Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    0, Vol. Issue () : 70-79    https://doi.org/10.1007/s11465-013-0365-4
RESEARCH ARTICLE
Kinematic, workspace and singularity analysis of a new parallel robot used in minimally invasive surgery
Alin STOICA, Doina PISLA(), Szilaghyi ANDRAS, Bogdan GHERMAN, Bela-Zoltan GYURKA, Nicolae PLITEA
Technical University of Cluj-Napoca, RO-400114 Cluj-Napoca, Romania
 Download: PDF(452 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the last ten years, due to development in robotic assisted surgery, the minimally invasive surgery has greatly changed. Until now, the vast majority of robots used in surgery, have serial structures. Due to the orientation parallel module, the structure is able to reduce the pressure exerted on the entrance point in the patient’s abdominal wall. The parallel robot can also handle both a laparoscope as well an active instrument for different surgical procedures. The advantage of this parallel structure is that the geometric model has been obtained through an analytical approach. The kinematic modelling of a new parallel architecture, the inverse and direct geometric model and the inverse and direct kinematic models for velocities and accelerations are being determined. The paper will demonstrate that with this parallel structure, one can obtain the necessary workspace required for a minimally invasive operation. The robot workspace was generated using the inverse geometric model. An in-depth study of different types of singularity is performed, allowing the development of safe control algorithms of the experimental model. Some kinematic simulation results and the experimental model of the robot are presented in the paper.

Keywords parallel robot      minimally invasive surgery      kinematics      simulation     
Corresponding Author(s): PISLA Doina,Email:doina.pisla@mep.utcluj.ro   
Issue Date: 05 March 2013
 Cite this article:   
Alin STOICA,Doina PISLA,Szilaghyi ANDRAS, et al. Kinematic, workspace and singularity analysis of a new parallel robot used in minimally invasive surgery[J]. Front Mech Eng, 0, (): 70-79.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-013-0365-4
https://academic.hep.com.cn/fme/EN/Y0/V/I/70
Fig.1  Kinematic scheme of the parallel robot
Fig.2  Parallel module
Fig.3  The angles and
Fig.4  Simulation results for the kinematic model of parallel structure
Fig.5  Singularity Type I corresponding to Case 2
Fig.6  Singularity Type II corresponding to Case 3
Fig.7  The reachable workspace of the parallel robot (isometric view)
Fig.8  Section view in the workspace, parallel with the plane at = 0
Fig.9  Experimental model of the parallel robot
Fig.10  Experimental model of the parallel module
1 Gherman B, Vaida C, Pisla D, Plitea N. Singularities and workspace analysis for a parallel robot for minimally invasive surgery. In: Proceedings of 2010 IEEE International Conference on Automation Quality and Testing Robotics (AQTR) , 2010, 1-6
2 Taylor R, Stulberg S. Medical robotics working group section report. NSF Workshop on Medical Robotics and Computer-Assisted Medical Interventions , Bristol, England, 1996
3 Plitea N, Hesselbach J, Pisla D,Raatz A, Vaida C, Budde C, Vlad L, Burisch A, Senner R. Innovative development of surgical parallel robots. In: Proceedings of 1st International Conference of Advancements of Medicine and Health Care through Technology , 2007, 201-206
4 Kraft B M, J?ger C, Kraft K, Leibl B J, Bittner R. The AESOP robot system in laparoscopic surgery: increased risk or advantage for surgeon and patient? Surgical Endoscopy , 2004, 18(8): 1216-1223
doi: 10.1007/s00464-003-9200-z pmid: PMID:15457381
5 Mettler L, Ibrahim M, Jonat W. One year of experience working with the aid of a robotic assistant (the voice-controlled optic holder AESOP) in gynaecological endoscopic surgery. Human Reproduction , 1998, 13(10): 2748-2750
doi: 10.1093/humrep/13.10.2748 pmid:9804224
6 Long J A, Descotes J L, Skowron O, Troccaz J, Cinquin P, Boillot B, Terrier N, Rambeaud J J. Use of robotics in laparoscopic urological surgery: state of the art. Progres en Urologie , 2006, 16(1): 3-11 PMID:16526532
7 Biomed Homepage. 2010, http://biomed.brown.edu
8 Taylor R H, Funda J, Eldridge B, Gomory S, Gruben K, LaRose D, Talamini M, Kavoussi L, Anderson J. A telerobotic assistant for laparoscopic surgery. Engineering in Medicine and Biology Magazine , 1995, 14(3): 279-288
doi: 10.1109/51.391776
9 Kobayashi E, Masamune K, Sakuma I, Dohi T, Hashimoto D. A new safe laparoscopic manipulator system with a five-bar linkage mechanism and an optical zoom. Computer Aided Surgery , 1999, 4(4): 182-192
doi: 10.3109/10929089909148172 pmid:10567096
10 Rininsland H. ARTEMIS. A telemanipulator for cardiac surgery. European Journal of Cardio-Thoracic Surgery , 1999, 16(Suppl 2): S106-S111
doi: 10.1016/S1010-7940(99)00282-1 pmid:10613569
11 Aiono S, Gilbert J M, Soin B, Finlay P A, Gordan A. Controlled trial of the introduction of a robotic camera assistant (EndoAssist) for laparoscopic cholecystectomy. Surgical Endoscopy , 2002, 16(9): 1267-1270
doi: 10.1007/s00464-001-9174-7 pmid:12235507
12 Degani A, Choset H, Wolf A, Zenati M A. Highly articulated robotic probe for minimally invasive surgery. In: Proceedings of 2006 IEEE International Conference on Robotics and Automation , Orlando, 2006, 4167-4172
13 Lee Y J, Kim J, Ko S Y, Lee W J, Kwon D S. Design of a compact laparoscopic assistant robot: KaLAR. In: Proceedings of the International Conference on Automation and Systems , Korea, 2003, 2648-2653
14 Berkelman P, Ma J. A compact modular teleoper-ated robotic minimally invasive surgery system. In: Proceedings of International Conference on Intelligent Robots and Systems , 2003
15 Kim S K, Shin W H, Ko S Y, Kim J, Kwon D S. Design of a compact 5-DOF surgical robot of a spherical mechanism: Cures. In: Proceedings of the 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics , 2008, 990-995
16 Polet R, Donnez J. Using a laparoscope manipulator (LAPMAN) in laparoscopic gynecological surgery. Surgical Technology International XVII-Gynecology , 2008, 17: 187-191
pmid:18802900
17 Saing V, Sotthivirat S, Vilasrussamee J, Suthakornm J. Design of a new laparoscopic-holder assisting robot. In: Proceedings of 3rd International Symposium on Biomedical Engineering , Bangkok, Thailand, 2008, 278-281
18 Voros S, Haber G P, Menudet J F, Long J A, Cinquin P. ViKY robotic scope holder: initial clinical experience and preliminary results using instrument tracking. In: Proceedings of IEEE/ASME Transactions on Mechatronics , 2010, 15(6): 879-886
19 Intuitive Surgical Homepage. 2010, http://www.intuitivesurgical.com
20 Titan Medical Homepage. 2010, http://www.titanmedicalinc.com
21 Hagn U, Konietschke R, Tobergte A, Nickl M, J?rg S, Kübler B, Passig G, Gr?ger M, Fr?hlich F, Seibold U, Le-Tien L, Albu-Sch?ffer A, Nothhelfer A, Hacker F, Grebenstein M, Hirzinger G. DLR MiroSurge: a versatile system for research in endoscopic telesurgery. International Journal of Computer Assisted Radiology and Surgery , 2010, 5(2): 183-193
doi: 10.1007/s11548-009-0372-4 pmid:20033517
22 http://www.roboticstrends.com/research_academics/article/new_robot_with_force_feedback_promises_better_surgery
23 Pisla D, Plitea N, Vaida C. Kinematic modeling and workspace generation for a new parallel robot used in minimally invasive surgery. Advances in Robot Kinematics: Analysis and Design , 2008, 459- 468
24 Vaida C, Pisla D, Plitea N, Gherman B, Gyurka B, Stancel E, Hesselbach J, Raatz A, Vlad L, Graur F. Development of a control system for a parallel robot used in minimally invasive surgery. In: Proceeding of International conference on Advancements of Medicine and Health Care through Technology , 2009, 26, 171-176
25 Plitea N, Pisla D, Vaida C. On kinematics of a parallel robot for minimally invasive surgery. PAMM , 2007, 7(1): 4010033-4010034
doi: 10.1002/pamm.200700850
26 Vaida C. Contributions to the development and kinematic-dynamic modelling of parallel robots for MIS. Dissertation for the Doctoral Degree , Cluj-Napoca, 2009
27 Merlet J P. Parallel Robots. Springer: Kluwer Academic Publisher, 2006
28 Gogu G. Structural Synthesis of Parallel Robots. New York: Springer, 2006
29 Lum M J H, Rosen J, Sinanan M N, Hannaford B. Kinematic optimization of a spherical mechanism for a minimally invasive surgical robot. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, USA , 2004, 829-834
30 Beasley R A, Howe R D, Dupont P E. Kinematic error correction for minimally invasive surgical robots. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, USA , 2004, 358-364
31 Pisla D, Plitea N, Gherman B, Pisla A, Vaida C. Kinematical analysis and design of a new surgical parallel robot. Computational Kinematics , 2009, 273-282
32 Graur F. Experimental laparoscopic cholecistectomy using PARAMIS parallel robot, In: Proceedings of SMIT 2009 , Sinaia, Romania, 2009
33 Zlatanov D, Bonev I A, Gosselin C M. Constraint singularities of parallel mechanisms. In: Proceedings of the IEEE International Conference on Robotics and Automation, USA , 2002, 496-502
34 Gosselin C, Angeles J. Singularity analysis of closed-loop kinematic chains. IEEE Transactions on Robotics and Automation , 1990, 6(3): 281-290
doi: 10.1109/70.56660
35 Pastorelli S, Battezzato A. Singularity analysis of a 3 degrees-of-freedom parallel manipulator. Computational Kinematics , 2009, 331-440
36 Staicu S. Recursive modelling in dynamics of delta parallel robot. Robotica , 2009, 27: 199-207
37 Maxon Motor A G. Maxon Motor Control. User CD-ROM , 2011
38 B&R. Automation Studio, Control Software. DVD-ROM , 2011
[1] Zhongyu WANG, Jing MIN, Jing HU, Zehan WANG, Xiuguo CHEN, Zirong TANG, Shiyuan LIU. Femtosecond laser-acoustic modeling and simulation for AlCu nanofilm nondestructive testing[J]. Front. Mech. Eng., 2024, 19(5): 33-.
[2] Yanjun HAN, Haiyang ZHANG, Menghuan YU, Jinzhou YANG, Linmao QIAN. Simulation model optimization for bonnet polishing considering consistent contact area response[J]. Front. Mech. Eng., 2024, 19(4): 27-.
[3] Yuheng WANG, Xiaoqiang TANG. Comparison of internal force antagonism between redundant cable-driven parallel robots and redundant rigid parallel robots[J]. Front. Mech. Eng., 2023, 18(4): 51-.
[4] Ye DAI, Shikun LI, Xukun RUI, Chaofang XIANG, Xinlei NIE. Review of key technologies of climbing robots[J]. Front. Mech. Eng., 2023, 18(4): 48-.
[5] Xin PAN, Haoyu ZHANG, Jinji GAO, Congcong XU, Dongya LI. Radial electromagnetic type unbalance vibration self-recovery regulation system for high-end grinding machine spindles[J]. Front. Mech. Eng., 2023, 18(3): 47-.
[6] Haiying WEN, Jianxiong ZHU, Hui ZHANG, Min DAI, Bin LI, Zhisheng ZHANG, Weiliang XU, Ming CONG. Development of a masticatory robot using a novel cable-driven linear actuator with bidirectional motion[J]. Front. Mech. Eng., 2022, 17(4): 31-.
[7] Zhaokun ZHANG, Zhufeng SHAO, Zheng YOU, Xiaoqiang TANG, Bin ZI, Guilin YANG, Clément GOSSELIN, Stéphane CARO. State-of-the-art on theories and applications of cable-driven parallel robots[J]. Front. Mech. Eng., 2022, 17(3): 37-.
[8] Yanwen SUN, Bo PAN, Yili FU. Development of a novel hand−eye calibration for intuitive control of minimally invasive surgical robot[J]. Front. Mech. Eng., 2022, 17(3): 42-.
[9] Tao SONG, Bo PAN, Guojun NIU, Jiawen YAN, Yili FU. General closed-form inverse kinematics for arbitrary three-joint subproblems based on the product of exponential model[J]. Front. Mech. Eng., 2022, 17(2): 25-.
[10] Kai HAN, Xiaoqiang LI, Yanle LI, Peng XU, Yong LI, Qing LI, Dongsheng LI. Formation mechanism and modeling of surface waviness in incremental sheet forming[J]. Front. Mech. Eng., 2022, 17(2): 23-.
[11] Jiawen YAN, Bo PAN, Yili FU. Ultrasound-guided prostate percutaneous intervention robot system and calibration by informative particle swarm optimization[J]. Front. Mech. Eng., 2022, 17(1): 3-.
[12] Boyu MA, Zongwu XIE, Zainan JIANG, Hong LIU. Precise semi-analytical inverse kinematic solution for 7-DOF offset manipulator with arm angle optimization[J]. Front. Mech. Eng., 2021, 16(3): 435-450.
[13] Xiaojun GU, Xiuzhong SU, Jun WANG, Yingjie XU, Jihong ZHU, Weihong ZHANG. Improvement of impact resistance of plain-woven composite by embedding superelastic shape memory alloy wires[J]. Front. Mech. Eng., 2020, 15(4): 547-557.
[14] Sheng WANG, Jun WANG, Yingjie XU, Weihong ZHANG, Jihong ZHU. Compressive behavior and energy absorption of polymeric lattice structures made by additive manufacturing[J]. Front. Mech. Eng., 2020, 15(2): 319-327.
[15] Wei LIU, Hongzhong QI, Xintian LIU, Yansong WANG. Evaluation of regenerative braking based on single-pedal control for electric vehicles[J]. Front. Mech. Eng., 2020, 15(1): 166-179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed