Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2013, Vol. 8 Issue (4) : 429-442    https://doi.org/10.1007/s11465-013-0277-3
RESEARCH ARTICLE
Application of adaptive neuro-fuzzy inference system and cuckoo optimization algorithm for analyzing electro chemical machining process
Reza TEIMOURI1(), Hamed SOHRABPOOR2
1. Mechanical Engineering Department, Babol University of Technology, Babol, Iran; 2. Mechanical Engineering Department, Islamic Azad University of Dezful, Dezful, Iran
 Download: PDF(544 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Electrochemical machining process (ECM) is increasing its importance due to some of the specific advantages which can be exploited during machining operation. The process offers several special privileges such as higher machining rate, better accuracy and control, and wider range of materials that can be machined. Contribution of too many predominate parameters in the process, makes its prediction and selection of optimal values really complex, especially while the process is programmized for machining of hard materials. In the present work in order to investigate effects of electrolyte concentration, electrolyte flow rate, applied voltage and feed rate on material removal rate (MRR) and surface roughness (SR) the adaptive neuro-fuzzy inference systems (ANFIS) have been used for creation predictive models based on experimental observations. Then the ANFIS 3D surfaces have been plotted for analyzing effects of process parameters on MRR and SR. Finally, the cuckoo optimization algorithm (COA) was used for selection solutions in which the process reaches maximum material removal rate and minimum surface roughness simultaneously. Results indicated that the ANFIS technique has superiority in modeling of MRR and SR with high prediction accuracy. Also, results obtained while applying of COA have been compared with those derived from confirmatory experiments which validate the applicability and suitability of the proposed techniques in enhancing the performance of ECM process.

Keywords electrochemical machining process (ECM)      modeling      adaptive neuro-fuzzy inference system (ANFIS)      optimization      cuckoo optimization algorithm (COA)     
Corresponding Author(s): TEIMOURI Reza,Email:reza_teimoori@yahoo.com   
Issue Date: 05 December 2013
 Cite this article:   
Reza TEIMOURI,Hamed SOHRABPOOR. Application of adaptive neuro-fuzzy inference system and cuckoo optimization algorithm for analyzing electro chemical machining process[J]. Front Mech Eng, 2013, 8(4): 429-442.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-013-0277-3
https://academic.hep.com.cn/fme/EN/Y2013/V8/I4/429
Fig.1  Basic structure of an ANFIS model []
Fig.2  Structure of developed ANFIS model for predicting (a) MRR and (b) SR
Fig.3  A flow chart of cuckoo optimization algorithm
Fig.4  The ECM machine that used in this work
Nominal compositionGrain sizeHardness (HV)Density (Kg·m-3)Transverse strength (MPa)Compressive strength (MPa)Modules of elasticity (GPa)
90%WC-10%CoFine1300-18001460031005170620
Tab.1  main properties of workpiece
ParametersSymbolLevels
-2-1012
Electrolyte concentration (g·L-1)X11015202530
Electrolyte flow rate (L·min-1)X256789
Applied Voltage (V)X31213141516
Feed rate (mm·min-1)X40.20.40.60.81
Tab.2  process factors and their levels
No.Process factorsResponses
Electrolyte ConcentrationElectrolyte flow rateApplied voltageFeed rate
CodedX1Actual(g·L-1)CodedX2Actual(L·min-1)CodedX3Actual(V)CodedX4Actual(mm·min-1)MRR (g·min-1)SR (μm)
1-115-16-113-10.40.3017.899
2125-16-113-10.40.2176.782
3-11518-113-10.40.3216.781
412518-113-10.40.3425.984
5-115-16115-10.40.3616.889
6125-16115-10.40.4286.748
7-11518115-10.40.3176.815
812518115-10.40.5616.891
9-115-16-11310.80.3236.678
10125-16-11310.80.5016.389
11-11518-11310.80.4216.364
1212518-11310.80.5926.214
13-115-1611510.80.6566.234
14125-1611510.80.6216.351
15-1151811510.80.7816.489
161251811510.80.8186.342
17-2100701400.60.3117.982
182300701400.60.6446.059
19020-2501400.60.3627.421
200202901400.60.5826.235
2102007-21200.60.2126.981
220200721600.60.4217.981
2302007014-20.20.5026.578
2402007014210.9815.210
250200701400.60.3585.021
260200701400.60.2185.124
270200701400.60.4815.034
280200701400.60.3315.482
290200701400.60.3565.142
300200701400.60.3185.111
310200701400.60.3585.214
Tab.3  design matrix and experimental results
Type of membership functionsRMSEs of cutting velocityRSMEs of surface roughness
Triangular0.04630.9873
Trapezoid0.13211.3651
Generalized bell0.07310.4929
Gaussian0.08270.2825
Tab.4  Values of RMSE in testing of MRR and SR for various types of membership function under 2-2-2-2 ANFIS structure
Fig.5  Comparison between measured and predicted values of testing data for (a) MRR and (b) SR
Fig.6  Comparison between measured and predicted values of all data for (a) MRR and (b) SR
Fig.7  Obtained surfaces of MRR through ANFIS model versus (a) electrolyte flow rate and electrolyte concentration and (b) feed rate and voltage
Fig.8  Obtained surfaces of SR through ANFIS model versus (a) electrolyte flow rate and electrolyte concentration and (b) feed rate and voltage
ParameterValue/functionDefinition
X[0][0 0 0 0]Initial population
NC50Number of cuckoos
H(X)H1= MRRH2=-SRH3=H1+ H2H1 and H2 are ANFIS models of MRR and Ra respectively and H3 is allocated to multi objective problem
NEmin2Minimum number of eggs
NEmax5Maximum number of eggs
NCL2Number of clusters
g0.9Motion coefficient
NCmax200Maximum number of cuckoos that can live at the same time
RC50Radius coefficient (control parameter of egg laying)
PV1e-13Stop condition (population variance that cut optimization)
Tab.5  Setup parameters of COA for implementation
Weight factorsOptimal settingResponses
Electrolyte concentration (g·L-1)Electrolyte flow rate (L·min-1)Applied voltage (V)Feed rate (mm·min-1)MRR (g·min-1)SR (μm)
W1 = 0.1, W2 = 0.918.87.213.30.750.4073.212
105.613.630.2720.653.611
W1 = 0.2, W2= 0.828.25.5712.450.2630.54.02
12.630.5160.2150.74155.7
W1 = 0.3, W2= 0.711.535.515.80.4350.542.11
11.535160.350.6754.447
W1 = 0.4, W2 = 0.621.67.813.50.80.5971.47
17.57.813.50.80.5032.85
W1 = 0.5, W2= 0.5107.613.10.20.71612.19
19.58.81120.2150.6233.173
W1 = 0.6, W2 = 0.412.875.4712.520.20.7742.95
10.555120.217.08
W1 = 0.7, W2= 0.318.67.2713.750.7570.46552.9
305.2150.320.554.45
W1 = 0.8, W2 = 0.227.8915.80.20.8417.54
27.89160.20.8658
W1 = 0.9, W2= 0.1307.715.80.30.7152.92
307.7160.30.7333.197
Tab.6  Obtained optimal results based on various weight factors
1 Tipton H. Dynamics of ECM process. Proc. 5th Int. MTDR Conf. Birmingham, UK, Pergamon, Oxford, 1964, 505-522
2 McGeough J A. Advanced methods of machining. Chapman and Hall , London, 1988
3 Amalnik M S, McGeough J A. Intelligent concurrent manufacturability evaluation of design for electrochemical machining. Journal of Materials Processing Technology , 1996, 61(1-2): 130-139
doi: 10.1016/0924-0136(96)02477-6
4 Thorpe JF. A mathematical model of electrochemical machining process, 3rd Int. Sem. on Optimisation of Manufacturing Systems . CIRP, Pisa, Italy, 1971, CAP-19
5 Chetty O V K, Murthy R, Radhakrishnan V. On some aspects of surface formation in ECM. Journal of Engineering for Industry, ASME , 1981, 103(3): 341-348
doi: 10.1115/1.3184494
6 Bhattacharyya B, Sorkhel S K. Computer-aided design of tools in ECM for accurate job machining, Proc. ISEM—9 , Japan, 1989, 240-243
7 Bhattacharyya B, Sorkhel S K. Investigation for controlled electrochemical machining through response surface methodology-based approach. Journal of Materials Processing Technology , 1999, 86(1-3): 200-207
doi: 10.1016/S0924-0136(98)00311-2
8 Senthikumar C, Ganesan G, Karthikeyan R. Study of electrochemical machining characteristics of Al/SiCp composites. International Journal of Advanced Manufacturing Technology , 2009, 43(3-4): 256-263
doi: 10.1007/s00170-008-1704-1
9 Puri A B, Branjee S. Multiple-response optimisation of electrochemical grinding characteristics through response surface methodology. International Journal of Advanced Manufacturing Technology , 2012,
doi: 10.1007/s00170-012-4065-8
10 El-Taweel T A, Gouda S A. Performance analysis of wire electrochemical turning process—RSM approach. International Journal of Advanced Manufacturing Technology , 2011, 53(1-4): 181-190
doi: 10.1007/s00170-010-2809-x
11 Temouri R, Baseri H. Artificial evolutionary approaches to produce smoother surface in magnetic abrasive finishing of hardened AISI 52100 steel. Journal of Mechanical Science and Technology , 2013, 27: 533-539
12 Shayan AV, Azar Afza R, Teimouri R. Parametric study along with selection of optimal solutions in dry wire cut machining of cemented tungsten carbide (WC-Co). Journal of Manufacturing Processes , 2013,
doi: 10.1016/j.jmapro.2013.05.001 pmid:10.1016/j.jmapro.2013.05.001" target="blank">.
doi: 10.1016/j.jmapro.2013.05.001
13 Teimouri R, Baseri H. Improvement of dry EDM process characteristics using artificial soft computing methodologies. Production Engineering Research and Development , 2012,
doi: 10.1007/s11740-012-0398-2
14 Teimouri R, Baseri H, Rahmani B, Bakhshi-Jooybari M. Modeling and optimization of spring-back in bending process using multiple regression analysis and neural computation. International Journal of Material Forming . 2012.
doi: 10.1007/s12289-012-1117-4
15 Caydas U, Hascalik A, Ekici S. An adaptive neuro-fuzzy inference system (ANFIS) model for wire-EDM. Expert Systems with Applications , 2009, 36(3): 6135-6139
doi: 10.1016/j.eswa.2008.07.019
16 Gill S S, Singh J. An Adaptive Neuro-Fuzzy Inference System modeling for material removal rate in stationary ultrasonic drilling of sillimanite ceramic. Expert Systems with Applications , 2010, 37(8): 5590-5598
doi: 10.1016/j.eswa.2010.02.054
17 Maji K, Pratihar D K. Forward and reverse mappings of electrical discharge machining process using adaptive network-based fuzzy inference system. Expert Systems with Applications , 2010, 37(12): 8566-8574
doi: 10.1016/j.eswa.2010.05.019
18 Pradhan M K, Biswas C K. Neuro-fuzzy and neural network-based prediction of various responses in electrical discharge machining of AISI D2 steel. International Journal of Advanced Manufacturing Technology , 2010, 50(5-8): 591-610
doi: 10.1007/s00170-010-2531-8
19 Rajabioun R. Cuckoo Optimization Algorithm. Applied Soft Computing , 2011, 11(8): 5508-5518
doi: 10.1016/j.asoc.2011.05.008
20 Chandrasekaran K, Sishaj P S. Multi-objective scheduling problem: hybrid approach using fuzzy assisted cuckoo search algorithm. Swarm and Evolutionary Computation. , 2012, 5: 1-16
doi: 10.1016/j.swevo.2012.01.001
21 Jang J S R. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions on Systems, Man, and Cybernetics , 1993, 23(3): 665-685
doi: 10.1109/21.256541
22 Babajanzade-Roshan S, Behboodi-Jooibari M, Teimouri R, Asgharzade-Ahmadi G, Falahati-Naghibi M, Sohrabpoor H. Optimization of friction stir welding process of AA7075 aluminum alloy to achieve desirable mechanical properties using ANFIS models and simulated annealing algorithm. International Journal of Advanced Manufactruign Technology , 2013.
doi: 10.1007/s00170-013-5131-6
23 Bhattacharya B, Sorkhel S K. Response surface methodology based analysis for achieving controlled electrochemical machining. In: Proceedings of the 17th All India Machine Tool Design and Research Conference , 1997, 307-311
[1] Xinyu HUI, Yingjie XU, Weihong ZHANG. Multiscale model of micro curing residual stress evolution in carbon fiber-reinforced thermoset polymer composites[J]. Front. Mech. Eng., 2020, 15(3): 475-483.
[2] Yongliang YUAN, Liye LV, Shuo WANG, Xueguan SONG. Multidisciplinary co-design optimization of structural and control parameters for bucket wheel reclaimer[J]. Front. Mech. Eng., 2020, 15(3): 406-416.
[3] Peng WEI, Wenwen WANG, Yang YANG, Michael Yu WANG. Level set band method: A combination of density-based and level set methods for the topology optimization of continuums[J]. Front. Mech. Eng., 2020, 15(3): 390-405.
[4] Shuo ZHU, Hua ZHANG, Zhigang JIANG, Bernard HON. A carbon efficiency upgrading method for mechanical machining based on scheduling optimization strategy[J]. Front. Mech. Eng., 2020, 15(2): 338-350.
[5] Zhen-Pei WANG, Zhifeng XIE, Leong Hien POH. An isogeometric numerical study of partially and fully implicit schemes for transient adjoint shape sensitivity analysis[J]. Front. Mech. Eng., 2020, 15(2): 279-293.
[6] Song ZHANG, Lelun WANG, Anze YI, Honggang GU, Xiuguo CHEN, Hao JIANG, Shiyuan LIU. Dynamic modulation performance of ferroelectric liquid crystal polarization rotators and Mueller matrix polarimeter optimization[J]. Front. Mech. Eng., 2020, 15(2): 256-264.
[7] Emmanuel TROMME, Atsushi KAWAMOTO, James K. GUEST. Topology optimization based on reduction methods with applications to multiscale design and additive manufacturing[J]. Front. Mech. Eng., 2020, 15(1): 151-165.
[8] Xianda XIE, Shuting WANG, Ming YE, Zhaohui XIA, Wei ZHAO, Ning JIANG, Manman XU. Isogeometric topology optimization based on energy penalization for symmetric structure[J]. Front. Mech. Eng., 2020, 15(1): 100-122.
[9] Hong PENG, Han WANG, Daojia CHEN. Optimization of remanufacturing process routes oriented toward eco-efficiency[J]. Front. Mech. Eng., 2019, 14(4): 422-433.
[10] Weichang KONG, Fei QIAO, Qidi WU. A naive optimization method for multi-line systems with alternative machines[J]. Front. Mech. Eng., 2019, 14(4): 377-392.
[11] Chengyuan LIANG, Fang YUAN, Xuedong CHEN, Wei JIANG, Lizhan ZENG, Xin LUO. Comprehensive analysis of the influence of structural and dynamic parameters on the accuracy of nano-precision positioning stages[J]. Front. Mech. Eng., 2019, 14(3): 255-272.
[12] Manman XU, Shuting WANG, Xianda XIE. Level set-based isogeometric topology optimization for maximizing fundamental eigenfrequency[J]. Front. Mech. Eng., 2019, 14(2): 222-234.
[13] Jikai LIU, Qian CHEN, Xuan LIANG, Albert C. TO. Manufacturing cost constrained topology optimization for additive manufacturing[J]. Front. Mech. Eng., 2019, 14(2): 213-221.
[14] Mariana MORETTI, Emílio C. N. SILVA. Topology optimization of piezoelectric bi-material actuators with velocity feedback control[J]. Front. Mech. Eng., 2019, 14(2): 190-200.
[15] Junjie ZHAN, Yangjun LUO. Robust topology optimization of hinge-free compliant mechanisms with material uncertainties based on a non-probabilistic field model[J]. Front. Mech. Eng., 2019, 14(2): 201-212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed