016; 55(9): 1398–1407
https://doi.org/10.1021/acs.biochem.5b01319
pmid: 26858196
|
22 |
J Wang, M Tan, J Ge, P Zhang, J Zhong, L Tao, Q Wang, X Tong, J Qiu. Lysosomal acid lipase promotes cholesterol ester metabolism and drives clear cell renal cell carcinoma progression. Cell Prolif 2018; 51(4): e12452
https://doi.org/10.1111/cpr.12452
pmid: 29569766
|
23 |
BS AlexandrovFL IlievV Stanev V VesselinovLB Alexandrov. rNMF 1.0: Robust Nonnegative matrix factorization with kmeans clustering and signal shift. 2016
|
24 |
J Guinney, R Dienstmann, X Wang, Reyniès A de, A Schlicker, C Soneson, L Marisa, P Roepman, G Nyamundanda, P Angelino, BM Bot, JS Morris, IM Simon, S Gerster, E Fessler, Sousa E Melo F De, E Missiaglia, H Ramay, D Barras, K Homicsko, D Maru, GC Manyam, B Broom, V Boige, B Perez-Villamil, T Laderas, R Salazar, JW Gray, D Hanahan, J Tabernero, R Bernards, SH Friend, P Laurent-Puig, JP Medema, A Sadanandam, L Wessels, M Delorenzi, S Kopetz, L Vermeulen, S Tejpar, S Tejpar. The consensus molecular subtypes of colorectal cancer. Nat Med 2015; 21(11): 1350–1356
https://doi.org/10.1038/nm.3967
pmid: 26457759
|
25 |
X He, M Li, H Yu, G Liu, N Wang, C Yin, Q Tu, G Narla, Y Tao, S Cheng, H Yin, H Yin. Loss of hepatic aldolase B activates Akt and promotes hepatocellular carcinogenesis by destabilizing the Aldob/Akt/PP2A protein complex. PLoS Biol 2020; 18(12): e3000803
https://doi.org/10.1371/journal.pbio.3000803
pmid: 33275593
|
26 |
K Takayama, T Suzuki, T Fujimura, T Urano, S Takahashi, Y Homma, S Inoue. CtBP2 modulates the androgen receptor to promote prostate cancer progression. Cancer Res 2014; 74(22): 6542–6553
https://doi.org/10.1158/0008-5472.CAN-14-1030
pmid: 25228652
|
27 |
DP Wang, LL Gu, Q Xue, H Chen, GX Mao. CtBP2 promotes proliferation and reduces drug sensitivity in non-small cell lung cancer via the Wnt/β-catenin pathway. Neoplasma 2018; 65(6): 888–897
https://doi.org/10.4149/neo_2018_171220N828
pmid: 30334447
|
28 |
S Paliwal, N Ho, D Parker, SR Grossman. CtBP2 promotes human cancer cell migration by transcriptional activation of tiam1. Genes Cancer 2012; 3(7–8): 481–490
https://doi.org/10.1177/1947601912463695
pmid: 23264848
|
29 |
F Dai, Y Xuan, JJ Jin, S Yu, ZW Long, H Cai, XW Liu, Y Zhou, YN Wang, Z Chen, H Huang. CtBP2 overexpression promotes tumor cell proliferation and invasion in gastric cancer and is associated with poor prognosis. Oncotarget 2017; 8(17): 28736–28749
https://doi.org/10.18632/oncotarget.15661
pmid: 28404932
|
30 |
KGR Quinlan, A Verger, A Kwok, SHY Lee, J Perdomo, M Nardini, M Bolognesi, M Crossley. Role of the C-terminal binding protein PXDLS motif binding cleft in protein interactions and transcriptional repression. Mol Cell Biol 2006; 26(21): 8202–8213
https://doi.org/10.1128/MCB.00445-06
pmid: 16940173
|
31 |
GM Riefler, BL Firestein. Binding of neuronal nitric-oxide synthase (nNOS) to carboxyl-terminal-binding protein (CtBP) changes the localization of CtBP from the nucleus to the cytosol: a novel function for targeting by the PDZ domain of nNOS. J Biol Chem 2001; 276(51): 48262–48268
https://doi.org/10.1074/jbc.M106503200
pmid: 11590170
|
32 |
B Benziane, S Demaretz, N Defontaine, N Zaarour, L Cheval, S Bourgeois, C Klein, M Froissart, A Blanchard, M Paillard, G Gamba, P Houillier, K Laghmani. NKCC2 surface expression in mammalian cells: down-regulation by novel interaction with aldolase B. J Biol Chem 2007; 282(46): 33817–33830
https://doi.org/10.1074/jbc.M700195200
pmid: 17848580
|
33 |
LJ Zhao, M Kuppuswamy, S Vijayalingam, G Chinnadurai. Interaction of ZEB and histone deacetylase with the PLDLS-binding cleft region of monomeric C-terminal binding protein 2. BMC Mol Biol 2009; 10(1): 89
https://doi.org/10.1186/1471-2199-10-89
pmid: 19754958
|
34 |
M Lu, D Ammar, H Ives, F Albrecht, SL Gluck. Physical interaction between aldolase and vacuolar H+-ATPase is essential for the assembly and activity of the proton pump. J Biol Chem 2007; 282(34): 24495–24503
https://doi.org/10.1074/jbc.M702598200
pmid: 17576770
|
35 |
S Lee, S Hong, S Kim, S Kang. Ataxin-1 occupies the promoter region of E-cadherin in vivo and activates CtBP2-repressed promoter. Biochim Biophys Acta 2011; 1813(5): 713–722
https://doi.org/10.1016/j.bbamcr.2011.01.035
pmid: 21315774
|
36 |
C Wan, B Borgeson, S Phanse, F Tu, K Drew, G Clark, X Xiong, O Kagan, J Kwan, A Bezginov, K Chessman, S Pal, G Cromar, O Papoulas, Z Ni, DR Boutz, S Stoilova, PC Havugimana, X Guo, RH Malty, M Sarov, J Greenblatt, M Babu, WB Derry, ER Tillier, JB Wallingford, J Parkinson, EM Marcotte, A Emili. Panorama of ancient metazoan macromolecular complexes. Nature 2015; 525(7569): 339–344
https://doi.org/10.1038/nature14877
pmid: 26344197
|
37 |
G Lucarelli, D Loizzo, R Franzin, S Battaglia, M Ferro, F Cantiello, G Castellano, C Bettocchi, P Ditonno, M Battaglia. Metabolomic insights into pathophysiological mechanisms and biomarker discovery in clear cell renal cell carcinoma. Expert Rev Mol Diagn 2019; 19(5): 397–407
https://doi.org/10.1080/14737159.2019.1607729
pmid: 30983433
|
38 |
R Ragone, F Sallustio, S Piccinonna, M Rutigliano, G Vanessa, S Palazzo, G Lucarelli, P Ditonno, M Battaglia, FP Fanizzi, FP Schena. Renal cell carcinoma: a study through NMR-based metabolomics combined with transcriptomics. Diseases 2016; 4(1): 7
https://doi.org/10.3390/diseases4010007
pmid: 28933387
|
39 |
C Bianchi, C Meregalli, S Bombelli, V Di Stefano, F Salerno, B Torsello, S De Marco, G Bovo, I Cifola, E Mangano, C Battaglia, G Strada, G Lucarelli, RH Weiss, RA Perego. The glucose and lipid metabolism reprogramming is grade-dependent in clear cell renal cell carcinoma primary cultures and is targetable to modulate cell viability and proliferation. Oncotarget 2017; 8(69): 113502–113515
https://doi.org/10.18632/oncotarget.23056
pmid: 29371925
|
40 |
G Lucarelli, M Ferro, D Loizzo, C Bianchi, D Terracciano, F Cantiello, LN Bell, S Battaglia, C Porta, A Gernone, RA Perego, E Maiorano, O Cobelli, G Castellano, L Vincenti, P Ditonno, M Battaglia. Integration of lipidomics and transcriptomics reveals reprogramming of the lipid metabolism and composition in clear cell renal cell carcinoma. Metabolites 2020; 10(12): 509
https://doi.org/10.3390/metabo10120509
pmid: 33322148
|
41 |
S Bombelli, B Torsello, S De Marco, G Lucarelli, I Cifola, C Grasselli, G Strada, G Bovo, RA Perego, C Bianchi. 36-kDa annexin A3 isoform negatively modulates lipid storage in clear cell renal cell carcinoma cells. Am J Pathol 2020; 190(11): 2317–2326
https://doi.org/10.1016/j.ajpath.2020.08.008
pmid: 32861643
|
42 |
G Lucarelli, M Rutigliano, F Sallustio, D Ribatti, A Giglio, M Lepore Signorile, V Grossi, P Sanese, A Napoli, E Maiorano, C Bianchi, RA Perego, M Ferro, E Ranieri, G Serino, LN Bell, P Ditonno, C Simone, M Battaglia. Integrated multi-omics characterization reveals a distinctive metabolic signature and the role of NDUFA4L2 in promoting angiogenesis, chemoresistance, and mitochondrial dysfunction in clear cell renal cell carcinoma. Aging (Albany NY) 2018; 10(12): 3957–3985
https://doi.org/10.18632/aging.101685
pmid: 30538212
|
43 |
F Gatto, I Nookaew, J Nielsen. Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear cell renal carcinoma. Proc Natl Acad Sci USA 2014; 111(9): E866–E875
https://doi.org/10.1073/pnas.1319196111
pmid: 24550497
|
44 |
B Li, B Qiu, DSM Lee, ZE Walton, JD Ochocki, LK Mathew, A Mancuso, TPF Gade, B Keith, I Nissim, MC Simon. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 2014; 513(7517): 251–255
https://doi.org/10.1038/nature13557
pmid: 25043030
|
45 |
QF Tao, SX Yuan, F Yang, S Yang, Y Yang, JH Yuan, ZG Wang, QG Xu, KY Lin, J Cai, J Yu, WL Huang, XL Teng, CC Zhou, F Wang, SH Sun, WP Zhou. Aldolase B inhibits metastasis through ten-eleven translocation 1 and serves as a prognostic biomarker in hepatocellular carcinoma. Mol Cancer 2015; 14(1): 170
https://doi.org/10.1186/s12943-015-0437-7
pmid: 26376879
|
46 |
J Lian, L Xia, Y Chen, J Zheng, K Ma, L Luo, F Ye. Aldolase B impairs DNA mismatch repair and induces apoptosis in colon adenocarcinoma. Pathol Res Pract 2019; 215(11): 152597
https://doi.org/10.1016/j.prp.2019.152597
pmid: 31564566
|
47 |
P Bu, KY Chen, K Xiang, C Johnson, SB Crown, N Rakhilin, Y Ai, L Wang, R Xi, I Astapova, Y Han, J Li, BB Barth, M Lu, Z Gao, R Mines, L Zhang, M Herman, D Hsu, GF Zhang, X Shen. Aldolase B-mediated fructose metabolism drives metabolic reprogramming of colon cancer liver metastasis. Cell Metab 2018; 27(6): 1249–1262.e4
https://doi.org/10.1016/j.cmet.2018.04.003
pmid: 29706565
|
48 |
M Li, CS Zhang, Y Zong, JW Feng, T Ma, M Hu, Z Lin, X Li, C Xie, Y Wu, D Jiang, Y Li, C Zhang, X Tian, W Wang, Y Yang, J Chen, J Cui, YQ Wu, X Chen, QF Liu, J Wu, SY Lin, Z Ye, Y Liu, HL Piao, L Yu, Z Zhou, XS Xie, DG Hardie, SC Lin. Transient receptor potential V channels are essential for glucose sensing by aldolase and AMPK. Cell Metab 2019; 30(3): 508–524.e12
https://doi.org/10.1016/j.cmet.2019.05.018
pmid: 31204282
|
49 |
G Liu, N Wang, C Zhang, M Li, X He, C Yin, Q Tu, X Shen, L Zhang, J Lv, Y Wang, H Jiang, S Chen, N Li, Y Tao, H Yin. Fructose-1,6-bisphosphate aldolase B depletion promotes hepatocellular carcinogenesis through activating insulin receptor signaling and lipogenesis. Hepatology 2021; 74(6): 3037–3055
https://doi.org/10.1002/hep.32064
pmid: 34292642
|
50 |
CB Chan, X Liu, SW Jang, SIH Hsu, I Williams, S Kang, J Chen, K Ye. NGF inhibits human leukemia proliferation by downregulating cyclin A1 expression through promoting acinus/CtBP2 association. Oncogene 2009; 28(43): 3825–3836
https://doi.org/10.1038/onc.2009.236
pmid: 19668232
|
51 |
L Barroilhet, J Yang, K Hasselblatt, RM Paranal, SK Ng, JA Rauh-Hain, WR Welch, JE Bradner, RS Berkowitz, SW Ng. C-terminal binding protein-2 regulates response of epithelial ovarian cancer cells to histone deacetylase inhibitors. Oncogene 2013; 32(33): 3896–3903
https://doi.org/10.1038/onc.2012.380
pmid: 22945647
|
52 |
L Wang, H Zhou, Y Wang, G Cui, LJ Di. CtBP maintains cancer cell growth and metabolic homeostasis via regulating SIRT4. Cell Death Dis 2015; 6(1): e1620
https://doi.org/10.1038/cddis.2014.587
pmid: 25633289
|
53 |
CC Fjeld, WT Birdsong, RH Goodman. Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor. Proc Natl Acad Sci USA 2003; 100(16): 9202–9207
https://doi.org/10.1073/pnas.1633591100
pmid: 12872005
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|