Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2012, Vol. 7 Issue (2) : 163-187    https://doi.org/10.1007/s11465-012-0324-5
RESEARCH ARTICLE
Singularity and workspace analysis of three isoconstrained parallel manipulators with schoenflies motion
Po-Chih LEE, Jyh-Jone LEE()
Department of Mechanical Engineering, Taiwan University, Taipei, China
 Download: PDF(2304 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper presents the analysis of three parallel manipulators with Schoenflies-motion. Each parallel manipulator possesses two limbs in structure and the end-effector has three DOFs (degree of freedom) in the translational motion and one DOF in rotational motion about a given direction axis with respect to the world coordinate system. The three isoconstrained parallel manipulators have the structures denoted as CuuUwHw-//-CvvUwHw, CuRuuUhw-//-CvRvvUhw and CuPuUhw-//- CvPvUhw. The kinematic equations are first introduced for each manipulator. Then, Jacobian matrix, singularity, workspace, and performance index for each mechanism are subsequently derived and analysed for the first time. The results can be helpful for the engineers to evaluate such kind of parallel robots for possible application in industry where pick-and-place motion is required.

Keywords parallel manipulator      schoenflies motion      kinematics      singularity      workspace      performance index     
Corresponding Author(s): LEE Jyh-Jone,Email:jjlee@ntu.edu.tw   
Issue Date: 05 June 2012
 Cite this article:   
Po-Chih LEE,Jyh-Jone LEE. Singularity and workspace analysis of three isoconstrained parallel manipulators with schoenflies motion[J]. Front Mech Eng, 2012, 7(2): 163-187.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-012-0324-5
https://academic.hep.com.cn/fme/EN/Y2012/V7/I2/163
Fig.1  Three manipulators and their coordinate systems. (a) CUH; (b) CRU; (c) CPU
The first LimbThe second Limb
jaijαijdijθijaijαijdijθij
1a110d11θ11a210d21θ21
203π/20θ120π/20θ22
3a1300θ13a2300θ23
40p-d14θ140π-d24θ24
Tab.1  Link parameters and variables of the CUH manipulator
The first LimbThe second Limb
jaijαijdijθijaijαijdijθij
1a110d11θ11a210d21θ21
2a1200θ12a2200θ22
303π/20θ130π/20θ23
40π-d14θ140π-d24θ24
Tab.2  Link parameters and variables of the CRU manipulator
The first LimbThe second Limb
jaijαijdijθijaijαijdijθij
10π/2d11θ110π/2d21θ21
20π/2d12π0π/2d22π
303π/20θ130π/20θ23
40π-d14θ140π-d24θ24
Tab.3  Link parameters and variables of the CPU manipulator
Fig.2  Inverse singular configuration and suggestion—CUH
Fig.3  Five direct singular configurations for CUH—Case 1
Fig.4  Two direct singular configurations for CUH—Case 2
Fig.5  Two direct singular configurations for CUH—Case 3
Fig.6  Two direct singular configurations for CUH—Case 4
Fig.7  Three inverse singular configurations for CRU—Case 1
Fig.8  Three inverse singular configurations for CRU— Case 2
Fig.9  Two inverse singular configurations for CPU—Case 1
Fig.10  Two inverse singular configurations for CPU—Case 2
Given structural parameters and data
a11=a21=27.0 cm,a13=a23=32.0 cm,L=42.5 cm,f=21.5 cm,
?0d14=23.5 cm,?0d24=67.74 cm,p1=3.0 cmp2=-0.75 cm,(d11)min?=(d21)min?=5.0 cm,(d11)max?=(d21)max?=91.0 cm,
(θ11)min?=(θ21)min?=-77.4°,(θ11)max?=(θ21)max?=77.4°
Tab.4  Given data for the CUH manipulator
Fig.11  Workspace of CUH in plane
Fig.12  Possible cross-section view of CUH workspace
Fig.13  Surfaces and contours of CUH workspace. (a) 3D graphic surfaces and contours of the highest and values; (b) 3D graphic surfaces and contours of the lowest and values
Given structural parameters and data
a11=a21=25.0 cm,a13=a23=33.0 cm,L=44.20710678 cm,
f=22.5 cm,?0d14=23.5 cm,?0d24=67.0 cm,p1=2.5 cm,p2=-2.5 cm(d11)min?=(d21)min?=10.0 cm,(d11)max?=(d21)max?<58.0 cm,
(θ11)min?=(θ21)min?=-80.0°,(θ11)max?=(θ21)max?=80.0°
Tab.5  Given data for the CRU manipulator
Fig.14  Workspace of CRU in plane
Fig.15  Surfaces and contours of CRU workspace. (a) 3D graphic surfaces and contours of the highest and values; (b) 3D graphic surfaces and contours of the lowest and values
Fig.16  Singular configuration in CRU workspace
Given structural parameters and data
L=43.5 cm,f=22.0 cm,?0d14=23.5 cm,?0d24=67.0 cm,p1=20.0 cm,p2=-20.0 cm,(d11)min?=(d21)min?(d11)max?=(d21)max?=120.0 cm=40.0 cm,
(θ11)min?=(θ21)min?=-60.0°,(θ11)max?=(θ21)max?=60.0°
Tab.6  Given data for the CPU manipulator
Fig.17  Workspace of CPU in plane
Fig.18  Surfaces and contours of CPU workspace. (a) 3D graphic surfaces and contours of the highest and values; (b) 3D graphic surfaces and contours of the lowest and values
Fig.19  Condition number and its inverse with the fixed actuated translations—CUH
Fig.20  Condition number and its inverse with the fixed actuated rotations—CUH
Fig.21  Condition number and its inverse with one fixed actuated limb—CUH
Fig.22  Condition number and its inverse with the fixed actuated translations—CRU
Fig.23  Condition number and its inverse with the fixed actuated rotations—CRU
Fig.24  Condition number and its inverse with one fixed actuated limb—CRU
Fig.25  Condition number and its inverse with the fixed actuated translations—CPU
Fig.26  Condition number and its inverse with the fixed actuated rotations—CPU
Fig.27  Condition number and its inverse with one fixed actuated limb—CPU
1 Angeles J. The qualitative synthesis of parallel manipulators. Journal of Mechanical Design , 2004, 126(4): 617-674
doi: 10.1115/1.1667955
2 Clavel R. Device for the movement and positioning of an element in space. US Patent, 4976582, 1990-12-11
3 Pierrot F, Company O. H4: A new family of 4-dof parallel robots. In: Proceedings of IEEE/ASME International Conference on Advances Intelligent Mechatronics , 1999, 508-513
4 Company O, Pierrot F. A new 3T-1R parallel robot. In: Proceedings of IEEE International Conference on Robotic and Automation , 1999, 557-562
5 Rolland L H. The manta and the kanuk: Novel 4-DOF parallel mechanisms for industrial handling. In: Proceedings of International Mechanical Engineering Congress and Exposition, Nashville, Tennessee, USA , 1999, 67: 831-844
6 Company O, Pierrot F, Nabat V, Rodriguez M. Schoen flies motion generator: A new non redundant parallel manipulator with unlimited rotation capability. In: Proceedings of IEEE International Conference Robotic and Automation, Barcelona, Spain , 2005, 3250-3255
7 Richard P L, Gosselin C M, Kong X W. Kinematic analysis and prototyping of a partially decoupled 4-DOF 3T1R parallel manipulator, Journal of Mechanical Design , 2007, 129(12):611-616
8 Angeles J, Morozov A, Navarro O. A novel manipulator architecture for the production of the SCARA motions. In: Proceedings of IEEE International Conference on Robotic and Automation, San Francisco , 2000, 3: 2370-2375
9 Kong X W, Gosselin C M. Type synthesis of 3T1R 4-dof parallel manipulators based on screw theory. In: Proceedings of IEEE Transactions on Robotics and Automation , 2004, 20(2): 181-190
doi: 10.1109/TRA.2003.820853
10 Richard P L, Gosselin C M, Kong X. Kinematic analysis and prototyping of a partially decoupled 4-DOF 3T1R parallel manipulator, Journal of Mechanical Design , 2007, 129(12): 611-616
doi: 10.1115/1.2717611
11 Pierrot F, Nabat V, Company O, Krut S, Poignet P. Optimal design of a 4-DOF parallel manipulator: From academia to industry. In: Proceedings of IEEE Transactions on Robotics , 2009, 25(2): 213-224
doi: 10.1109/TRO.2008.2011412
12 Lee C C, Hervé J M. Iso constrained parallel generators of schoenflies motion. ASME Journal of Mechanical Robots , 2011, 3(2)
13 Lee C C, Lee P C. Isoconstrained Mechanisms for Fast Pick-and-Place Manipulation, In: Proceedings of 1st International Symposium Geometric Methods in Robotics and Mechanism Research, Hong Kong , 2009
14 Lee P C, Lee J J, Lee C C. Four novel pick-and-place isoconstrained manipulators and their inverse kinematics. In: Proceedings of ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, Canada , 2010 ,15-18
15 Lee P C, Lee J J. Forward kinematics and numerical verification of four novel parallel manipulators with schoenflies motion. In: Proceedings of the 1st IFToMM Asian Conference on Mechanical Machine Science, Taipei , 2010
16 Jin Y, Chen I M, Yang G. Kinematic design of a 6-DOF parallel manipulator with decoupled translation and rotation. In: Proceedings of IEEE Transactions on Robotics , 2006, 22(3): 545-551
doi: 10.1109/TRO.2006.870648
17 Hunt K H. Kinematic Geometry of Mechanisms. Cambridge University Press , 1978
18 Merlet J P. Singular configurations of parallel manipulators and grassmann geometry. International Journal of Robotics Research , 1989, 8(5): 45-56
doi: 10.1177/027836498900800504
19 Gosselin C, Angeles J. Singularity analysis of closed-loop kinematic chains. In: Proceedings of IEEE Transactions on Robotics and Automation , 1990, 6(3): 281-290
doi: 10.1109/70.56660
20 Yang F C, Haug E J. Numerical analysis of the kinematic working capability of mechanism. Journal of Mechanical Design , 1994, 116(1): 111-117
doi: 10.1115/1.2919333
21 Hartenberg R S, Denavit J. Kinematic Synthesis of Linkages. McGraw-Hill , 1964
22 Tsai L W. Robot Analysis, the Mechanics of a Serial and Parallel Manipulators. New York: John Wiley & Sons, 1999
23 Salisbury J K, Craig J J. Articulated hands: Force control and kinematic issues. International Journal of Robotics Research , 1982, 1(1): 417
doi: 10.1177/027836498200100102
24 Yoshikawa T. Manipulability of robotic mechanisms. International Journal of Robotics Research , 1985, 4(2): 3-9
doi: 10.1177/027836498500400201
25 Pond G, Carretero J A. Formulating Jacobian matrices for the dexterity analysis of parallel manipulators. Mechanism and Machine Theory , 2006, 41(12): 1505-1519
doi: 10.1016/j.mechmachtheory.2006.01.003
26 Gosselin C M. Dexterity indices for planar and spatial robotic manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation , 1990 ,650-655
27 Merlet J P. Parallel Robots. 2nd edition, Springer , 2006
28 Zanganeh K E, Angeles J. Kinematic isotropy and the optimum design of parallel manipulators. The International Journal of Robotics Research , 1997, 16(2): 185-197
doi: 10.1177/027836499701600205
[1] Yue WANG, Jingjun YU, Xu PEI. Fast forward kinematics algorithm for real-time and high-precision control of the 3-RPS parallel mechanism[J]. Front. Mech. Eng., 2018, 13(3): 368-375.
[2] Qizhi MENG, Fugui XIE, Xin-Jun LIU. Conceptual design and kinematic analysis of a novel parallel robot for high-speed pick-and-place operations[J]. Front. Mech. Eng., 2018, 13(2): 211-224.
[3] Guizhong XIE,Dehai ZHANG,Jianming ZHANG,Fannian MENG,Wenliao DU,Xiaoyu WEN. Implementation of sinh method in integration space for boundary integrals with near singularity in potential problems[J]. Front. Mech. Eng., 2016, 11(4): 412-422.
[4] Fugui XIE,Xin-Jun LIU. Analysis of the kinematic characteristics of a high-speed parallel robot with Schönflies motion: Mobility, kinematics, and singularity[J]. Front. Mech. Eng., 2016, 11(2): 135-143.
[5] Ruiming LI,Yan-An YAO. Eversible duoprism mechanism[J]. Front. Mech. Eng., 2016, 11(2): 159-169.
[6] Mingfeng WANG,Marco CECCARELLI,Giuseppe CARBONE. A feasibility study on the design and walking operation of a biped locomotor via dynamic simulation[J]. Front. Mech. Eng., 2016, 11(2): 144-158.
[7] Yuzhe LIU,Liping WANG,Jun WU,Jinsong WANG. A comprehensive analysis of a 3-P (Pa) S spatial parallel manipulator[J]. Front. Mech. Eng., 2015, 10(1): 7-19.
[8] Jingjun YU,Dengfeng LU,Zhongxiang ZHANG,Xu PEI. Motion capability analysis of a quadruped robot as a parallel manipulator[J]. Front. Mech. Eng., 2014, 9(4): 295-307.
[9] Marco CECCARELLI. LARM PKM solutions for torso design in humanoid robots[J]. Front. Mech. Eng., 2014, 9(4): 308-316.
[10] S. SHANKAR GANESH,A.B. KOTESWARA RAO. Stiffness of a 3-degree of freedom translational parallel kinematic machine[J]. Front. Mech. Eng., 2014, 9(3): 233-241.
[11] Abdelhak KHECHAI,Abdelouahab TATI,Abdelhamid GUETTALA. Finite element analysis of stress concentrations and failure criteria in composite plates with circular holes[J]. Front. Mech. Eng., 2014, 9(3): 281-294.
[12] Alin STOICA, Doina PISLA, Szilaghyi ANDRAS, Bogdan GHERMAN, Bela-Zoltan GYURKA, Nicolae PLITEA. Kinematic, workspace and singularity analysis of a new parallel robot used in minimally invasive surgery[J]. Front Mech Eng, 2013, 8(1): 70-79.
[13] Josef SCHADLBAUER, Manfred L. HUSTY, Stéphane CARO, Philippe WENGERY. Self-motions of 3-RPS manipulators[J]. Front Mech Eng, 2013, 8(1): 62-69.
[14] J. AGUIRREBEITIA, R. AVILéS, I. FERNáNDEZ, M. ABASOLO. Kinematical synthesis of an inversion of the double linked fourbar for morphing wing applications[J]. Front Mech Eng, 2013, 8(1): 17-32.
[15] Mikel DIEZ, Victor PETUYA, Mónica URIZAR, Erik MACHO, Oscar ALTUZARRRA. Computation of the protein molecular mechanism using adaptive dihedral angle increments[J]. Front Mech Eng, 2013, 8(1): 104-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed