Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2023, Vol. 17 Issue (3) : 503-517    https://doi.org/10.1007/s11684-022-0947-9
RESEARCH ARTICLE
Aldolase B attenuates clear cell renal cell carcinoma progression by inhibiting CtBP2
Mingyue Tan1,2, Qi Pan1, Qi Wu1,3, Jianfa Li1, Jun Wang1,2,3()
1. Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
2. Urology Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
3. Department of Urology, The Sixth Affiliated Hospital of Wenzhou Medical University (The People’s Hospital of Lishui), Lishui 323000, China
 Download: PDF(3698 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Aldolase B (ALDOB), a glycolytic enzyme, is uniformly depleted in clear cell renal cell carcinoma (ccRCC) tissues. We previously showed that ALDOB inhibited proliferation through a mechanism independent of its enzymatic activity in ccRCC, but the mechanism was not unequivocally identified. We showed that the corepressor C-terminal-binding protein 2 (CtBP2) is a novel ALDOB-interacting protein in ccRCC. The CtBP2-to-ALDOB expression ratio in clinical samples was correlated with the expression of CtBP2 target genes and was associated with shorter survival. ALDOB inhibited CtBP2-mediated repression of multiple cell cycle inhibitor, proapoptotic, and epithelial marker genes. Furthermore, ALDOB overexpression decreased the proliferation and migration of ccRCC cells in an ALDOB-CtBP2 interaction-dependent manner. Mechanistically, our findings showed that ALDOB recruited acireductone dioxygenase 1, which catalyzes the synthesis of an endogenous inhibitor of CtBP2, 4-methylthio 2-oxobutyric acid. ALDOB functions as a scaffold to bring acireductone dioxygenase and CtBP2 in close proximity to potentiate acireductone dioxygenase-mediated inhibition of CtBP2, and this scaffolding effect was independent of ALDOB enzymatic activity. Moreover, increased ALDOB expression inhibited tumor growth in a xenograft model and decreased lung metastasis in vivo. Our findings reveal that ALDOB is a negative regulator of CtBP2 and inhibits tumor growth and metastasis in ccRCC.

Keywords ALDOB      kidney cancer      cell proliferation     
Corresponding Author(s): Jun Wang   
Just Accepted Date: 25 November 2022   Online First Date: 15 February 2023    Issue Date: 28 July 2023
 Cite this article:   
Mingyue Tan,Qi Pan,Qi Wu, et al. Aldolase B attenuates clear cell renal cell carcinoma progression by inhibiting CtBP2[J]. Front. Med., 2023, 17(3): 503-517.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-022-0947-9
https://academic.hep.com.cn/fmd/EN/Y2023/V17/I3/503
Fig.1  
Fig.2  The CtBP2-to-ALDOB expression ratio correlates with CtBP2 target gene expression and is associated with shorter survival. (A) Boxplot of the relative CTBP2-to-ALDOB expression ratio in normal kidneys and ccRCC tissues (N = 30). (B, C) Boxplot of the relative CTBP2 (B) and ALDOB (C) expression levels in normal kidneys and ccRCC tissues (N = 30). (D–G) A scatter plot was used to visualize the relationship between the CtBP2/ALDOB expression ratio and the expression of target genes (CDH1 (D), CDKN2C (E), BIK (F), and BAX (G)) in ccRCC tissues (N = 30). (H,I) A scatter plot was used to visualize the relationship between the CtBP2/ALDOB expression ratio and the expression of target genes (CDH1 (H) and CDKN1C (I)) in the TCGA-KIRC data set. (J,K) A scatter plot was used to visualize the relationship between the CtBP2/ALDOB expression ratio and the protein levels of p21 (J) and Bax (K) in the TCGA-KIRC data set. (L) The consensus map of RNA sequencing (RNA-seq) data from ccRCC samples calculated with the NMF algorithm (cluster number = 3). (M) Violin plots of the CtBP2/ALDOB ratio within Clusters 1, 2, and 3. (N) Curves showing the overall survival of 516 patients with ccRCC from the TCGA-KIRC data set. These patients were divided into Clusters 1, 2, and 3 according to the NMF algorithm. (O,P) Curves showing the overall survival (O) and disease-free survival (P) of 516 patients with ccRCC from the TCGA-KIRC data set. These patients were divided into low and high groups according to the median CTBP2/ALDOB ratio. HRs and P values for survival curves were calculated using the log-rank test.
Fig.3  ALDOB releases CtBP2-mediated repression of target gene expression. (A,B) Real-time PCR analysis of the expression of CtBP2 target genes in Caki-1 (A) and 769-P (B) cells stably transfected with Ctrl or ALDOB. (C) ALDOB enzyme activity in Caki-1 and OSRC-2 cells transiently transfected with siCtrl, siCtBP2#1, or siCtBP2#2. (D) Caki-1 cells infected with different doses of a lentivirus expressing ALDOB were subjected to WB with the indicated antibody 7 days after infection. (E) Caki-1 cells stably expressing Ctrl and ALDOB were subjected to nuclear and cytosolic fractionation and analysis. Tubulin and Lamin B served as the loading controls for the cytosolic and nuclear fractions, respectively. (F,G) The 786-O cells stably expressing Ctrl and ALDOB were transiently transfected with a CDH1 promoter luciferase reporter and siCtrl or siCtBP2#1 and subjected to WB (F) and a luciferase assay (G) 72 h after transfection. (H) ALDOB overexpression resulted in reduced binding of CtBP2 to the promoter regions of the CDH1, PTEN, CDKN1A, and BAX genes. ChIP assays of the E-cadherin, PTEN, p21, and Bax promoters were performed using chromatin obtained from Ctrl- or ALDOB-expressing Caki-1 cells. After immunoprecipitation with anti-CtBP2 or control IgG antibodies, immunoprecipitated DNA was quantified using qPCR with primers specific for the indicated promoter. (I) The 293T cells were transfected with HA-CtBP2, Flag-ALDOBWT, Flag-ALDOBK147A, Flag-ALDOBK230A, Flag-ALDOBR304A or Flag-ALDOBA318E. Twenty-four hours after transfection, the cells were subjected to IP using an anti-HA antibody. (J) ALDOB enzyme activity in 293T cells transiently transfected with ALDOBWT or ALDOBA318E. (K) Real-time PCR analysis of the expression of CtBP2 target genes in Caki-1 cells stably transfected with Ctrl, ALDOBWT, and ALDOBA318E. (L) The 786-O cells stably expressing Ctrl, ALDOBWT and ALDOBA318E were transiently transfected with a CDH1 promoter luciferase reporter and subjected to a luciferase assay 48 h after transfection. * indicates P < 0.05.
Fig.4  ALDOB inhibits ccRCC cell proliferation and migration partially by interacting with CtBP2. (A) Caki-1 cells stably expressing the vector (Ctrl), ALDOBWT or ALDOBA318E were subjected to WB analysis using an anti-ALDOB antibody. (B) Growth curves of Caki-1 cells stably expressing Ctrl, ALDOBWT, or ALDOBA318E. (C) Growth curves of 786-O cells stably expressing Ctrl, ALDOBWT, or ALDOBA318E. (D,E) Cell cycle analysis of Caki-1 (D) and 786-O (E) cells stably expressing an empty vector (Ctrl), ALDOBWT, or ALDOBA318E based on a BrdU incorporation assay. (F,G) Percentage of apoptotic Caki-1 (F) and OSRC-2 (G) cells stably expressing an empty vector (Ctrl), ALDOBWT, or ALDOBA318E 2 h after treatment with 0.1 nM staurosporine, according to annexin V and propidium iodide (PI) staining. (H, I) Wound healing assay of Caki-1 (H) and 786-O (I) cells stably expressing Ctrl, ALDOBWT or ALDOBA318E. Scale bar = 200 μm. (J,K) Transwell assays of Caki-1 (J) and 786-O (K) cells stably expressing Ctrl, ALDOBWT, or ALDOBA318E. Images were captured at 200× magnification.
Fig.5  
Fig.6  Schematic diagram. ALDOB acts as a scaffold protein that brings ADI1 and CtBP2 in close proximity. ALDOB potentiates ADI1-mediated inhibition of CtBP2. This biological process impairs the transcriptional repression mediated by CtBP2 and is involved in regulating cell proliferation and migration in kidney cancer.
1 RL Siegel, KD Miller, A Jemal. Cancer statistics, 2020. CA Cancer J Clin 2020; 70(1): 7–30
https://doi.org/10.3322/caac.21590 pmid: 31912902
2 TJ Mitchell, S Turajlic, A Rowan, D Nicol, JHR Farmery, T O’Brien, I Martincorena, P Tarpey, N Angelopoulos, LR Yates, AP Butler, K Raine, GD Stewart, B Challacombe, A Fernando, JI Lopez, S Hazell, A Chandra, S Chowdhury, S Rudman, A Soultati, G Stamp, N Fotiadis, L Pickering, L Au, L Spain, J Lynch, M Stares, J Teague, F Maura, DC Wedge, S Horswell, T Chambers, K Litchfield, H Xu, A Stewart, R Elaidi, S Oudard, N McGranahan, I Csabai, M Gore, PA Futreal, J Larkin, AG Lynch, Z Szallasi, C Swanton, PJ Campbell, TRR Consortium. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell 2018; 173(3): 611–623.e17
https://doi.org/10.1016/j.cell.2018.02.020 pmid: 29656891
3 J Schödel, S Grampp, ER Maher, H Moch, PJ Ratcliffe, P Russo, DR Mole. Hypoxia, hypoxia-inducible transcription factors, and renal cancer. Eur Urol 2016; 69(4): 646–657
https://doi.org/10.1016/j.eururo.2015.08.007 pmid: 26298207
4 L Lv, Q Lei. Proteins moonlighting in tumor metabolism and epigenetics. Front Med 2021; 15(3): 383–403
https://doi.org/10.1007/s11684-020-0818-1 pmid: 33387254
5 CS Zhang, SA Hawley, Y Zong, M Li, Z Wang, A Gray, T Ma, J Cui, JW Feng, M Zhu, YQ Wu, TY Li, Z Ye, SY Lin, H Yin, HL Piao, DG Hardie, SC Lin. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 2017; 548(7665): 112–116
https://doi.org/10.1038/nature23275 pmid: 28723898
6 M Li, X He, W Guo, H Yu, S Zhang, N Wang, G Liu, R Sa, X Shen, Y Jiang, Y Tang, Y Zhuo, C Yin, Q Tu, N Li, X Nie, Y Li, Z Hu, H Zhu, J Ding, Z Li, T Liu, F Zhang, H Zhou, S Li, J Yue, Z Yan, S Cheng, Y Tao, H Yin. Aldolase B suppresses hepatocellular carcinogenesis by inhibiting G6PD and pentose phosphate pathways. Nat Can 2020; 1(7): 735–747
https://doi.org/10.1038/s43018-020-0086-7 pmid: 35122041
7 J Huang, W Kong, J Zhang, Y Chen, W Xue, D Liu, Y Huang. c-Myc modulates glucose metabolism via regulation of miR-184/PKM2 pathway in clear-cell renal cell carcinoma. Int J Oncol 2016; 49(4): 1569–1575
https://doi.org/10.3892/ijo.2016.3622 pmid: 27431728
8 KD Courtney, D Bezwada, T Mashimo, K Pichumani, V Vemireddy, AM Funk, J Wimberly, SS McNeil, P Kapur, Y Lotan, V Margulis, JA Cadeddu, I Pedrosa, RJ DeBerardinis, CR Malloy, RM Bachoo, EA Maher. Isotope tracing of human clear cell renal cell carcinomas demonstrates suppressed glucose oxidation in vivo. Cell Metab 2018; 28(5): 793–800.e2
https://doi.org/10.1016/j.cmet.2018.07.020 pmid: 30146487
9 HI Wettersten, OA Aboud, PN Jr Lara, RH Weiss. Metabolic reprogramming in clear cell renal cell carcinoma. Nat Rev Nephrol 2017; 13(7): 410–419
https://doi.org/10.1038/nrneph.2017.59 pmid: 28480903
10 J Wang, Q Wu, J Qiu. Accumulation of fructose 1,6-bisphosphate protects clear cell renal cell carcinoma from oxidative stress. Lab Invest 2019; 99(6): 898–908
https://doi.org/10.1038/s41374-019-0203-3 pmid: 30760861
11 Y Lu, Y Li, Q Liu, N Tian, P Du, F Zhu, Y Han, X Liu, X Liu, X Peng, X Wang, Y Wu, L Tong, Y Li, Y Zhu, L Wu, P Zhang, Y Xu, H Chen, B Li, X Tong. MondoA-thioredoxin-interacting protein axis maintains regulatory T-cell identity and function in colorectal cancer microenvironment. Gastroenterology 2021; 161(2): 575–591.e16
https://doi.org/10.1053/j.gastro.2021.04.041 pmid: 33901495
12 P Martinelli, Santa Pau E Carrillo-de, T Cox, B Jr Sainz, N Dusetti, W Greenhalf, L Rinaldi, E Costello, P Ghaneh, N Malats, M Büchler, M Pajic, AV Biankin, J Iovanna, J Neoptolemos, FX Real. GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer. Gut 2017; 66(9): 1665–1676
https://doi.org/10.1136/gutjnl-2015-311256 pmid: 27325420
13 AA Ganaie, FH Beigh, M Astone, MG Ferrari, R Maqbool, S Umbreen, AS Parray, HR Siddique, T Hussain, P Murugan, C Morrissey, S Koochekpour, Y Deng, BR Konety, LH Hoeppner, M Saleem. BMI1 drives metastasis of prostate cancer in Caucasian and African-American men and is a potential therapeutic target: hypothesis tested in race-specific models. Clin Cancer Res 2018; 24(24): 6421–6432
https://doi.org/10.1158/1078-0432.CCR-18-1394 pmid: 30087142
14 EN Kouwenhoven, Heeringen SJ van, JJ Tena, M Oti, BE Dutilh, ME Alonso, la Calle-Mustienes E de, L Smeenk, T Rinne, L Parsaulian, E Bolat, R Jurgelenaite, MA Huynen, A Hoischen, JA Veltman, HG Brunner, T Roscioli, E Oates, M Wilson, M Manzanares, JL Gómez-Skarmeta, HG Stunnenberg, M Lohrum, Bokhoven H van, H Zhou. Genome-wide profiling of p63 DNA-binding sites identifies an element that regulates gene expression during limb development in the 7q21 SHFM1 locus. PLoS Genet 2010; 6(8): e1001065
https://doi.org/10.1371/journal.pgen.1001065 pmid: 20808887
15 C Lu, D Yang, ME Sabbatini, AH Colby, MW Grinstaff, NH Oberlies, C Pearce, K Liu. Contrasting roles of H3K4me3 and H3K9me3 in regulation of apoptosis and gemcitabine resistance in human pancreatic cancer cells. BMC Cancer 2018; 18(1): 149
https://doi.org/10.1186/s12885-018-4061-y pmid: 29409480
16 X Hu, C Feng, Y Zhou, A Harrison, M Chen. DeepTrio: a ternary prediction system for protein-protein interaction using mask multiple parallel convolutional neural networks. Bioinformatics 2021; 38(3): 694–702
https://doi.org/10.1093/bioinformatics/btab737 pmid: 34694333
17 T Sakamoto, J S Weng, T Hara, S Yoshino, H Kozuka-Hata, M Oyama, M Seiki. Hypoxia-inducible factor 1 regulation through cross talk between mTOR and MT1-MMP. Mol Cell Biol. 2014; 34(1): 30–42
https://doi.org/10.1128/MCB.01169-13 pmid: 24164895
18 X Li, A Eberhardt, JN Hansen, D Bohmann, H Li, NF Schor. Methylation of the phosphatase-transcription activator EYA1 by protein arginine methyltransferase 1: mechanistic, functional, and structural studies. FASEB J 2017; 31(6): 2327–2339
https://doi.org/10.1096/fj.201601050RR pmid: 28213359
19 R SantamariaG EspositoL VitaglianoV RaceI PaglionicoL ZancanA ZagariF Salvatore. Functional and molecular modelling studies of two hereditary fructose intolerance-causing mutations at arginine 303 in human liver aldolase. Biochem J 2000; 350 Pt 3(Pt 3): 823–828
20 Y Zhang, MH Heinsen, M Kostic, GM Pagani, TV Riera, I Perovic, L Hedstrom, BB Snider, TC Pochapsky. Analogs of 1-phosphonooxy-2,2-dihydroxy-3-oxo-5-(methylthio)pentane, an acyclic intermediate in the methionine salvage pathway: a new preparation and characterization of activity with E1 enolase/phosphatase from Klebsiella oxytoca. Bioorg Med Chem 2004; 12(14): 3847–3855
https://doi.org/10.1016/j.bmc.2004.05.002 pmid: 15210152
21 AR Deshpande, K Wagenpfeil, TC Pochapsky, GA Petsko, D Ringe. Metal-dependent function of a mammalian acireductone dioxygenase. Biochemistry 2016; 55(9): 1398–1407
https://doi.org/10.1021/acs.biochem.5b01319 pmid: 26858196
22 J Wang, M Tan, J Ge, P Zhang, J Zhong, L Tao, Q Wang, X Tong, J Qiu. Lysosomal acid lipase promotes cholesterol ester metabolism and drives clear cell renal cell carcinoma progression. Cell Prolif 2018; 51(4): e12452
https://doi.org/10.1111/cpr.12452 pmid: 29569766
23 BS AlexandrovFL IlievV Stanev V VesselinovLB Alexandrov. rNMF 1.0: Robust Nonnegative matrix factorization with kmeans clustering and signal shift. 2016
24 J Guinney, R Dienstmann, X Wang, Reyniès A de, A Schlicker, C Soneson, L Marisa, P Roepman, G Nyamundanda, P Angelino, BM Bot, JS Morris, IM Simon, S Gerster, E Fessler, Sousa E Melo F De, E Missiaglia, H Ramay, D Barras, K Homicsko, D Maru, GC Manyam, B Broom, V Boige, B Perez-Villamil, T Laderas, R Salazar, JW Gray, D Hanahan, J Tabernero, R Bernards, SH Friend, P Laurent-Puig, JP Medema, A Sadanandam, L Wessels, M Delorenzi, S Kopetz, L Vermeulen, S Tejpar, S Tejpar. The consensus molecular subtypes of colorectal cancer. Nat Med 2015; 21(11): 1350–1356
https://doi.org/10.1038/nm.3967 pmid: 26457759
25 X He, M Li, H Yu, G Liu, N Wang, C Yin, Q Tu, G Narla, Y Tao, S Cheng, H Yin, H Yin. Loss of hepatic aldolase B activates Akt and promotes hepatocellular carcinogenesis by destabilizing the Aldob/Akt/PP2A protein complex. PLoS Biol 2020; 18(12): e3000803
https://doi.org/10.1371/journal.pbio.3000803 pmid: 33275593
26 K Takayama, T Suzuki, T Fujimura, T Urano, S Takahashi, Y Homma, S Inoue. CtBP2 modulates the androgen receptor to promote prostate cancer progression. Cancer Res 2014; 74(22): 6542–6553
https://doi.org/10.1158/0008-5472.CAN-14-1030 pmid: 25228652
27 DP Wang, LL Gu, Q Xue, H Chen, GX Mao. CtBP2 promotes proliferation and reduces drug sensitivity in non-small cell lung cancer via the Wnt/β-catenin pathway. Neoplasma 2018; 65(6): 888–897
https://doi.org/10.4149/neo_2018_171220N828 pmid: 30334447
28 S Paliwal, N Ho, D Parker, SR Grossman. CtBP2 promotes human cancer cell migration by transcriptional activation of tiam1. Genes Cancer 2012; 3(7–8): 481–490
https://doi.org/10.1177/1947601912463695 pmid: 23264848
29 F Dai, Y Xuan, JJ Jin, S Yu, ZW Long, H Cai, XW Liu, Y Zhou, YN Wang, Z Chen, H Huang. CtBP2 overexpression promotes tumor cell proliferation and invasion in gastric cancer and is associated with poor prognosis. Oncotarget 2017; 8(17): 28736–28749
https://doi.org/10.18632/oncotarget.15661 pmid: 28404932
30 KGR Quinlan, A Verger, A Kwok, SHY Lee, J Perdomo, M Nardini, M Bolognesi, M Crossley. Role of the C-terminal binding protein PXDLS motif binding cleft in protein interactions and transcriptional repression. Mol Cell Biol 2006; 26(21): 8202–8213
https://doi.org/10.1128/MCB.00445-06 pmid: 16940173
31 GM Riefler, BL Firestein. Binding of neuronal nitric-oxide synthase (nNOS) to carboxyl-terminal-binding protein (CtBP) changes the localization of CtBP from the nucleus to the cytosol: a novel function for targeting by the PDZ domain of nNOS. J Biol Chem 2001; 276(51): 48262–48268
https://doi.org/10.1074/jbc.M106503200 pmid: 11590170
32 B Benziane, S Demaretz, N Defontaine, N Zaarour, L Cheval, S Bourgeois, C Klein, M Froissart, A Blanchard, M Paillard, G Gamba, P Houillier, K Laghmani. NKCC2 surface expression in mammalian cells: down-regulation by novel interaction with aldolase B. J Biol Chem 2007; 282(46): 33817–33830
https://doi.org/10.1074/jbc.M700195200 pmid: 17848580
33 LJ Zhao, M Kuppuswamy, S Vijayalingam, G Chinnadurai. Interaction of ZEB and histone deacetylase with the PLDLS-binding cleft region of monomeric C-terminal binding protein 2. BMC Mol Biol 2009; 10(1): 89
https://doi.org/10.1186/1471-2199-10-89 pmid: 19754958
34 M Lu, D Ammar, H Ives, F Albrecht, SL Gluck. Physical interaction between aldolase and vacuolar H+-ATPase is essential for the assembly and activity of the proton pump. J Biol Chem 2007; 282(34): 24495–24503
https://doi.org/10.1074/jbc.M702598200 pmid: 17576770
35 S Lee, S Hong, S Kim, S Kang. Ataxin-1 occupies the promoter region of E-cadherin in vivo and activates CtBP2-repressed promoter. Biochim Biophys Acta 2011; 1813(5): 713–722
https://doi.org/10.1016/j.bbamcr.2011.01.035 pmid: 21315774
36 C Wan, B Borgeson, S Phanse, F Tu, K Drew, G Clark, X Xiong, O Kagan, J Kwan, A Bezginov, K Chessman, S Pal, G Cromar, O Papoulas, Z Ni, DR Boutz, S Stoilova, PC Havugimana, X Guo, RH Malty, M Sarov, J Greenblatt, M Babu, WB Derry, ER Tillier, JB Wallingford, J Parkinson, EM Marcotte, A Emili. Panorama of ancient metazoan macromolecular complexes. Nature 2015; 525(7569): 339–344
https://doi.org/10.1038/nature14877 pmid: 26344197
37 G Lucarelli, D Loizzo, R Franzin, S Battaglia, M Ferro, F Cantiello, G Castellano, C Bettocchi, P Ditonno, M Battaglia. Metabolomic insights into pathophysiological mechanisms and biomarker discovery in clear cell renal cell carcinoma. Expert Rev Mol Diagn 2019; 19(5): 397–407
https://doi.org/10.1080/14737159.2019.1607729 pmid: 30983433
38 R Ragone, F Sallustio, S Piccinonna, M Rutigliano, G Vanessa, S Palazzo, G Lucarelli, P Ditonno, M Battaglia, FP Fanizzi, FP Schena. Renal cell carcinoma: a study through NMR-based metabolomics combined with transcriptomics. Diseases 2016; 4(1): 7
https://doi.org/10.3390/diseases4010007 pmid: 28933387
39 C Bianchi, C Meregalli, S Bombelli, V Di Stefano, F Salerno, B Torsello, S De Marco, G Bovo, I Cifola, E Mangano, C Battaglia, G Strada, G Lucarelli, RH Weiss, RA Perego. The glucose and lipid metabolism reprogramming is grade-dependent in clear cell renal cell carcinoma primary cultures and is targetable to modulate cell viability and proliferation. Oncotarget 2017; 8(69): 113502–113515
https://doi.org/10.18632/oncotarget.23056 pmid: 29371925
40 G Lucarelli, M Ferro, D Loizzo, C Bianchi, D Terracciano, F Cantiello, LN Bell, S Battaglia, C Porta, A Gernone, RA Perego, E Maiorano, O Cobelli, G Castellano, L Vincenti, P Ditonno, M Battaglia. Integration of lipidomics and transcriptomics reveals reprogramming of the lipid metabolism and composition in clear cell renal cell carcinoma. Metabolites 2020; 10(12): 509
https://doi.org/10.3390/metabo10120509 pmid: 33322148
41 S Bombelli, B Torsello, S De Marco, G Lucarelli, I Cifola, C Grasselli, G Strada, G Bovo, RA Perego, C Bianchi. 36-kDa annexin A3 isoform negatively modulates lipid storage in clear cell renal cell carcinoma cells. Am J Pathol 2020; 190(11): 2317–2326
https://doi.org/10.1016/j.ajpath.2020.08.008 pmid: 32861643
42 G Lucarelli, M Rutigliano, F Sallustio, D Ribatti, A Giglio, M Lepore Signorile, V Grossi, P Sanese, A Napoli, E Maiorano, C Bianchi, RA Perego, M Ferro, E Ranieri, G Serino, LN Bell, P Ditonno, C Simone, M Battaglia. Integrated multi-omics characterization reveals a distinctive metabolic signature and the role of NDUFA4L2 in promoting angiogenesis, chemoresistance, and mitochondrial dysfunction in clear cell renal cell carcinoma. Aging (Albany NY) 2018; 10(12): 3957–3985
https://doi.org/10.18632/aging.101685 pmid: 30538212
43 F Gatto, I Nookaew, J Nielsen. Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear cell renal carcinoma. Proc Natl Acad Sci USA 2014; 111(9): E866–E875
https://doi.org/10.1073/pnas.1319196111 pmid: 24550497
44 B Li, B Qiu, DSM Lee, ZE Walton, JD Ochocki, LK Mathew, A Mancuso, TPF Gade, B Keith, I Nissim, MC Simon. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 2014; 513(7517): 251–255
https://doi.org/10.1038/nature13557 pmid: 25043030
45 QF Tao, SX Yuan, F Yang, S Yang, Y Yang, JH Yuan, ZG Wang, QG Xu, KY Lin, J Cai, J Yu, WL Huang, XL Teng, CC Zhou, F Wang, SH Sun, WP Zhou. Aldolase B inhibits metastasis through ten-eleven translocation 1 and serves as a prognostic biomarker in hepatocellular carcinoma. Mol Cancer 2015; 14(1): 170
https://doi.org/10.1186/s12943-015-0437-7 pmid: 26376879
46 J Lian, L Xia, Y Chen, J Zheng, K Ma, L Luo, F Ye. Aldolase B impairs DNA mismatch repair and induces apoptosis in colon adenocarcinoma. Pathol Res Pract 2019; 215(11): 152597
https://doi.org/10.1016/j.prp.2019.152597 pmid: 31564566
47 P Bu, KY Chen, K Xiang, C Johnson, SB Crown, N Rakhilin, Y Ai, L Wang, R Xi, I Astapova, Y Han, J Li, BB Barth, M Lu, Z Gao, R Mines, L Zhang, M Herman, D Hsu, GF Zhang, X Shen. Aldolase B-mediated fructose metabolism drives metabolic reprogramming of colon cancer liver metastasis. Cell Metab 2018; 27(6): 1249–1262.e4
https://doi.org/10.1016/j.cmet.2018.04.003 pmid: 29706565
48 M Li, CS Zhang, Y Zong, JW Feng, T Ma, M Hu, Z Lin, X Li, C Xie, Y Wu, D Jiang, Y Li, C Zhang, X Tian, W Wang, Y Yang, J Chen, J Cui, YQ Wu, X Chen, QF Liu, J Wu, SY Lin, Z Ye, Y Liu, HL Piao, L Yu, Z Zhou, XS Xie, DG Hardie, SC Lin. Transient receptor potential V channels are essential for glucose sensing by aldolase and AMPK. Cell Metab 2019; 30(3): 508–524.e12
https://doi.org/10.1016/j.cmet.2019.05.018 pmid: 31204282
49 G Liu, N Wang, C Zhang, M Li, X He, C Yin, Q Tu, X Shen, L Zhang, J Lv, Y Wang, H Jiang, S Chen, N Li, Y Tao, H Yin. Fructose-1,6-bisphosphate aldolase B depletion promotes hepatocellular carcinogenesis through activating insulin receptor signaling and lipogenesis. Hepatology 2021; 74(6): 3037–3055
https://doi.org/10.1002/hep.32064 pmid: 34292642
50 CB Chan, X Liu, SW Jang, SIH Hsu, I Williams, S Kang, J Chen, K Ye. NGF inhibits human leukemia proliferation by downregulating cyclin A1 expression through promoting acinus/CtBP2 association. Oncogene 2009; 28(43): 3825–3836
https://doi.org/10.1038/onc.2009.236 pmid: 19668232
51 L Barroilhet, J Yang, K Hasselblatt, RM Paranal, SK Ng, JA Rauh-Hain, WR Welch, JE Bradner, RS Berkowitz, SW Ng. C-terminal binding protein-2 regulates response of epithelial ovarian cancer cells to histone deacetylase inhibitors. Oncogene 2013; 32(33): 3896–3903
https://doi.org/10.1038/onc.2012.380 pmid: 22945647
52 L Wang, H Zhou, Y Wang, G Cui, LJ Di. CtBP maintains cancer cell growth and metabolic homeostasis via regulating SIRT4. Cell Death Dis 2015; 6(1): e1620
https://doi.org/10.1038/cddis.2014.587 pmid: 25633289
53 CC Fjeld, WT Birdsong, RH Goodman. Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor. Proc Natl Acad Sci USA 2003; 100(16): 9202–9207
https://doi.org/10.1073/pnas.1633591100 pmid: 12872005
[1] FMD-22024-OF-WJ_suppl_1 Download
[1] Ronghui Yang, Guoguang Ying, Binghui Li. Potential of electron transfer and its application in dictating routes of biochemical processes associated with metabolic reprogramming[J]. Front. Med., 2021, 15(5): 679-692.
[2] Jiahui Zhang, Yanan Yin, Jiahui Wang, Jingjing Zhang, Hua Liu, Weiwei Feng, Wen Yang, Bruce Zetter, Yingjie Xu. Prohibitin regulates mTOR pathway via interaction with FKBP8[J]. Front. Med., 2021, 15(3): 448-459.
[3] Jing Ma, Shiyu Chen, Lili Hao, Wei Sheng, Weicheng Chen, Xiaojing Ma, Bowen Zhang, Duan Ma, Guoying Huang. Long non-coding RNA SAP30-2:1 is downregulated in congenital heart disease and regulates cell proliferation by targeting HAND2[J]. Front. Med., 2021, 15(1): 91-100.
[4] Xiaodong Duan, Daizhi Peng, Yilan Zhang, Yalan Huang, Xiao Liu, Ruifu Li, Xin Zhou, Jing Liu. Sub-cytotoxic concentrations of ionic silver promote the proliferation of human keratinocytes by inducing the production of reactive oxygen species[J]. Front. Med., 2018, 12(3): 289-300.
[5] Xiaowei GONG MD, PhD, Xiaoyan MING MD, Xu WANG MM, Daan WANG MD, Peng DENG MM, Yong JIANG MD, PhD, Aihua LIU MD, PhD, . Effect of PRAK gene knockout on the proliferation of mouse embryonic fibroblasts[J]. Front. Med., 2009, 3(4): 379-383.
[6] Gang WANG. NADPH oxidase and reactive oxygen species as signaling molecules in carcinogenesis[J]. Front Med Chin, 2009, 3(1): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed