Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2013, Vol. 8 Issue (1) : 62-69    https://doi.org/10.1007/s11465-013-0366-3
RESEARCH ARTICLE
Self-motions of 3-RPS manipulators
Josef SCHADLBAUER1, Manfred L. HUSTY1(), Stéphane CARO2, Philippe WENGERY2
1. Institute for Basic Sciences in Engineering, Unit for Geometry and CAD, University of Innsbruck, Innsbruck 6020, Austria; 2. Institut de Recherche en Communications et Cybernétique de Nantes, UMR CNRS 6597, France
 Download: PDF(235 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recently a complete kinematic description of the 3-RPS parallel manipulator was obtained using algebraic constraint equations. It turned out that the workspace splits into two components describing two kinematically different operation modes. In this paper the algebraic description is used to give a complete analysis of all possible self-motions of this manipulator in both operation modes. Furthermore it is shown that a transition from one operation mode into the other in a self-motion is possible.

Keywords 3-RPS-manipulator      singularity      self-motion     
Corresponding Author(s): HUSTY Manfred L.,Email:manfred.husty@uibk.ac.at   
Issue Date: 05 March 2013
 Cite this article:   
Josef SCHADLBAUER,Manfred L. HUSTY,Stéphane CARO, et al. Self-motions of 3-RPS manipulators[J]. Front Mech Eng, 2013, 8(1): 62-69.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-013-0366-3
https://academic.hep.com.cn/fme/EN/Y2013/V8/I1/62
Fig.1  Design of the 3-RPS parallel robot
Fig.2  Two poses of the self-motion (Case 1(a))
Fig.3  Special case = 2
Fig.4  Case 2(a): = 3,
Fig.5  Changing the operation mode during a self-motion
1 Tsai L W. Robot Analysis. Hoboken: John Wiley & Sons, Inc., 1999
2 Gallardo J, Orozco H, Rico J, Aguilar C, Perez L. Acceleration analysis of 3-RPS parallel manipulators by means of screw theory. In: Ryu J H, ed. Parallel Manipulators, New Developments. I-Tech Education and Publishing , 2008
3 Hunt K H. Structural kinematics of in-parallel-actuated robot-arms. Journal of Mechanisms Transmissions and Automation in Design , 1983, 105(4): 705-712
doi: 10.1115/1.3258540
4 Bonev I A. Direct kinematics of zero-torsion parallel mechanisms. In: Proceedings of 2008 IEEE International Conference on Robotics and Automation , Pasadena, CA, USA, 2008, 3851-3856
5 Huang Z, Wang J, Fang Y F. Analysis of instantaneous motions of deficient-rank 3-RPS parallel manipulators. Mechanism and Machine Theory , 2002, 37(2): 229-240
doi: 10.1016/S0094-114X(01)00075-1
6 Basu D, Ghosal A. Singularity analysis of platform-type multi-loop spatial mechanisms. Mechanism and Machine Theory , 1997, 32(3): 375-389
doi: 10.1016/S0094-114X(96)00033-X
7 Schadlbauer J, Walter D, Husty M L. A complete analysis of the 3-RPS manipula-tor. In: Bandyopadhyay G K S, Ramu P eds. Machines and Mechanisms . Narosa Publishing House, 2011, 410-419
8 Karger A. Self-motions of 6-3 Stewart-Gough type parallel manipulators. Advances in Robot Kinematics: Motion in Man and Machine , 2010, 359-366
9 Husty M L, Pfurner M, Schr?cker H P, Brunnthaler K. Algebraic methods in mechanism analysis and synthesis. Robotica , 2007, 25(06): 661-675
doi: 10.1017/S0263574707003530
10 Husty M L, Schr?cker H P. Kinematics and algebraic geometry. 21st Century Kinematics , 2013, 85-123
11 1.Pfurner M. Analysis of spatial serial manipulators using kine-matic mapping, Dissertation for the Doctoral Degree. Innsbruck: University of Innsbruck, 2006
12 Husty M L, Karger A, Sachs H, Steinhilper W. Kinematik und Robotik, Springer , 1997
[1] Guizhong XIE,Dehai ZHANG,Jianming ZHANG,Fannian MENG,Wenliao DU,Xiaoyu WEN. Implementation of sinh method in integration space for boundary integrals with near singularity in potential problems[J]. Front. Mech. Eng., 2016, 11(4): 412-422.
[2] Fugui XIE,Xin-Jun LIU. Analysis of the kinematic characteristics of a high-speed parallel robot with Schönflies motion: Mobility, kinematics, and singularity[J]. Front. Mech. Eng., 2016, 11(2): 135-143.
[3] Ruiming LI,Yan-An YAO. Eversible duoprism mechanism[J]. Front. Mech. Eng., 2016, 11(2): 159-169.
[4] Abdelhak KHECHAI,Abdelouahab TATI,Abdelhamid GUETTALA. Finite element analysis of stress concentrations and failure criteria in composite plates with circular holes[J]. Front. Mech. Eng., 2014, 9(3): 281-294.
[5] Jens KOTLARSKI, Bodo HEIMANN, Tobias ORTMAIER. Influence of kinematic redundancy on the singularity-free workspace of parallel kinematic machines[J]. Front. Mech. Eng., 2012, 7(2): 120-134.
[6] Po-Chih LEE, Jyh-Jone LEE. Singularity and workspace analysis of three isoconstrained parallel manipulators with schoenflies motion[J]. Front Mech Eng, 2012, 7(2): 163-187.
[7] Jialun YANG, Feng GAO, . Singularity loci of an orthogonal spherical two-degree-of-freedom parallel mechanism[J]. Front. Mech. Eng., 2009, 4(4): 379-385.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed