Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2023, Vol. 17 Issue (5) : 805-822    https://doi.org/10.1007/s11684-023-1025-7
REVIEW
Metabolic interventions combined with CTLA-4 and PD-1/PD-L1 blockade for the treatment of tumors: mechanisms and strategies
Liming Liao, Huilin Xu, Yuhan Zhao, Xiaofeng Zheng()
State Key Laboratory of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
 Download: PDF(3233 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Immunotherapies based on immune checkpoint blockade (ICB) have significantly improved patient outcomes and offered new approaches to cancer therapy over the past decade. To date, immune checkpoint inhibitors (ICIs) of CTLA-4 and PD-1/PD-L1 represent the main class of immunotherapy. Blockade of CTLA-4 and PD-1/PD-L1 has shown remarkable efficacy in several specific types of cancers, however, a large subset of refractory patients presents poor responsiveness to ICB therapy; and the underlying mechanism remains elusive. Recently, numerous studies have revealed that metabolic reprogramming of tumor cells restrains immune responses by remodeling the tumor microenvironment (TME) with various products of metabolism, and combination therapies involving metabolic inhibitors and ICIs provide new approaches to cancer therapy. Nevertheless, a systematic summary is lacking regarding the manner by which different targetable metabolic pathways regulate immune checkpoints to overcome ICI resistance. Here, we demonstrate the generalized mechanism of targeting cancer metabolism at three crucial immune checkpoints (CTLA-4, PD-1, and PD-L1) to influence ICB therapy and propose potential combined immunotherapeutic strategies co-targeting tumor metabolic pathways and immune checkpoints.

Keywords CTLA-4      PD-1      PD-L1      immune checkpoint blockade (ICB)      metabolic reprogramming      combined tumor therapeutic strategies     
Corresponding Author(s): Xiaofeng Zheng   
Just Accepted Date: 25 September 2023   Online First Date: 31 October 2023    Issue Date: 07 December 2023
 Cite this article:   
Liming Liao,Huilin Xu,Yuhan Zhao, et al. Metabolic interventions combined with CTLA-4 and PD-1/PD-L1 blockade for the treatment of tumors: mechanisms and strategies[J]. Front. Med., 2023, 17(5): 805-822.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-023-1025-7
https://academic.hep.com.cn/fmd/EN/Y2023/V17/I5/805
Fig.1  The influence of tumor cell metabolic reprogramming on three crucial immune checkpoints (CTLA-4, PD-1, and PD-L1). Several key enzymes (e.g., IDO-1, LDHA, and PKM2) and pathways (e.g., MEK/ERK/c-Jun, PI3K-AKT/mTOR, and IL-6/JAK/STAT3) are activated in tumor cells under harsh environment to support metabolic reprogramming processes and regulate the expression, stability, modification, and localization of PD-L1. Meanwhile, tumor cells also release metabolites (e.g., lactic acid, L-5-HTP, and α-KG) into tumor microenvironment and remodel tumor microenvironment (e.g., low pH, low glucose, and hypoxia) to restrain or stimulate the expression of CTLA-4 and PD-1 in immune cells (e.g., Treg cell, effector T cell, and APC); or to regulate the modifications of the proteins and genes of CTLA-4, PD-1, and PD-L1. Treg, regulatory T cell; APC, antigen presenting cell.
Type of regulationRegulators in cancer cellsCTLA-4PD-1
TranscriptionalLow pH in the TMEUpregulation [60]
IFN-γUpregulation [61]
IL-2Upregulation [61]
IL-17aUpregulation [65]
High HIF-1αDownregulation [40]Downregulation [40]
High extracellular adenosineUpregulation [51]Upregulation [52]
p38-JNK/c-Jun axisUpregulation [58]
Post-transcriptionalHigh lactic acidUpregulation [60]
Protein expressionAMPK-HMGCR/p38 axisDownregulation [37]
Low glucose in the TMEUpregulation [54]
High IDO-1Upregulation [68]Upregulation [68]
High kynurenine in the TMEUpregulation [70]Upregulation [71]
Low glutamine in the TMEUpregulation [74]
High fatty acid metabolism-dependent genesUpregulation [78]Upregulation [78]
High 3-hydroxybutyrate in the TMEUpregulation/downregulation [79]Upregulation [79]
High cholesterol in the TMEUpregulation [84]
Cellular localizationARF-1, PLD-1, PLD-2, GTPasesUpregulation [88]
Tab.1  Regulators of CTLA-4 and PD-1
Fig.2  The influence of cancer metabolic reprogramming on immune cell CTLA-4 and PD-1. Tumor cells with metabolic reprogramming including glycometabolism (Warburg effect), nucleotide metabolism, amino acid metabolism, and fatty acid metabolism release different intermediates to remold the TME and inhibit T cells through upregulating the expression and cellular location of CTLA-4 and PD-1. Low glucose, low pH, and high concentration of lactate, adenosine and kynurenine can enhance the expression of PD-1 and CTLA-4. Tumor fatty acid metabolism can also upregulate the expression of CTLA-4 via extracellular vesicles. TME, tumor microenvironment; A2AR, adenosine A2A receptor; IDO-1, indoleamine 2,3-dioxygenase-1; 3-HB, 3-hydroxybutyrate; PLD-1, phospholipase D-1.
Fig.3  The influence of glycometabolism on PD-L1. Different intermediates and enzymes of tumor glycometabolism regulate PD-L1 expression. Inflammatory stimulation and oncogenic signals promote the transcription of PD-L1, thus enhancing the immune escape of tumor cells. SDH5 and nutrients deficiency-stimulated p53 reduce PD-L1 mRNA level through miRNA, and AMPK phosphorylates PD-L1 and promotes its ubiquitination and degradation. AMPK, AMP-activated protein kinase; GPR81, G protein-coupled receptor 81; HiF1α, hypoxia inducible factor 1α; HRE, hypoxia-responsive elements; HK2, hexokinase-2; IFNGR, interferon gamma receptor; IκBα, inhibitor of NF-κB α; NF-κB, nuclear factor kappa B; LATS1, large tumor suppressor homolog 1; NAD+, nicotinamide adenine dinucleotide; NAM, nicotinamide; NAMPT, nicotinamide phosphoribosyl transferase; NMN, nicotinamide mononucleotide; PD-L1, programmed death ligand-1; PKM2, pyruvate kinase isoform M2; SDH5, succinate dehydrogenase 5; STAT1, signal transducer and activator of transcription 1; TAZ, tafazzin; TEAD, transcriptional enhancer factor; YAP1, yes-associated protein 1; ZEB1, zinc finger E-box binding homeobox 1.
Fig.4  The effect of lipid metabolism on PD-L1. Lipid metabolism and the corresponding metabolic interventions affect the stability and localization of PD-L1. Cholesterol can stabilize and upregulate PD-L1 expression through AP-1 at transcriptional level, and acetyl-CoA affects the subcellular localization of PD-L1 by acetylation. ACLY, ATP-citrate synthase; FASN, fatty acid synthase; HDAC2, histone deacetylase 2; P300, histone acetyltransferase p300; PD-L1, programmed death ligand-1.
Fig.5  The influence of amino acid metabolism on PD-L1. The key molecules functioning in amino acid (argine, glutamic acid, cystine, serine, threonine, and tryptophan) metabolism affect the transcription and translocation of PD-L1. Arrows, blunt ends, and dashed lines indicate activation, inhibition, and indirect regulation, respectively. ASS1, arginosuccinate synthase 1; α-KG, α-ketoglutarate; Glu, glutamate; Gln, glutamine; GLUD1, glutamate delta receptor 1; KRAS, Kirsten rat sarcoma viral oncogene homolog; LKB1, liver kinase B1; ARF6, ADP ribosylation factor 6; PD-L1, programmed cell death ligand-1; SSP, serine synthesis pathway; ATF3, activating transcription factor 3; ADOARA1, adenosine A1 receptor; Cys, cysteine; xCT, cystine-glutamate exchange; SAS, sulfasalazine; 5-HTTP, 5-hydroxytryptophan; MEK1/2, mitogen-activated protein kinase kinases 1 and 2; STAT1, signal transducer and activator of transcription 1; ERK1/2, extracellular signal-related kinases 1 and 2; EGFR, epidermal growth factor receptor.
Drug/treatment (metabolism)ICBs (drug/target)(Pre)ClinicalReferences
LDHA knockdown (glycometabolism)29F.1A12 (anti PD-1)Preclinical[151]
PRMT5 inhibitor GSK591 (amino acid metabolism)Atezolizumab (anti PD-L1)Preclinical[152]
PMN-MDSC inhibitor POG (amino acid metabolism)Bio X Cell RPM1–14 (anti PD-1)Preclinical[153]
Reduce hypoxia with metformin (glycometabolism)J43 (anti PD-1)Preclinical[154]
Blockade glutamine with JHU083 (amino acid metabolism)29F.1A12 (anti PD-1)Preclinical[172]
A2AR antagonist CPI-444 (nucleic acid metabolism)Atezolizumab (anti PD-L1)Clinical, phase I[48,49]
Tab.2  Combination of ICBs with metabolic intervention
Metabolic pathwaysImmune checkpoints
Platycodin D inhibits glucose-induced ferroptosis (glycometabolism) [157]Platycodin D downregulates PD-L1 [156]
NF-κB promotes glycolysis (glycometabolism) [158]Anti-NF-κB increases ICBs efficacy [159]
TNF-α interferes lipid metabolism [160]TNF-α upregulates PD-L1 [161]
PI3K/AKT/mTOR (nutrient metabolism) [166]PI3K/AKT/mTOR upregulates PD-L1 [167]
IL-6/JAK/STAT3 (nutrient metabolism) [166]Downregulate IL-6/JAK/STAT3 reduces PD-L1 [168]
PI3K (nutrient metabolism) [166]Blockade of PI3K reduces PD-L1 [170]
MAPK (nutrient metabolism) [166]Blockade of MAPK increases PD-L1 [171]
Tab.3  Strategies targeting metabolic pathways and immune checkpoints
1 SA Rosenberg, MT Lotze, LM Muul, S Leitman, AE Chang, SE Ettinghausen, YL Matory, JM Skibber, E Shiloni, JT Vetto, CA Seipp, C Simpson, CM Reichert. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 1985; 313(23): 1485–1492
https://doi.org/10.1056/NEJM198512053132327
2 H Strander, S Einhorn. Interferon therapy in neoplastic diseases. Philos Trans R Soc Lond B Biol Sci 1982; 299(1094): 113–117
https://doi.org/10.1098/rstb.1982.0111
3 S Einhorn, J Wasserman, G Lundell, H Blomgren, B Cedermark, C Jarstrand, B Petrini, H Strander, T Theve, U Ohman. Treatment of patients with disseminated colorectal cancer with recombinant human alpha 2-interferon. Studies on the immune system. Int J Cancer 1984; 33(2): 251–256
https://doi.org/10.1002/ijc.2910330214
4 A Limmer, T Sacher, J Alferink, M Kretschmar, G Schönrich, T Nichterlein, B Arnold, GJ Hämmerling. Failure to induce organ-specific autoimmunity by breaking of tolerance: importance of the microenvironment. Eur J Immunol 1998; 28(8): 2395–2406
https://doi.org/10.1002/(SICI)1521-4141(199808)28:08<2395::AID-IMMU2395>3.0.CO;2-D
5 C Wang, KB Thudium, M Han, XT Wang, H Huang, D Feingersh, C Garcia, Y Wu, M Kuhne, M Srinivasan, S Singh, S Wong, N Garner, H Leblanc, RT Bunch, D Blanset, MJ Selby, AJ Korman. In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates. Cancer Immunol Res 2014; 2(9): 846–856
https://doi.org/10.1158/2326-6066.CIR-14-0040
6 AJ Korman, SC Garrett-Thomson, N Lonberg. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat Rev Drug Discov 2022; 21(7): 509–528
https://doi.org/10.1038/s41573-021-00345-8
7 N Lonberg, AJ Korman. Masterful antibodies: checkpoint blockade. Cancer Immunol Res 2017; 5(4): 275–281
https://doi.org/10.1158/2326-6066.CIR-17-0057
8 AJ Schoenfeld, MD Hellmann. Acquired resistance to immune checkpoint inhibitors. Cancer Cell 2020; 37(4): 443–455
https://doi.org/10.1016/j.ccell.2020.03.017
9 D Hanahan, RA Weinberg. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646–674
https://doi.org/10.1016/j.cell.2011.02.013
10 O Warburg. On the origin of cancer cells. Science 1956; 123(3191): 309–314
https://doi.org/10.1126/science.123.3191.309
11 MG Vander Heiden, LC Cantley, CB Thompson. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324(5930): 1029–1033
https://doi.org/10.1126/science.1160809
12 TL Dayton, T Jacks, MG Vander Heiden. PKM2, cancer metabolism, and the road ahead. EMBO Rep 2016; 17(12): 1721–1730
https://doi.org/10.15252/embr.201643300
13 BJ AltmanZE StineCV Dang. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer 2016; 16(12): 773 (Erratum for: Nat Rev Cancer 2016; 16(10): 619–634) doi:10.1038/nrc.2016.131
pmid: 28704359
14 A Luengo, DY Gui, MG Vander Heiden. Targeting metabolism for cancer therapy. Cell Chem Biol 2017; 24(9): 1161–1180
https://doi.org/10.1016/j.chembiol.2017.08.028
15 RJ DeBerardinis, T Cheng. Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 2010; 29(3): 313–324
https://doi.org/10.1038/onc.2009.358
16 JW Locasale, AR Grassian, T Melman, CA Lyssiotis, KR Mattaini, AJ Bass, G Heffron, CM Metallo, T Muranen, H Sharfi, AT Sasaki, D Anastasiou, E Mullarky, NI Vokes, M Sasaki, R Beroukhim, G Stephanopoulos, AH Ligon, M Meyerson, AL Richardson, L Chin, G Wagner, JM Asara, JS Brugge, LC Cantley, MG Vander Heiden. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 2011; 43(9): 869–874
https://doi.org/10.1038/ng.890
17 K Snell, Y Natsumeda, JN Eble, JL Glover, G Weber. Enzymic imbalance in serine metabolism in human colon carcinoma and rat sarcoma. Br J Cancer 1988; 57(1): 87–90
https://doi.org/10.1038/bjc.1988.15
18 F Röhrig, A Schulze. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer 2016; 16(11): 732–749
https://doi.org/10.1038/nrc.2016.89
19 S Walenta, WF Mueller-Klieser. Lactate: mirror and motor of tumor malignancy. Semin Radiat Oncol 2004; 14(3): 267–274
https://doi.org/10.1016/j.semradonc.2004.04.004
20 M Certo, CH Tsai, V Pucino, PC Ho, C Mauro. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat Rev Immunol 2021; 21(3): 151–161
https://doi.org/10.1038/s41577-020-0406-2
21 JF Brunet, F Denizot, MF Luciani, M Roux-Dosseto, M Suzan, MG Mattei, P Golstein. A new member of the immunoglobulin superfamily—CTLA-4. Nature 1987; 328(6127): 267–270
https://doi.org/10.1038/328267a0
22 E Valk, CE Rudd, H Schneider. CTLA-4 trafficking and surface expression. Trends Immunol 2008; 29(6): 272–279
https://doi.org/10.1016/j.it.2008.02.011
23 CE Rudd, A Taylor, H Schneider. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev 2009; 229(1): 12–26
https://doi.org/10.1111/j.1600-065X.2009.00770.x
24 AV Collins, DW Brodie, RJ Gilbert, A Iaboni, R Manso-Sancho, B Walse, DI Stuart, PA van der Merwe, SJ Davis. The interaction properties of costimulatory molecules revisited. Immunity 2002; 17(2): 201–210
https://doi.org/10.1016/S1074-7613(02)00362-X
25 PA van der Merwe, DL Bodian, S Daenke, P Linsley, SJ Davis. CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J Exp Med 1997; 185(3): 393–404
https://doi.org/10.1084/jem.185.3.393
26 T Yokosuka, W Kobayashi, M Takamatsu, K Sakata-Sogawa, H Zeng, A Hashimoto-Tane, H Yagita, M Tokunaga, T Saito. Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T cell activation. Immunity 2010; 33(3): 326–339
https://doi.org/10.1016/j.immuni.2010.09.006
27 H Zhang, Z Dai, W Wu, Z Wang, N Zhang, L Zhang, WJ Zeng, Z Liu, Q Cheng. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer Res 2021; 40(1): 184
https://doi.org/10.1186/s13046-021-01987-7
28 ME Keir, MJ Butte, GJ Freeman, AH Sharpe. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008; 26(1): 677–704
https://doi.org/10.1146/annurev.immunol.26.021607.090331
29 J Zhang, F Dang, J Ren, W Wei. Biochemical aspects of PD-L1 regulation in cancer immunotherapy. Trends Biochem Sci 2018; 43(12): 1014–1032
https://doi.org/10.1016/j.tibs.2018.09.004
30 X Dai, Y Gao, W Wei. Post-translational regulations of PD-L1 and PD-1: mechanisms and opportunities for combined immunotherapy. Semin Cancer Biol 2022; 85: 246–252
https://doi.org/10.1016/j.semcancer.2021.04.002
31 O Warburg, F Wind, E Negelein. The metabolism of tumors in the body. J Gen Physiol 1927; 8(6): 519–530
https://doi.org/10.1085/jgp.8.6.519
32 LA O’Neill, RJ Kishton, J Rathmell. A guide to immunometabolism for immunologists. Nat Rev Immunol 2016; 16(9): 553–565
https://doi.org/10.1038/nri.2016.70
33 MD Buck, D O’Sullivan, EL Pearce. T cell metabolism drives immunity. J Exp Med 2015; 212(9): 1345–1360
https://doi.org/10.1084/jem.20151159
34 N Patsoukis, K Bardhan, P Chatterjee, D Sari, B Liu, LN Bell, ED Karoly, GJ Freeman, V Petkova, P Seth, L Li, VA Boussiotis. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun 2015; 6(1): 6692
https://doi.org/10.1038/ncomms7692
35 PM Odorizzi, KE Pauken, MA Paley, A Sharpe, EJ Wherry. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J Exp Med 2015; 212(7): 1125–1137
https://doi.org/10.1084/jem.20142237
36 PS Chowdhury, K Chamoto, A Kumar, T Honjo. PPAR-induced fatty acid oxidation in T cells increases the number of tumor-reactive CD8+ T cells and facilitates anti-PD-1 therapy. Cancer Immunol Res 2018; 6(11): 1375–1387
https://doi.org/10.1158/2326-6066.CIR-18-0095
37 RH Pokhrel, S Acharya, JH Ahn, Y Gu, M Pandit, JO Kim, YY Park, B Kang, HJ Ko, JH Chang. AMPK promotes antitumor immunity by downregulating PD-1 in regulatory T cells via the HMGCR/p38 signaling pathway. Mol Cancer 2021; 20(1): 133
https://doi.org/10.1186/s12943-021-01420-9
38 KA Frauwirth, JL Riley, MH Harris, RV Parry, JC Rathmell, DR Plas, RL Elstrom, CH June, CB Thompson. The CD28 signaling pathway regulates glucose metabolism. Immunity 2002; 16(6): 769–777
https://doi.org/10.1016/S1074-7613(02)00323-0
39 R Zappasodi, I Serganova, IJ Cohen, M Maeda, M Shindo, Y Senbabaoglu, MJ Watson, A Leftin, R Maniyar, S Verma, M Lubin, M Ko, MM Mane, H Zhong, C Liu, A Ghosh, M Abu-Akeel, E Ackerstaff, JA Koutcher, PC Ho, GM Delgoffe, R Blasberg, JD Wolchok, T Merghoub. CTLA-4 blockade drives loss of Treg stability in glycolysis-low tumours. Nature 2021; 591(7851): 652–658
https://doi.org/10.1038/s41586-021-03326-4
40 GL Semenza. Hypoxia-inducible factors in physiology and medicine. Cell 2012; 148(3): 399–408
https://doi.org/10.1016/j.cell.2012.01.021
41 K Synnestvedt, GT Furuta, KM Comerford, N Louis, J Karhausen, HK Eltzschig, KR Hansen, LF Thompson, SP Colgan. Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest 2002; 110(7): 993–1002
https://doi.org/10.1172/JCI0215337
42 J Blay, TD White, DW Hoskin. The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 1997; 57(13): 2602–2605
43 B Allard, MS Longhi, SC Robson, J Stagg. The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol Rev 2017; 276(1): 121–144
https://doi.org/10.1111/imr.12528
44 A Ohta, M Sitkovsky. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 2001; 414(6866): 916–920
https://doi.org/10.1038/414916a
45 MV Sitkovsky, A Ohta. The ‘danger’ sensors that STOP the immune response: the A2 adenosine receptors?. Trends Immunol 2005; 26(6): 299–304
https://doi.org/10.1016/j.it.2005.04.004
46 A Ohta, R Kini, A Ohta, M Subramanian, M Madasu, M Sitkovsky. The development and immunosuppressive functions of CD4+CD25+FoxP3+ regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front Immunol 2012; 3: 190
https://doi.org/10.3389/fimmu.2012.00190
47 B Allard, S Pommey, MJ Smyth, J Stagg. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin Cancer Res 2013; 19(20): 5626–5635
https://doi.org/10.1158/1078-0432.CCR-13-0545
48 SB Willingham, PY Ho, A Hotson, C Hill, EC Piccione, J Hsieh, L Liu, JJ Buggy, I McCaffery, RA Miller. A2AR antagonism with CPI-444 induces antitumor responses and augments efficacy to anti-PD-(L)1 and anti-CTLA-4 in preclinical models. Cancer Immunol Res 2018; 6(10): 1136–1149
https://doi.org/10.1158/2326-6066.CIR-18-0056
49 L Fong, A Hotson, JD Powderly, M Sznol, RS Heist, TK Choueiri, S George, BGM Hughes, MD Hellmann, DR Shepard, BI Rini, S Kummar, AM Weise, MJ Riese, B Markman, LA Emens, D Mahadevan, JJ Luke, G Laport, JD Brody, L Hernandez-Aya, P Bonomi, JW Goldman, L Berim, DJ Renouf, RA Goodwin, B Munneke, PY Ho, J Hsieh, I McCaffery, L Kwei, SB Willingham, RA Miller. Adenosine 2A receptor blockade as an immunotherapy for treatment-refractory renal cell cancer. Cancer Discov 2020; 10(1): 40–53
https://doi.org/10.1158/2159-8290.CD-19-0980
50 E Bjørgo, K Moltu, K Taskén. Phosphodiesterases as targets for modulating T-cell responses. Handb Exp Pharmacol 2011; 204(204): 345–363
https://doi.org/10.1007/978-3-642-17969-3_15
51 S Vendetti, A Riccomi, A Sacchi, L Gatta, C Pioli, MT De Magistris. Cyclic adenosine 5′-monophosphate and calcium induce CD152 (CTLA-4) up-regulation in resting CD4+ T lymphocytes. J Immunol 2002; 169(11): 6231–6235
https://doi.org/10.4049/jimmunol.169.11.6231
52 MV Sitkovsky, S Hatfield, R Abbott, B Belikoff, D Lukashev, A Ohta. Hostile, hypoxia-A2-adenosinergic tumor biology as the next barrier to overcome for tumor immunologists. Cancer Immunol Res 2014; 2(7): 598–605
https://doi.org/10.1158/2326-6066.CIR-14-0075
53 CH Chang, J Qiu, D O’Sullivan, MD Buck, T Noguchi, JD Curtis, Q Chen, M Gindin, MM Gubin, der Windt GJ van, E Tonc, RD Schreiber, EJ Pearce, EL Pearce. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 2015; 162(6): 1229–1241
https://doi.org/10.1016/j.cell.2015.08.016
54 CH Chang, JD Curtis, LB Jr Maggi, B Faubert, AV Villarino, D O’Sullivan, SC Huang, der Windt GJ van, J Blagih, J Qiu, JD Weber, EJ Pearce, RG Jones, EL Pearce. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 2013; 153(6): 1239–1251
https://doi.org/10.1016/j.cell.2013.05.016
55 Geltink RI Klein, J Edwards-Hicks, P Apostolova, D O’Sullivan, DE Sanin, AE Patterson, DJ Puleston, NAM Ligthart, JM Buescher, KM Grzes, AM Kabat, M Stanczak, JD Curtis, F Hässler, FM Uhl, M Fabri, R Zeiser, EJ Pearce, EL Pearce. Metabolic conditioning of CD8+ effector T cells for adoptive cell therapy. Nat Metab 2020; 2(8): 703–716
https://doi.org/10.1038/s42255-020-0256-z
56 M Cerezo, S Rocchi. Cancer cell metabolic reprogramming: a keystone for the response to immunotherapy. Cell Death Dis 2020; 11(11): 964
https://doi.org/10.1038/s41419-020-03175-5
57 AN Mendler, B Hu, PU Prinz, M Kreutz, E Gottfried, E Noessner. Tumor lactic acidosis suppresses CTL function by inhibition of p38 and JNK/c-Jun activation. Int J Cancer 2012; 131(3): 633–640
https://doi.org/10.1002/ijc.26410
58 M Li, XH Sun, XJ Zhu, SG Jin, ZJ Zeng, ZH Zhou, Z Yu, YQ Gao. HBcAg induces PD-1 upregulation on CD4+ T cells through activation of JNK, ERK and PI3K/AKT pathways in chronic hepatitis-B-infected patients. Lab Invest 2012; 92(2): 295–304
https://doi.org/10.1038/labinvest.2011.157
59 OR Colegio, NQ Chu, AL Szabo, T Chu, AM Rhebergen, V Jairam, N Cyrus, CE Brokowski, SC Eisenbarth, GM Phillips, GW Cline, AJ Phillips, R Medzhitov. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014; 513(7519): 559–563
https://doi.org/10.1038/nature13490
60 M Bosticardo, S Ariotti, G Losana, P Bernabei, G Forni, F Novelli. Biased activation of human T lymphocytes due to low extracellular pH is antagonized by B7/CD28 costimulation. Eur J Immunol 2001; 31(9): 2829–2838
https://doi.org/10.1002/1521-4141(200109)31:9<2829::AID-IMMU2829>3.0.CO;2-U
61 K Nagaraju, N Raben, ML Villalba, C Danning, LA Loeffler, E Lee, N Tresser, A Abati, P Fetsch, PH Plotz. Costimulatory markers in muscle of patients with idiopathic inflammatory myopathies and in cultured muscle cells. Clin Immunol 1999; 92(2): 161–169
https://doi.org/10.1006/clim.1999.4743
62 S Yu, W Zang, Y Qiu, L Liao, X Zheng. Deubiquitinase OTUB2 exacerbates the progression of colorectal cancer by promoting PKM2 activity and glycolysis. Oncogene 2022; 41(1): 46–56
https://doi.org/10.1038/s41388-021-02071-2
63 Y Ji, C Yang, Z Tang, Y Yang, Y Tian, H Yao, X Zhu, Z Zhang, J Ji, X Zheng. Adenylate kinase hCINAP determines self-renewal of colorectal cancer stem cells by facilitating LDHA phosphorylation. Nat Commun 2017; 8(1): 15308
https://doi.org/10.1038/ncomms15308
64 K Xu, N Yin, M Peng, EG Stamatiades, S Chhangawala, A Shyu, P Li, X Zhang, MH Do, KJ Capistrano, C Chou, CS Leslie, MO Li. Glycolytic ATP fuels phosphoinositide 3-kinase signaling to support effector T helper 17 cell responses. Immunity 2021; 54(5): 976–987.e7
https://doi.org/10.1016/j.immuni.2021.04.008
65 W Li, M Xu, Y Li, Z Huang, J Zhou, Q Zhao, K Le, F Dong, C Wan, P Yi. Comprehensive analysis of the association between tumor glycolysis and immune/inflammation function in breast cancer. J Transl Med 2020; 18(1): 92
https://doi.org/10.1186/s12967-020-02267-2
66 C Han, M Ge, PC Ho, L Zhang. Fueling T-cell antitumor immunity: amino acid metabolism revisited. Cancer Immunol Res 2021; 9(12): 1373–1382
https://doi.org/10.1158/2326-6066.CIR-21-0459
67 GC Prendergast, WJ Malachowski, A Mondal, P Scherle, AJ Muller. Indoleamine 2,3-dioxygenase and its therapeutic inhibition in cancer. Int Rev Cell Mol Biol 2018; 336: 175–203
https://doi.org/10.1016/bs.ircmb.2017.07.004
68 M Liu, Z Li, W Yao, X Zeng, L Wang, J Cheng, B Ma, R Zhang, W Min, H Wang. IDO inhibitor synergized with radiotherapy to delay tumor growth by reversing T cell exhaustion. Mol Med Rep 2020; 21(1): 445–453
69 JD Mezrich, JH Fechner, X Zhang, BP Johnson, WJ Burlingham, CA Bradfield. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 2010; 185(6): 3190–3198
https://doi.org/10.4049/jimmunol.0903670
70 D Rohlman, S Punj, J Pennington, S Bradford, NI Kerkvliet. Suppression of acute graft-versus-host response by TCDD is independent of the CTLA-4-IFN-γ-IDO pathway. Toxicol Sci 2013; 135(1): 81–90
https://doi.org/10.1093/toxsci/kft140
71 Y Liu, X Liang, W Dong, Y Fang, J Lv, T Zhang, R Fiskesund, J Xie, J Liu, X Yin, X Jin, D Chen, K Tang, J Ma, H Zhang, J Yu, J Yan, H Liang, S Mo, F Cheng, Y Zhou, H Zhang, J Wang, J Li, Y Chen, B Cui, ZW Hu, X Cao, F Xiao-Feng Qin, B Huang. Tumor-repopulating cells induce PD-1 expression in CD8+ T cells by transferring kynurenine and AhR activation. Cancer Cell 2018; 33(3): 480–494.e7
https://doi.org/10.1016/j.ccell.2018.02.005
72 P Gao, I Tchernyshyov, TC Chang, YS Lee, K Kita, T Ochi, KI Zeller, AM De Marzo, JE Van Eyk, JT Mendell, CV Dang. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009; 458(7239): 762–765
https://doi.org/10.1038/nature07823
73 EL Carr, A Kelman, GS Wu, R Gopaul, E Senkevitch, A Aghvanyan, AM Turay, KA Frauwirth. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol 2010; 185(2): 1037–1044
https://doi.org/10.4049/jimmunol.0903586
74 W Wang, MN Guo, N Li, DQ Pang, JH Wu. Glutamine deprivation impairs function of infiltrating CD8+ T cells in hepatocellular carcinoma by inducing mitochondrial damage and apoptosis. World J Gastrointest Oncol 2022; 14(6): 1124–1140
https://doi.org/10.4251/wjgo.v14.i6.1124
75 YM Hu, YC Hsiung, MH Pai, SL Yeh. Glutamine administration in early or late septic phase downregulates lymphocyte PD-1/PD-L1 expression and the inflammatory response in mice with polymicrobial sepsis. JPEN J Parenter Enteral Nutr 2018; 42(3): 538–549
https://doi.org/10.1177/0148607117695245
76 BD Hopkins, MD Goncalves, LC Cantley. Insulin-PI3K signalling: an evolutionarily insulated metabolic driver of cancer. Nat Rev Endocrinol 2020; 16(5): 276–283
https://doi.org/10.1038/s41574-020-0329-9
77 AK Kraeuter, PC Guest, Z Sarnyai. Protocol for the use of the ketogenic diet in preclinical and clinical practice. Methods Mol Biol 2020; 2138: 83–98
https://doi.org/10.1007/978-1-0716-0471-7_4
78 F Jiang, F Luo, N Zeng, Y Mao, X Tang, J Wang, Y Hu, C Wu. Characterization of fatty acid metabolism-related genes landscape for predicting prognosis and aiding immunotherapy in glioma patients. Front Immunol 2022; 13: 902143
https://doi.org/10.3389/fimmu.2022.902143
79 G Ferrere, Alou M Tidjani, P Liu, AG Goubet, M Fidelle, O Kepp, S Durand, V Iebba, A Fluckiger, R Daillère, C Thelemaque, C Grajeda-Iglesias, Costa Silva C Alves, F Aprahamian, D Lefevre, L Zhao, B Ryffel, E Colomba, M Arnedos, D Drubay, C Rauber, D Raoult, F Asnicar, T Spector, N Segata, L Derosa, G Kroemer, L Zitvogel. Ketogenic diet and ketone bodies enhance the anticancer effects of PD-1 blockade. JCI Insight 2021; 6(2): e145207
https://doi.org/10.1172/jci.insight.145207
80 RJ Perry, Y Wang, GW Cline, A Rabin-Court, JD Song, S Dufour, XM Zhang, KF Petersen, GI Shulman. Leptin mediates a glucose-fatty acid cycle to maintain glucose homeostasis in starvation. Cell 2018; 172(1–2): 234–248.e17
https://doi.org/10.1016/j.cell.2017.12.001
81 S Zhao, CM Kusminski, JK Elmquist, PE Scherer. Leptin: less is more. Diabetes 2020; 69(5): 823–829
https://doi.org/10.2337/dbi19-0018
82 Z Wang, EG Aguilar, JI Luna, C Dunai, LT Khuat, CT Le, A Mirsoian, CM Minnar, KM Stoffel, IR Sturgill, SK Grossenbacher, SS Withers, RB Rebhun, DJ Hartigan-O’Connor, G Méndez-Lagares, AF Tarantal, RR Isseroff, TS Griffith, KA Schalper, A Merleev, A Saha, E Maverakis, K Kelly, R Aljumaily, S Ibrahimi, S Mukherjee, M Machiorlatti, SK Vesely, DL Longo, BR Blazar, RJ Canter, WJ Murphy, AM Monjazeb. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat Med 2019; 25(1): 141–151
https://doi.org/10.1038/s41591-018-0221-5
83 T Zech, CS Ejsing, K Gaus, B de Wet, A Shevchenko, K Simons, T Harder. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling. EMBO J 2009; 28(5): 466–476
https://doi.org/10.1038/emboj.2009.6
84 X Ma, E Bi, Y Lu, P Su, C Huang, L Liu, Q Wang, M Yang, MF Kalady, J Qian, A Zhang, AA Gupte, DJ Hamilton, C Zheng, Q Yi. Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment. Cell Metab 2019; 30(1): 143–156.e5
https://doi.org/10.1016/j.cmet.2019.04.002
85 W Yang, Y Bai, Y Xiong, J Zhang, S Chen, X Zheng, X Meng, L Li, J Wang, C Xu, C Yan, L Wang, CC Chang, TY Chang, T Zhang, P Zhou, BL Song, W Liu, SC Sun, X Liu, BL Li, C Xu. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature 2016; 531(7596): 651–655
https://doi.org/10.1038/nature17412
86 D Barisano, MA Frohman. Roles for phospholipase D1 in the tumor microenvironment. Adv Exp Med Biol 2020; 1259: 77–87
https://doi.org/10.1007/978-3-030-43093-1_5
87 A Wolf, E Tanguy, Q Wang, S Gasman, N Vitale. Phospholipase D and cancer metastasis: a focus on exosomes. Adv Biol Regul 2023; 87: 100924
https://doi.org/10.1016/j.jbior.2022.100924
88 KI Mead, Y Zheng, CN Manzotti, LC Perry, MK Liu, F Burke, DJ Powner, MJ Wakelam, DM Sansom. Exocytosis of CTLA-4 is dependent on phospholipase D and ADP ribosylation factor-1 and stimulated during activation of regulatory T cells. J Immunol 2005; 174(8): 4803–4811
https://doi.org/10.4049/jimmunol.174.8.4803
89 H Dong, G Zhu, K Tamada, L Chen. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999; 5(12): 1365–1369
https://doi.org/10.1038/70932
90 GJ Freeman, AJ Long, Y Iwai, K Bourque, T Chernova, H Nishimura, LJ Fitz, N Malenkovich, T Okazaki, MC Byrne, HF Horton, L Fouser, L Carter, V Ling, MR Bowman, BM Carreno, M Collins, CR Wood, T Honjo. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000; 192(7): 1027–1034
https://doi.org/10.1084/jem.192.7.1027
91 H Dong, SE Strome, DR Salomao, H Tamura, F Hirano, DB Flies, PC Roche, J Lu, G Zhu, K Tamada, VA Lennon, E Celis, L Chen. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002; 8(8): 793–800
https://doi.org/10.1038/nm730
92 A Akinleye, Z Rasool. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol 2019; 12(1): 92
https://doi.org/10.1186/s13045-019-0779-5
93 P Sharma, S Hu-Lieskovan, JA Wargo, A Ribas. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 2017; 168(4): 707–723
https://doi.org/10.1016/j.cell.2017.01.017
94 D Guo, Y Tong, X Jiang, Y Meng, H Jiang, L Du, Q Wu, S Li, S Luo, M Li, L Xiao, H He, X He, Q Yu, J Fang, Z Lu. Aerobic glycolysis promotes tumor immune evasion by hexokinase2-mediated phosphorylation of IκBα. Cell Metab 2022; 34(9): 1312–1324.e6
https://doi.org/10.1016/j.cmet.2022.08.002
95 RJ Shaw, M Kosmatka, N Bardeesy, RL Hurley, LA Witters, RA DePinho, LC Cantley. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 2004; 101(10): 3329–3335
https://doi.org/10.1073/pnas.0308061100
96 JM Evans, LA Donnelly, AM Emslie-Smith, DR Alessi, AD Morris. Metformin and reduced risk of cancer in diabetic patients. BMJ 2005; 330(7503): 1304–1305
https://doi.org/10.1136/bmj.38415.708634.F7
97 JH Cha, WH Yang, W Xia, Y Wei, LC Chan, SO Lim, CW Li, T Kim, SS Chang, HH Lee, JL Hsu, HL Wang, CW Kuo, WC Chang, S Hadad, CA Purdie, AM McCoy, S Cai, Y Tu, JK Litton, EA Mittendorf, SL Moulder, WF Symmans, AM Thompson, H Piwnica-Worms, CH Chen, KH Khoo, MC Hung. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol Cell 2018; 71(4): 606–620.e7
https://doi.org/10.1016/j.molcel.2018.07.030
98 KH Vousden, KM Ryan. p53 and metabolism. Nat Rev Cancer 2009; 9(10): 691–700
https://doi.org/10.1038/nrc2715
99 MA Cortez, C Ivan, D Valdecanas, X Wang, HJ Peltier, Y Ye, L Araujo, DP Carbone, K Shilo, DK Giri, K Kelnar, D Martin, R Komaki, DR Gomez, S Krishnan, GA Calin, AG Bader, JW Welsh. PDL1 Regulation by p53 via miR-34. J Natl Cancer Inst 2015; 108(1): djv303
https://doi.org/10.1093/jnci/djv303
100 EK Oermann, J Wu, KL Guan, Y Xiong. Alterations of metabolic genes and metabolites in cancer. Semin Cell Dev Biol 2012; 23(4): 370–380
https://doi.org/10.1016/j.semcdb.2012.01.013
101 Z Tuo, Y Zong, J Li, G Xiao, F Zhang, G Li, S Wang, Y Lv, J Xia, J Liu. PD-L1 regulation by SDH5 via β-catenin/ZEB1 signaling. Oncoimmunology 2019; 8(12): 1655361
https://doi.org/10.1080/2162402X.2019.1655361
102 L Chen, DL Gibbons, S Goswami, MA Cortez, YH Ahn, LA Byers, X Zhang, X Yi, D Dwyer, W Lin, L Diao, J Wang, J Roybal, M Patel, C Ungewiss, D Peng, S Antonia, M Mediavilla-Varela, G Robertson, M Suraokar, JW Welsh, B Erez, II Wistuba, L Chen, D Peng, S Wang, SE Ullrich, JV Heymach, JM Kurie, FX Qin. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat Commun 2014; 5(1): 5241
https://doi.org/10.1038/ncomms6241
103 FJ Núñez, FM Mendez, P Kadiyala, MS Alghamri, MG Savelieff, MB Garcia-Fabiani, S Haase, C Koschmann, AA Calinescu, N Kamran, M Saxena, R Patel, S Carney, MZ Guo, M Edwards, M Ljungman, T Qin, MA Sartor, R Tagett, S Venneti, J Brosnan-Cashman, A Meeker, V Gorbunova, L Zhao, DM Kremer, L Zhang, CA Lyssiotis, L Jones, CJ Herting, JL Ross, D Hambardzumyan, S Hervey-Jumper, ME Figueroa, PR Lowenstein, MG Castro. IDH1-R132H acts as a tumor suppressor in glioma via epigenetic up-regulation of the DNA damage response. Sci Transl Med 2019; 11(479): eaaq1427
https://doi.org/10.1126/scitranslmed.aaq1427
104 L Mu, Y Long, C Yang, L Jin, H Tao, H Ge, YE Chang, A Karachi, PS Kubilis, G De Leon, J Qi, EJ Sayour, DA Mitchell, Z Lin, J Huang. The IDH1 mutation-induced oncometabolite, 2-hydroxyglutarate, may affect DNA methylation and expression of PD-L1 in gliomas. Front Mol Neurosci 2018; 11: 82
https://doi.org/10.3389/fnmol.2018.00082
105 P Kadiyala, SV Carney, JC Gauss, MB Garcia-Fabiani, S Haase, MS Alghamri, FJ Núñez, Y Liu, M Yu, A Taher, FM Nunez, D Li, MB Edwards, CG Kleer, H Appelman, Y Sun, L Zhao, JJ Moon, A Schwendeman, PR Lowenstein, MG Castro. Inhibition of 2-hydroxyglutarate elicits metabolic reprogramming and mutant IDH1 glioma immunity in mice. J Clin Invest 2021; 131(4): e139542
https://doi.org/10.1172/JCI139542
106 X Jing, F Yang, C Shao, K Wei, M Xie, H Shen, Y Shu. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer 2019; 18(1): 157
https://doi.org/10.1186/s12943-019-1089-9
107 EM Palsson-McDermott, L Dyck, Z Zasłona, D Menon, AF McGettrick, KHG Mills, LA O’Neill. Pyruvate kinase M2 is required for the expression of the immune checkpoint PD-L1 in immune cells and tumors. Front Immunol 2017; 8: 1300
https://doi.org/10.3389/fimmu.2017.01300
108 Q Xia, J Jia, C Hu, J Lu, J Li, H Xu, J Fang, D Feng, L Wang, Y Chen. Tumor-associated macrophages promote PD-L1 expression in tumor cells by regulating PKM2 nuclear translocation in pancreatic ductal adenocarcinoma. Oncogene 2022; 41(6): 865–877
https://doi.org/10.1038/s41388-021-02133-5
109 Y Huang, D Lin, CM Taniguchi. Hypoxia inducible factor (HIF) in the tumor microenvironment: friend or foe?. Sci China Life Sci 2017; 60(10): 1114–1124
https://doi.org/10.1007/s11427-017-9178-y
110 P Kuo, QT Le. Galectin-1 links tumor hypoxia and radiotherapy. Glycobiology 2014; 24(10): 921–925
https://doi.org/10.1093/glycob/cwu062
111 MR Guda, AJ Tsung, S Asuthkar, KK Velpula. Galectin-1 activates carbonic anhydrase IX and modulates glioma metabolism. Cell Death Dis 2022; 13(6): 574
https://doi.org/10.1038/s41419-022-05024-z
112 DK Nambiar, T Aguilera, H Cao, S Kwok, C Kong, J Bloomstein, Z Wang, VS Rangan, D Jiang, R von Eyben, R Liang, S Agarwal, AD Colevas, A Korman, CT Allen, R Uppaluri, AC Koong, A Giaccia, QT Le. Galectin-1-driven T cell exclusion in the tumor endothelium promotes immunotherapy resistance. J Clin Invest 2019; 129(12): 5553–5567
https://doi.org/10.1172/JCI129025
113 L Vuong, E Kouverianou, CM Rooney, BJ McHugh, SEM Howie, CD Gregory, SJ Forbes, NC Henderson, FR Zetterberg, UJ Nilsson, H Leffler, P Ford, A Pedersen, L Gravelle, S Tantawi, H Schambye, T Sethi, AC MacKinnon. An orally active galectin-3 antagonist inhibits lung adenocarcinoma growth and augments response to PD-L1 blockade. Cancer Res 2019; 79(7): 1480–1492
https://doi.org/10.1158/0008-5472.CAN-18-2244
114 F Hirschhaeuser, UG Sattler, W Mueller-Klieser. Lactate: a metabolic key player in cancer. Cancer Res 2011; 71(22): 6921–6925
https://doi.org/10.1158/0008-5472.CAN-11-1457
115 J Feng, H Yang, Y Zhang, H Wei, Z Zhu, B Zhu, M Yang, W Cao, L Wang, Z Wu. Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells. Oncogene 2017; 36(42): 5829–5839
https://doi.org/10.1038/onc.2017.188
116 H Lv, G Lv, C Chen, Q Zong, G Jiang, D Ye, X Cui, Y He, W Xiang, Q Han, L Tang, W Yang, H Wang. NAD+ metabolism maintains inducible PD-L1 expression to drive tumor immune evasion. Cell Metab 2021; 33(1): 110–127.e5
https://doi.org/10.1016/j.cmet.2020.10.021
117 H Yao, J Lan, C Li, H Shi, JP Brosseau, H Wang, H Lu, C Fang, Y Zhang, L Liang, X Zhou, C Wang, Y Xue, Y Cui, J Xu. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat Biomed Eng 2019; 3(4): 306–317
https://doi.org/10.1038/s41551-019-0375-6
118 T Nakamura, T Sato, R Endo, S Sasaki, N Takahashi, Y Sato, M Hyodo, Y Hayakawa, H Harashima. STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis via NK cell activation. J Immunother Cancer 2021; 9(7): e002852
https://doi.org/10.1136/jitc-2021-002852
119 Y Yang, JM Hsu, L Sun, LC Chan, CW Li, JL Hsu, Y Wei, W Xia, J Hou, Y Qiu, MC Hung. Palmitoylation stabilizes PD-L1 to promote breast tumor growth. Cell Res 2019; 29(1): 83–86
https://doi.org/10.1038/s41422-018-0124-5
120 X Li, X Qian, Z Lu. Local histone acetylation by ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Autophagy 2017; 13(10): 1790–1791
https://doi.org/10.1080/15548627.2017.1349581
121 PC Bradshaw. Acetyl-CoA metabolism and histone acetylation in the regulation of aging and lifespan. Antioxidants (Basel) 2021; 10(4): 572
https://doi.org/10.3390/antiox10040572
122 Y Gao, NT Nihira, X Bu, C Chu, J Zhang, A Kolodziejczyk, Y Fan, NT Chan, L Ma, J Liu, D Wang, X Dai, H Liu, M Ono, A Nakanishi, H Inuzuka, BJ North, YH Huang, S Sharma, Y Geng, W Xu, XS Liu, L Li, Y Miki, P Sicinski, GJ Freeman, W Wei. Acetylation-dependent regulation of PD-L1 nuclear translocation dictates the efficacy of anti-PD-1 immunotherapy. Nat Cell Biol 2020; 22(9): 1064–1075
https://doi.org/10.1038/s41556-020-0562-4
123 X Feng, L Zhang, S Xu, AZ Shen. ATP-citrate lyase (ACLY) in lipid metabolism and atherosclerosis: an updated review. Prog Lipid Res 2020; 77: 101006
https://doi.org/10.1016/j.plipres.2019.101006
124 DA Guertin, KE Wellen. Acetyl-CoA metabolism in cancer. Nat Rev Cancer 2023; 23(3): 156–172
https://doi.org/10.1038/s41568-022-00543-5
125 L Gu, Y Zhu, X Lin, B Lu, X Zhou, F Zhou, Q Zhao, EV Prochownik, Y Li. The IKKβ-USP30-ACLY axis controls lipogenesis and tumorigenesis. Hepatology 2021; 73(1): 160–174
https://doi.org/10.1002/hep.31249
126 M Shahid, M Kim, P Jin, B Zhou, Y Wang, W Yang, S You, J Kim. S-palmitoylation as a functional regulator of proteins associated with cisplatin resistance in bladder cancer. Int J Biol Sci 2020; 16(14): 2490–2505
https://doi.org/10.7150/ijbs.45640
127 X Bian, R Liu, Y Meng, D Xing, D Xu, Z Lu. Lipid metabolism and cancer. J Exp Med 2021; 218(1): e20201606
https://doi.org/10.1084/jem.20201606
128 XJ Li, QL Li, LG Ju, C Zhao, LS Zhao, JW Du, Y Wang, L Zheng, BL Song, LY Li, L Li, M Wu. Deficiency of histone methyltransferase SET domain-containing 2 in liver leads to abnormal lipid metabolism and HCC. Hepatology 2021; 73(5): 1797–1815
https://doi.org/10.1002/hep.31594
129 MR Green, S Rodig, P Juszczynski, J Ouyang, P Sinha, E O’Donnell, D Neuberg, MA Shipp. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res 2012; 18(6): 1611–1618
https://doi.org/10.1158/1078-0432.CCR-11-1942
130 Q Wang, Y Cao, L Shen, T Xiao, R Cao, S Wei, M Tang, L Du, H Wu, B Wu, Y Yu, S Wang, M Wen, B OuYang. Regulation of PD-L1 through direct binding of cholesterol to CRAC motifs. Sci Adv 2022; 8(34): eabq4722
https://doi.org/10.1126/sciadv.abq4722
131 JJ Wang, MK Siu, YX Jiang, TH Leung, DW Chan, HG Wang, HY Ngan, KK Chan. A combination of glutaminase inhibitor 968 and PD-L1 blockade boosts the immune response against ovarian cancer. Biomolecules 2021; 11(12): 1749
https://doi.org/10.3390/biom11121749
132 G Ma, Y Liang, Y Chen, L Wang, D Li, Z Liang, X Wang, D Tian, X Yang, H Niu. Glutamine deprivation induces PD-L1 expression via activation of EGFR/ERK/c-Jun signaling in renal cancer. Mol Cancer Res 2020; 18(2): 324–339
https://doi.org/10.1158/1541-7786.MCR-19-0517
133 Y Yu, Y Liang, D Li, L Wang, Z Liang, Y Chen, G Ma, H Wu, W Jiao, H Niu. Glucose metabolism involved in PD-L1-mediated immune escape in the malignant kidney tumour microenvironment. Cell Death Discov 2021; 7(1): 15
https://doi.org/10.1038/s41420-021-00401-7
134 J Son, CA Lyssiotis, H Ying, X Wang, S Hua, M Ligorio, RM Perera, CR Ferrone, E Mullarky, N Shyh-Chang, Y Kang, JB Fleming, N Bardeesy, JM Asara, MC Haigis, RA DePinho, LC Cantley, AC Kimmelman. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 2013; 496(7443): 101–105
https://doi.org/10.1038/nature12040
135 S Hashimoto, S Furukawa, A Hashimoto, A Tsutaho, A Fukao, Y Sakamura, G Parajuli, Y Onodera, Y Otsuka, H Handa, T Oikawa, S Hata, Y Nishikawa, Y Mizukami, Y Kodama, M Murakami, T Fujiwara, S Hirano, H Sabe. ARF6 and AMAP1 are major targets of KRAS and TP53 mutations to promote invasion, PD-L1 dynamics, and immune evasion of pancreatic cancer. Proc Natl Acad Sci U S A 2019; 116(35): 17450–17459
https://doi.org/10.1073/pnas.1901765116
136 MT Bassi, E Gasol, M Manzoni, M Pineda, M Riboni, R Martín, A Zorzano, G Borsani, M Palacín. Identification and characterisation of human xCT that co-expresses, with 4F2 heavy chain, the amino acid transport activity system xc–. Pflugers Arch 2001; 442(2): 286–296
https://doi.org/10.1007/s004240100537
137 N Liu, J Zhang, M Yin, H Liu, X Zhang, J Li, B Yan, Y Guo, J Zhou, J Tao, S Hu, X Chen, C Peng. Inhibition of xCT suppresses the efficacy of anti-PD-1/L1 melanoma treatment through exosomal PD-L1-induced macrophage M2 polarization. Mol Ther 2021; 29(7): 2321–2334
https://doi.org/10.1016/j.ymthe.2021.03.013
138 MD Arensman, XS Yang, DM Leahy, L Toral-Barza, M Mileski, EC Rosfjord, F Wang, S Deng, JS Myers, RT Abraham, CH Eng. Cystine-glutamate antiporter xCT deficiency suppresses tumor growth while preserving antitumor immunity. Proc Natl Acad Sci U S A 2019; 116(19): 9533–9542
https://doi.org/10.1073/pnas.1814932116
139 B Faubert, EE Vincent, T Griss, B Samborska, S Izreig, RU Svensson, OA Mamer, D Avizonis, DB Shackelford, RJ Shaw, RG Jones. Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1α. Proc Natl Acad Sci U S A 2014; 111(7): 2554–2559
https://doi.org/10.1073/pnas.1312570111
140 Z Liu, S Li, J Zeng, X Zhou, H Li, X Liu, F Li, B Jiang, M Zhao, T Ma. LKB1 inhibits intrahepatic cholangiocarcinoma by repressing the transcriptional activity of the immune checkpoint PD-L1. Life Sci 2020; 257: 118068
https://doi.org/10.1016/j.lfs.2020.118068
141 A Le, AN Lane, M Hamaker, S Bose, A Gouw, J Barbi, T Tsukamoto, CJ Rojas, BS Slusher, H Zhang, LJ Zimmerman, DC Liebler, RJ Slebos, PK Lorkiewicz, RM Higashi, TW Fan, CV Dang. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 2012; 15(1): 110–121
https://doi.org/10.1016/j.cmet.2011.12.009
142 SC Casey, L Tong, Y Li, R Do, S Walz, KN Fitzgerald, AM Gouw, V Baylot, I Gütgemann, M Eilers, DW Felsher. MYC regulates the antitumor immune response through CD47 and PD-L1. Science 2016; 352(6282): 227–231
https://doi.org/10.1126/science.aac9935
143 D Di Marcantonio, E Martinez, JS Kanefsky, JM Huhn, R Gabbasov, A Gupta, JJ Krais, S Peri, Y Tan, T Skorski, A Dorrance, R Garzon, AR Goldman, HY Tang, N Johnson, SM Sykes. ATF3 coordinates serine and nucleotide metabolism to drive cell cycle progression in acute myeloid leukemia. Mol Cell 2021; 81(13): 2752–2764.e6
https://doi.org/10.1016/j.molcel.2021.05.008
144 H Liu, X Kuang, Y Zhang, Y Ye, J Li, L Liang, Z Xie, L Weng, J Guo, H Li, F Ma, X Chen, S Zhao, J Su, N Yang, F Fang, Y Xie, J Tao, J Zhang, M Chen, C Peng, L Sun, X Zhang, J Liu, L Han, X Xu, MC Hung, X Chen. ADORA1 inhibition promotes tumor immune evasion by regulating the ATF3-PD-L1 axis. Cancer Cell 2020; 37(3): 324–339.e8
https://doi.org/10.1016/j.ccell.2020.02.006
145 MT Kuo, N Savaraj, LG Feun. Targeted cellular metabolism for cancer chemotherapy with recombinant arginine-degrading enzymes. Oncotarget 2010; 1(4): 246–251
https://doi.org/10.18632/oncotarget.135
146 J Carpentier, I Pavlyk, U Mukherjee, PE Hall, PW Szlosarek. Arginine deprivation in SCLC: mechanisms and perspectives for therapy. Lung Cancer (Auckl) 2022; 13: 53–66
https://doi.org/10.2147/LCTT.S335117
147 X He, H Lin, L Yuan, B Li. Combination therapy with L-arginine and α-PD-L1 antibody boosts immune response against osteosarcoma in immunocompetent mice. Cancer Biol Ther 2017; 18(2): 94–100
https://doi.org/10.1080/15384047.2016.1276136
148 i Líndez AA Martí, I Dunand-Sauthier, M Conti, F Gobet, N Núñez, JT Hannich, H Riezman, R Geiger, A Piersigilli, K Hahn, S Lemeille, B Becher, Smedt T De, S Hugues, W Reith. Mitochondrial arginase-2 is a cell-autonomous regulator of CD8+ T cell function and antitumor efficacy. JCI Insight 2019; 4(24): e132975
https://doi.org/10.1172/jci.insight.132975
149 ME Maffei. 5-hydroxytryptophan (5-HTP): natural occurrence, analysis, biosynthesis, biotechnology, physiology and toxicology. Int J Mol Sci 2021; 22(1): 181
https://doi.org/10.3390/ijms22010181
150 J Huang, X Wang, B Li, S Shen, R Wang, H Tao, J Hu, J Yu, H Jiang, K Chen, C Luo, Y Dang, Y Zhang. L-5-hydroxytryptophan promotes antitumor immunity by inhibiting PD-L1 inducible expression. J Immunother Cancer 2022; 10(6): e003957
https://doi.org/10.1136/jitc-2021-003957
151 S Daneshmandi, B Wegiel, P Seth. Blockade of lactate dehydrogenase-A (LDH-A) improves efficacy of anti-programmed cell death-1 (PD-1) therapy in melanoma. Cancers (Basel) 2019; 11(4): 450
https://doi.org/10.3390/cancers11040450
152 R Hu, B Zhou, Z Chen, S Chen, N Chen, L Shen, H Xiao, Y Zheng. PRMT5 inhibition promotes PD-L1 expression and immuno-resistance in lung cancer. Front Immunol 2022; 12: 722188
https://doi.org/10.3389/fimmu.2021.722188
153 W Gao, X Zhang, W Yang, D Dou, H Zhang, Y Tang, W Zhong, J Meng, Y Bai, Y Liu, L Yang, S Chen, H Liu, C Yang, T Sun. Prim-O-glucosylcimifugin enhances the antitumour effect of PD-1 inhibition by targeting myeloid-derived suppressor cells. J Immunother Cancer 2019; 7(1): 231
https://doi.org/10.1186/s40425-019-0676-z
154 NE Scharping, AV Menk, RD Whetstone, X Zeng, GM Delgoffe. Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia. Cancer Immunol Res 2017; 5(1): 9–16
https://doi.org/10.1158/2326-6066.CIR-16-0103
155 L He. Metformin and systemic metabolism. Trends Pharmacol Sci 2020; 41(11): 868–881
https://doi.org/10.1016/j.tips.2020.09.001
156 MY Huang, XM Jiang, YL Xu, LW Yuan, YC Chen, G Cui, RY Huang, B Liu, Y Wang, X Chen, JJ Lu. Platycodin D triggers the extracellular release of programed death ligand-1 in lung cancer cells. Food Chem Toxicol 2019; 131: 110537
https://doi.org/10.1016/j.fct.2019.05.045
157 J Huang, G Chen, J Wang, S Liu, J Su. Platycodin D regulates high glucose-induced ferroptosis of HK-2 cells through glutathione peroxidase 4 (GPX4). Bioengineered 2022; 13(3): 6627–6637
https://doi.org/10.1080/21655979.2022.2045834
158 K Kawauchi, K Araki, K Tobiume, N Tanaka. p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 2008; 10(5): 611–618
https://doi.org/10.1038/ncb1724
159 N Li, Q Liu, Y Han, S Pei, B Cheng, J Xu, X Miao, Q Pan, H Wang, J Guo, X Wang, G Zhang, Y Lian, W Zhang, Y Zang, M Tan, Q Li, X Wang, Y Xiao, G Hu, J Jiang, H Huang, J Qin. ARID1A loss induces polymorphonuclear myeloid-derived suppressor cell chemotaxis and promotes prostate cancer progression. Nat Commun 2022; 13(1): 7281
https://doi.org/10.1038/s41467-022-34871-9
160 X Chen, K Xun, L Chen, Y Wang. TNF-alpha, a potent lipid metabolism regulator. Cell Biochem Funct 2009; 27(7): 407–416
https://doi.org/10.1002/cbf.1596
161 D Quandt, S Jasinski-Bergner, U Müller, B Schulze, B Seliger. Synergistic effects of IL-4 and TNFα on the induction of B7-H1 in renal cell carcinoma cells inhibiting allogeneic T cell proliferation. J Transl Med 2014; 12(1): 151
https://doi.org/10.1186/1479-5876-12-151
162 DW Vredevoogd, T Kuilman, MA Ligtenberg, J Boshuizen, KE Stecker, B de Bruijn, O Krijgsman, X Huang, JCN Kenski, R Lacroix, R Mezzadra, R Gomez-Eerland, M Yildiz, I Dagidir, G Apriamashvili, N Zandhuis, V van der Noort, NL Visser, CU Blank, M Altelaar, TN Schumacher, DS Peeper. Augmenting immunotherapy impact by lowering tumor TNF cytotoxicity threshold. Cell 2019; 178(3): 585–599.e15
https://doi.org/10.1016/j.cell.2019.06.014
163 P Wee, Z Wang. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel) 2017; 9(5): 52
https://doi.org/10.3390/cancers9050052
164 M Jeon, KM Chauhan, GL Szeto, M Kyoung, S An. Subcellular regulation of glucose metabolism through multienzyme glucosome assemblies by EGF-ERK1/2 signaling pathways. J Biol Chem 2022; 298(3): 101675
https://doi.org/10.1016/j.jbc.2022.101675
165 H Horita, A Law, S Hong, K Middleton. Identifying regulatory posttranslational modifications of PD-L1: a focus on monoubiquitinaton. Neoplasia 2017; 19(4): 346–353
https://doi.org/10.1016/j.neo.2017.02.006
166 PC Hsu, DM Jablons, CT Yang, L You. Epidermal growth factor receptor (EGFR) pathway, yes-associated protein (YAP) and the regulation of programmed death-ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC). Int J Mol Sci 2019; 20(15): 3821
https://doi.org/10.3390/ijms20153821
167 Z Quan, Y Yang, H Zheng, Y Zhan, J Luo, Y Ning, S Fan. Clinical implications of the interaction between PD-1/PD-L1 and PI3K/AKT/mTOR pathway in progression and treatment of non-small cell lung cancer. J Cancer 2022; 13(13): 3434–3443
https://doi.org/10.7150/jca.77619
168 N Zhang, Y Zeng, W Du, J Zhu, D Shen, Z Liu, JA Huang. The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer. Int J Oncol 2016; 49(4): 1360–1368
https://doi.org/10.3892/ijo.2016.3632
169 YJ Li, C Zhang, A Martincuks, A Herrmann, H Yu. STAT proteins in cancer: orchestration of metabolism. Nat Rev Cancer 2023; 23(3): 115–134
https://doi.org/10.1038/s41568-022-00537-3
170 Y Gao, J Yang, Y Cai, S Fu, N Zhang, X Fu, L Li. IFN-γ-mediated inhibition of lung cancer correlates with PD-L1 expression and is regulated by PI3K-AKT signaling. Int J Cancer 2018; 143(4): 931–943
https://doi.org/10.1002/ijc.31357
171 TS Stutvoet, A Kol, EG de Vries, M de Bruyn, RS Fehrmann, AG Terwisscha van Scheltinga, S de Jong. MAPK pathway activity plays a key role in PD-L1 expression of lung adenocarcinoma cells. J Pathol 2019; 249(1): 52–64
https://doi.org/10.1002/path.5280
172 RD Leone, L Zhao, JM Englert, IM Sun, MH Oh, IH Sun, ML Arwood, IA Bettencourt, CH Patel, J Wen, A Tam, RL Blosser, E Prchalova, J Alt, R Rais, BS Slusher, JD Powell. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 2019; 366(6468): 1013–1021
https://doi.org/10.1126/science.aav2588
173 Y Zhang, R Kurupati, L Liu, XY Zhou, G Zhang, A Hudaihed, F Filisio, W Giles-Davis, X Xu, GC Karakousis, LM Schuchter, W Xu, R Amaravadi, M Xiao, N Sadek, C Krepler, M Herlyn, GJ Freeman, JD Rabinowitz, HCJ Ertl. Enhancing CD8+ T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell 2017; 32(3): 377–391.e9
https://doi.org/10.1016/j.ccell.2017.08.004
174 B Olson, Y Li, Y Lin, ET Liu, A Patnaik. Mouse models for cancer immunotherapy research. Cancer Discov 2018; 8(11): 1358–1365
https://doi.org/10.1158/2159-8290.CD-18-0044
[1] Zhiqin Zhang, Xinli Shi, Jingmin Ji, Yinglin Guo, Qing Peng, Liyuan Hao, Yu Xue, Yiwei Liu, Caige Li, Junlan Lu, Kun Yu. Dihydroartemisinin increased the abundance of Akkermansia muciniphila by YAP1 depression that sensitizes hepatocellular carcinoma to anti-PD-1 immunotherapy[J]. Front. Med., 2023, 17(4): 729-746.
[2] Chaoyue Xiao, Wei Xiong, Yiting Xu, Ji’an Zou, Yue Zeng, Junqi Liu, Yurong Peng, Chunhong Hu, Fang Wu. Immunometabolism: a new dimension in immunotherapy resistance[J]. Front. Med., 2023, 17(4): 585-616.
[3] Pengfei Li, Zexuan Chen, Shanshan You, Yintai Xu, Zhifang Hao, Didi Liu, Jiechen Shen, Bojing Zhu, Wei Dan, Shisheng Sun. Application of StrucGP in medical immunology: site-specific N-glycoproteomic analysis of macrophages[J]. Front. Med., 2023, 17(2): 304-316.
[4] Ronghui Yang, Guoguang Ying, Binghui Li. Potential of electron transfer and its application in dictating routes of biochemical processes associated with metabolic reprogramming[J]. Front. Med., 2021, 15(5): 679-692.
[5] Shi-Yong Sun. mTOR-targeted cancer therapy: great target but disappointing clinical outcomes, why?[J]. Front. Med., 2021, 15(2): 221-231.
[6] Yumeng Wang, Guiling Li. PD-1/PD-L1 blockade in cervical cancer: current studies and perspectives[J]. Front. Med., 2019, 13(4): 438-450.
[7] Min Zhang, Jingwen Yang, Wenjing Hua, Zhong Li, Zenghui Xu, Qijun Qian. Monitoring checkpoint inhibitors: predictive biomarkers in immunotherapy[J]. Front. Med., 2019, 13(1): 32-44.
[8] Chia-Wei Li, Yun-Ju Lai, Jennifer L. Hsu, Mien-Chie Hung. Activation of phagocytosis by immune checkpoint blockade[J]. Front. Med., 2018, 12(4): 473-480.
[9] Yingyan Yu. Molecular classification and precision therapy of cancer: immune checkpoint inhibitors[J]. Front. Med., 2018, 12(2): 229-235.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed