Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2009, Vol. 4 Issue (4) : 430-435    https://doi.org/10.1007/s11465-009-0053-6
Research articles
Performance of ionic polymer-metal composite (IPMC) with different surface roughening methods
Ning JIN,Bangfeng WANG,Kan BIAN,Qi CHEN,Ke XIONG,
The Aeronautic Key Laboratory for Smart Materials & Structures, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China;
 Download: PDF(211 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on permeation and double chemical reduction technology, this paper researches the manufacture of Pt-ionic polymer metal composites (IPMC) and the effect of three types of surface roughening methods on the manufacture and performance of IPMC. The roughening methods include manual polishing, sanding machine polishing, and plasma surface treatment. The appearance and scanning electron microscopy (SEM) features, electro-active deformation and surface resistance characteristics of these IPMC specimens were obtained and compared through specimen tests. The results of the tests indicate that surface roughening technology obviously influences the performance of IPMC. The uniformity and compactness of the metal deposited on the surface and inside the Nafion film are improved by improving surface roughening uniformity. However, the electro-active deformation capability and surface resistance of the specimens decrease at the same time. There is an approximate linear increase relationship between the driving voltage and the bending deformation of the IPMC specimen within a certain voltage range. Under the same specimen dimension, constraints, and driving voltage (3V), the maximum electro-active bending deformation angles of the specimens are about 60°, 45°, and 15° for manual polishing, sanding machine roughening, and plasma treatment, respectively.
Keywords ionic polymer metal composites (IPMC)      surface roughening      scanning electron microscopy (SEM) analyze      actuator      electroless plating      
Issue Date: 05 December 2009
 Cite this article:   
Ning JIN,Kan BIAN,Bangfeng WANG, et al. Performance of ionic polymer-metal composite (IPMC) with different surface roughening methods[J]. Front. Mech. Eng., 2009, 4(4): 430-435.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-009-0053-6
https://academic.hep.com.cn/fme/EN/Y2009/V4/I4/430
Cohen Y B, Leary S, Yavrouian A, Oguro K, Tadokoro S, Harrison J, Smith J, Su J. Challenges to the transition of IPMC artificial muscleactuators to practical application. Electroactive Polymers Conference. Boston, MA, USA, 1999
Lee S J, Han M J, Kim S J, Jho J Y, Lee H Y, Kim Y H. A new fabrication method for IPMC actuators and application to artificialfingers. Smart Materials and Structures, 2006, 15: 1217―1224

doi: 10.1088/0964-1726/15/5/008
Shahinpoor M, Kim K J. Ionic polymer-metal composites:IV. Industrial and medical applications. Smart Materials and Structures, 2005, 14: 197―214

doi: 10.1088/0964-1726/14/1/020
Shahinpoor M, Kim K J. Ionic Polymer-Metal Composites:I. Fundamentals. Smart Materials and Structures, 2001, 10: 1―15

doi: 10.1088/0964-1726/10/4/327
Kim K J, Shahinpoor M. Ionic polymer-metal composites:II. Manufacturing techniques. Smart Materialand Structures, 2003, 12: 65―79

doi: 10.1088/0964-1726/12/1/308
Kim K J, Shahinpoor M. A novel method of manufacturingthree-dimensional ionic polymer-metal composites (IPMC) biomimeticsensors, actuators and artificial muscles. Polymer, 2002, 43: 77―802

doi: 10.1016/S0032-3861(01)00648-6
Vinh K N, Youngtai Y. A novel design and fabricationof multilayered ionic polymer-metal composite actuators based on Nafion/layeredsilicate and Nafion/silica nanocomposites. Sensors and Actuators B, 2007, 123(1): 183―190

doi: 10.1016/j.snb.2006.08.013
Jeon J H, Yeom S W, Oh I K. Fabrication and actuation of ionic polymer metal compositespatterned by combining electroplating with electroless plating. Composites Part A: Applied Science and Manufacturing, 2008, 39(4): 588―596

doi: 10.1016/j.compositesa.2007.07.013
Andres P, Maarja K, Alvo A. A self-sensing ion conducting polymer metal composite(IPMC) actuator. Sensors and ActuatorsA, 136(2): 656―664
Cohen Y B, Leary S, Shahinpoor M, Harrison J O, Smith J. EAP actuators for planetaryapplications. Newport Beach, 1999, 3: 1―61
Wang H X, Yu H H, Li X F, Jiang D S. Preparationand properties of pt-ni/Nafion membrane based electrically drivenmaterials. Journal of Wuhan Universityof Technology, 2004, 26(12): 5―8 (in Chinese)
Punning A, Kruusmaa M, Aabloo A. Surface resistance experiments with IPMC sensors andactuators. Sensors and Actuators A, 2007, 133: 200―209

doi: 10.1016/j.sna.2006.03.010
Shahinpoor M, Kim K J. The effect of surface-electroderesistance on the performance of ionic polymer-metal composite (IPMC)artificial muscles. Smart Materials andStructures, 2000, 9: 543―551

doi: 10.1088/0964-1726/9/4/318
[1] Mariana MORETTI, Emílio C. N. SILVA. Topology optimization of piezoelectric bi-material actuators with velocity feedback control[J]. Front. Mech. Eng., 2019, 14(2): 190-200.
[2] Meiju YANG,Chunxia LI,Guoying GU,Limin ZHU. A rate-dependent Prandtl-Ishlinskii model for piezoelectric actuators using the dynamic envelope function based play operator[J]. Front. Mech. Eng., 2015, 10(1): 37-42.
[3] Ruizhou WANG, Xianmin ZHANG. Preload characteristics identification of the piezoelectric-actuated 1-DOF compliant nanopositioning platform[J]. Front. Mech. Eng., 2015, 10(1): 20-36.
[4] G. BORCHERT, C. L?CHTE, G. CARBONE, A. RAATZ. A modular design kit for task-adaptable low-cost robots based on BaPaMan design[J]. Front Mech Eng, 2013, 8(1): 33-41.
[5] Mahdi RASOULI, Andy Prima KENCANA, Van An HUYNH, Eng Kiat TING, Joshua Chong Yue LAI, Kai Juan WONG, Su Lim TAN, Soo Jay PHEE. Ingestible wireless capsules for enhanced diagnostic inspection of gastrointestinal tract[J]. Front Mech Eng, 2011, 6(1): 40-44.
[6] Lin LIN, Mahdi RASOULI, Andy Prima KENCANA, Su Lim TAN, Kai Juan WONG, Khek Yu HO, Soo Jay PHEE. Capsule endoscopy—A mechatronics perspective[J]. Front Mech Eng, 2011, 6(1): 33-39.
[7] Hanmin PENG, Yao HUI, Qingjun DING, Huafeng LI, Chunsheng ZHAO, . IPMC gripper static analysis based on finite element analysis[J]. Front. Mech. Eng., 2010, 5(2): 204-211.
[8] Xinhua WANG, Shuwen SUN, Jian ZHEN, Qianyi YA, Deguo WANG, . Signal separation technology for diphase opposition giant magnetostrictive self-sensing actuator[J]. Front. Mech. Eng., 2010, 5(2): 176-183.
[9] Qi CHEN, Ke XIONG, Kan BIAN, Ning JIN, Bangfeng WANG, . Preparation and performance of soft actuator based on IPMC with silver electrodes[J]. Front. Mech. Eng., 2009, 4(4): 436-440.
[10] Junwu KAN, Kehong TANG, Chenghui SHAO, Guoren ZHU, Taijiang PENG, . Efficiency characteristics of piezostack pump for linear actuators[J]. Front. Mech. Eng., 2009, 4(4): 407-414.
[11] Hanmin PENG, Qingjun Ding, Huafeng LI. Fabrication of ionic polymer-metal composites (IPMCs) and robot design[J]. Front Mech Eng Chin, 2009, 4(3): 332-338.
[12] Jinhao QIU, Hongli JI, Kongjun ZHU. Semi-active vibration control using piezoelectric actuators in smart structures[J]. Front Mech Eng Chin, 2009, 4(3): 242-251.
[13] Kaori YUSE, Benoit GUIFFARD, Rabah BELOUADAH, Lionel PETIT, Laurence SEVEYRAT,, Daniel GUYOMAR. Polymer nanocomposites for microactuation and magneto-electric transduction[J]. Front Mech Eng Chin, 2009, 4(3): 350-354.
[14] ZHAO Chunsheng, ZHANG Jiantao, ZHANG Jianhui, JIN Jiamei. Development and application prospects of piezoelectric precision driving technology[J]. Front. Mech. Eng., 2008, 3(2): 119-132.
[15] ZHANG Ruihua, CHEN Haichu. Dynamical research on spherical micro actuator with piezoelectric ceramic stacks drivers[J]. Front. Mech. Eng., 2007, 2(4): 433-438.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed