Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2022, Vol. 17 Issue (2) : 23    https://doi.org/10.1007/s11465-022-0679-1
RESEARCH ARTICLE
Formation mechanism and modeling of surface waviness in incremental sheet forming
Kai HAN1,2, Xiaoqiang LI1, Yanle LI3,4(), Peng XU1, Yong LI1, Qing LI5, Dongsheng LI1
1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China
2. Beijing Institute of Aeronautical Materials, Beijing 100095, China
3. School of Mechanical Engineering, Shandong University, Jinan 250061, China
4. Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Jinan 250061, China
5. Materials Science Branch of Chinalco Research Institute, Chinalco Materials Application Research Institute Co., Ltd., Beijing 102209, China
 Download: PDF(5564 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Improving and controlling surface quality has always been a challenge for incremental sheet forming (ISF), whereas the generation mechanism of waviness surface is still unknown, which impedes the widely application of ISF in the industrial field. In this paper, the formation mechanism and the prediction of waviness are both investigated through experiments, numerical simulation, and theoretical analysis. Based on a verified finite element model, the waviness topography is predicted numerically for the first time, and its generation is attributed to the residual bending deformation through deformation history analysis. For more efficient engineering application, a theoretical model for waviness height is proposed based on the generation mechanism, using a modified strain function considering deformation modes. This work is favorable for the perfection of formation mechanism and control of surface quality in ISF.

Keywords surface waviness      incremental sheet forming      numerical simulation      formation mechanism      deformation history     
Corresponding Author(s): Yanle LI   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Just Accepted Date: 22 April 2022   Issue Date: 20 July 2022
 Cite this article:   
Kai HAN,Xiaoqiang LI,Yanle LI, et al. Formation mechanism and modeling of surface waviness in incremental sheet forming[J]. Front. Mech. Eng., 2022, 17(2): 23.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-022-0679-1
https://academic.hep.com.cn/fme/EN/Y2022/V17/I2/23
Fig.1  Illustration of contact surface topography. Reprinted with permission from Ref. [12] from Elsevier.
Fig.2  Experimental setup: (a) dimensions of truncated pyramid specimen and (b) scheme of the forming process.
Fig.3  Partial FE model for the inclined wall of truncated pyramids.
Direction/(° ) Yield strength/MPa Ultimate tensile strength/MPa Uniform elongation/% Fracture elongation/% Anisotropy coefficient
0 65.61 157.55 21.12 23.80 0.708
45 69.81 151.82 22.83 26.51 0.732
90 67.52 153.73 22.17 23.41 0.658
Tab.1  Mechanical properties AA2024-O aluminum alloy. Reprinted with permission from Ref. [42] from Elsevier
σ 0 K n F G H N
61.83 MPa 192.67 MPa 0.28 0.56 0.58 0.42 2.99
Tab.2  Material coefficients of Ludwik constitutive and Hill48 yield functions. Reprinted with permission from Ref. [42] from Elsevier
No. V/( mm?s1) Fn/N Fdcf/N μ Schematic
1 10 499.99 125.88 0.13
2 10 999.81 307.34 0.15
3 10 1499.05 395.10 0.13
4 20 1001.26 241.12 0.12
5 30 999.48 240.20 0.12
Tab.3  Experimental result of friction coefficients with various parameters
Fig.4  Stress states analysis of the cross-section in ISF.
Fig.5  Verifications of FE models: (a) comparison of geometrical profiles and thickness distributions between the experimental and simulation results; (b) comparison of the max principal strain between partial models (PM) and full model (FM).
Fig.6  Surface topography results: (a) experimental results; (b) simulation results; (c) comparison of surface profiles in the cross-section.
Fig.7  Average normal strain of selected elements.
Fig.8  Strain history of different thickness layers and illustration of deformation stages.
Fig.9  Experimental surface topography of different stages: (a) initial sheet, (b) Stage 1, (c) Stage 2, and (d) Stage 3.
Fig.10  Detailed description of Stage 3: (a) illustration of intermediate moments; (b) thickness strain states with different moments; (c) strain difference at different regions; and (d) illustration of “local bulge”.
α/rad αf/rad αc/rad
π/6 0.51 0.64
π/4 0.74 0.83
π/3 0.98 1.09
Tab.4  Strain distribution coefficients of actual forming angle and contacting angle obtained from simulation results
Fig.11  The verification of strain model based on numerical strain distributions (US: uppermost surface; LS: lowest surface; SD: strain difference): (a) comparison between modified model (MBS) and traditional model (BS) at different surfaces; verification of strain model with different (b) process parameters (at forming angle of 45°), (c) sheet thicknesses, and (d) forming angles (at step size of 1.0 mm and tool radius of 10 mm).
Fig.12  Establishment of theoretical waviness model based on force balance.
Fig.13  Surface topography with different process parameters.
Fig.14  Results of theoretical model: (a) variation of theoretical waviness height based on experimental results; (b) contact stress of different tool radii.
Abbreviations
BS Bending and stretching strain model
FE Finite element
FM Full model
ISF Incremental sheet forming
MBS Modified bending and stretching strain model
PM Partial model
TPISF Two-point incremental sheet forming
Variables
F, G, H, Q,M, and N Material coefficients of Hill48 yield function
FA, F B, F C Tangential forces per unit width in Regions A, B, and C, respectively
Fdcf Tension force in friction experiment
Ff Frictional force in friction experiment
Fn Compressive force in friction experiment
Hw Waviness height
K Material coefficient of Ludwik constitutive function
l Forming depth
L Width size of partial FE model
n Material hardening index of Ludwik constitutive function
r Distance to the spherical centre
R Tool radius
Rz Surface roughness of maximum peak to valley height
sz Step size
t0 Initial sheet thickness
V Feed rate in friction experiment
α Forming angle
αf Actual contacting angle
αt Actual forming angle after incremental forming
β Residual forming angle
σ 0 Yield stress
σtan, σcir, σthi Normal stresses in tangential, circumferential, and thickness directions, respectively
σtanA, σthi A Tangential stress and thickness stress at Region A, respectively
σtanB, σthi B Tangential stress and thickness stress at Region B, respectively
σthi,r=R B Contact stress along the thickness direction at Region B
σxx, σ yy, σ zz Normal stresses along the X (rolling direction), Y (transverse direction), and Z (thickness direction) directions, respectively
σ¯ Equivalent stress
φ Current forming angle
dϕ Increment of tangential length
dθ Increment of circumference width
εB, BS, εS, BS Bending strain and stretching strain in a bending and stretching strain model, respectively
εB, MB S, ε S, MB S, Bending strain and stretching strain in MBS, respectively
εmaxPM, εmaxFM Max principal strain of partial and full model at specific forming depth of l, respectively
εp Predeformation strain
εtan, εcir, εthi Normal strains in the tangential, circumference, and thickness directions, respectively
εtan,BS Tangential strain evolution in BS
εtan,MBS Tangential strain evolution in MBS
εxx, ε yy, ε zz Normal strain along rolling direction, transverse direction and thickness direction, respectively
ε¯ Equivalent strain
μ Friction coefficient
δi Strain error
  
1 R H Wu, X M Liu, M Li, J Chen. Investigations on deformation mechanism of double-sided incremental sheet forming with synchronous thermomechanical steel-aluminum alloy bonding. Journal of Materials Processing Technology, 2021, 294 : 117147
https://doi.org/10.1016/j.jmatprotec.2021.117147
2 M Vahdani, M J Mirnia, M Bakhshi-Jooybari, H Gorji. Electric hot incremental sheet forming of Ti–6Al–4V titanium, AA6061 aluminum, and DC01 steel sheets. The International Journal of Advanced Manufacturing Technology, 2019, 103( 1): 1199– 1209
https://doi.org/10.1007/s00170-019-03624-2
3 H Khazaali, F Fereshteh-Saniee. Process parameter enhancement for incremental forming of titanium Ti–6Al–4V truncated cone with varying wall angle at elevated temperatures. International Journal of Precision Engineering and Manufacturing, 2019, 20( 5): 769– 776
https://doi.org/10.1007/s12541-019-00097-x
4 Z Y Yang, F Chen. Mechanism of twist in incremental sheet forming of thermoplastic polymer. Materials & Design, 2020, 195 : 108997
https://doi.org/10.1016/j.matdes.2020.108997
5 H Y Wei, G Hussain, B Heidarshenas, M Alkahtani. Post-forming mechanical properties of a polymer sheet processed by incremental sheet forming: insights into effects of plastic strain, and orientation and size of specimen. Polymers, 2020, 12( 9): 1870
https://doi.org/10.3390/polym12091870
6 Z Y Yang F Chen S Gatea H A Ou. Design of the novel hot incremental sheet forming experimental setup, characterization of formability behavior of polyether-ether-ketone (PEEK). The International Journal of Advanced Manufacturing Technology, 2020, 106(11‒12): 5365– 5381
7 M Durante, A Formisano, F Lambiase. Incremental forming of polycarbonate sheets. Journal of Materials Processing Technology, 2018, 253 : 57– 63
https://doi.org/10.1016/j.jmatprotec.2017.11.005
8 M Harhash, H Palkowski. Incremental sheet forming of steel/polymer/steel sandwich composites. Journal of Materials Research and Technology, 2021, 13 : 417– 430
https://doi.org/10.1016/j.jmrt.2021.04.088
9 X Xiao, J J Kim, S H Oh, Y S Kim. Study on the incremental sheet forming of CFRP sheet. Composites Part A: Applied Science and Manufacturing, 2021, 141 : 106209
https://doi.org/10.1016/j.compositesa.2020.106209
10 D Sarkar. Wear of Metals. Oxford: Pergamon Press, 1976
11 I M Hutchings. Tribology: Friction and Wear of Engineering Materials. London: Edward Arnold, 1992
12 S Affatato, L Grillini. Topography in bio-tribocorrosion. In: Yan Y, ed. Bio-Tribocorrosion in Biomaterials and Medical Implants. Ginny Mills: Woodhead Publishing, 2013, 1– 22a
https://doi.org/10.1533/9780857098603.1
13 E Hagan, J Jeswiet. Analysis of surface roughness for parts formed by computer numerical controlled incremental forming. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2004, 218( 10): 1307– 1312
https://doi.org/10.1243/0954405042323559
14 M Durante, A Formisano, A Langella. Comparison between analytical and experimental roughness values of components created by incremental forming. Journal of Materials Processing Technology, 2010, 210( 14): 1934– 1941
https://doi.org/10.1016/j.jmatprotec.2010.07.006
15 A Bhattacharya, S Singh, K Maneesh, N V Reddy, J Cao. Formability and surface finish studies in single point incremental forming. Journal of Manufacturing Science and Engineering, 2011, 133( 6): 061020
https://doi.org/10.1115/1.4005458
16 S Basak, K S Prasad, A Mehto, J Bagchi, Y S Ganesh, S Mohanty, A M Sidpara, S K Panda. Parameter optimization and texture evolution in single point incremental sheet forming process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2020, 234( 1–2): 126– 139
https://doi.org/10.1177%2F0954405419846001
17 A K Behera, R Alves de Sousa, G Ingarao, V Oleksik. Single point incremental forming: an assessment of the progress and technology trends from 2005 to 2015. Journal of Manufacturing Processes, 2017, 27 : 37– 62
https://doi.org/10.1016/j.jmapro.2017.03.014
18 Z B Liu, S Liu, Y L Li, P A Meehan. Modeling and optimization of surface roughness in incremental sheet forming using a multi-objective function. Materials and Manufacturing Processes, 2014, 29( 7): 808– 818
https://doi.org/10.1080/10426914.2013.864405
19 W D Zhai, Y L Li, Z N Cheng, L L Sun, F Y Li, J F Li. Investigation on the forming force and surface quality during ultrasonic-assisted incremental sheet forming process. The International Journal of Advanced Manufacturing Technology, 2020, 106( 7): 2703– 2719
https://doi.org/10.1007/s00170-019-04870-0
20 Y H Kim J J Park. Effect of process parameters on formability in incremental forming of sheet metal. Journal of Materials Processing Technology, 2002, 130–131: 42– 46
21 B Lu, Y Fang, D K Xu, J Chen, H Ou, N H Moser, J Cao. Mechanism investigation of friction-related effects in single point incremental forming using a developed oblique roller-ball tool. International Journal of Machine Tools and Manufacture, 2014, 85 : 14– 29
https://doi.org/10.1016/j.ijmachtools.2014.04.007
22 S Mohanty, S P Regalla, Y V Daseswara Rao. Investigation of influence of part inclination and rotation on surface quality in robot assisted incremental sheet metal forming (RAISF). CIRP Journal of Manufacturing Science and Technology, 2018, 22 : 37– 48
https://doi.org/10.1016/j.cirpj.2018.04.005
23 D K Xu, W C Wu, R Malhotra, J Chen, B Lu, J Cao. Mechanism investigation for the influence of tool rotation and laser surface texturing (LST) on formability in single point incremental forming. International Journal of Machine Tools and Manufacture, 2013, 73 : 37– 46
https://doi.org/10.1016/j.ijmachtools.2013.06.007
24 M Ham, B M Powers, J Loiselle. Surface topography from single point incremental forming using an acetal tool. Key Engineering Materials, 2013, 549 : 84– 91
https://doi.org/10.4028/www.scientific.net/KEM.549.84
25 M Skjoedt, M B Silva, N Bay, P A F Martins, T A Lenau. Single point incremental forming using a dummy sheet. International Conference on New Forming Technology, 2007, 2 : 267– 276
26 M L Alves, M B Silva, L M Alves, P A F Martins. On the formability, geometrical accuracy, and surface quality of sheet metal parts produced by SPIF. In: He X, Xie H, Kang Y, eds. Proceedings Volume 7375, ICEM 2008: International Conference on Experimental Mechanics 2008. Nanjing: SPIE, 2009, 176– 182
https://doi.org/10.1117/12.839028
27 X Q Li, K Han, X Song, H B Wang, D S Li, Y L Li, Q Li. Experimental and numerical investigation on surface quality for two-point incremental sheet forming with interpolator. Chinese Journal of Aeronautics, 2020, 33( 10): 2794– 2806
https://doi.org/10.1016/j.cja.2019.11.011
28 A Attanasio, E Ceretti, C Giardini, L Mazzoni. Asymmetric two points incremental forming: improving surface quality and geometric accuracy by tool path optimization. Journal of Materials Processing Technology, 2008, 197( 1–3): 59– 67
https://doi.org/10.1016/j.jmatprotec.2007.05.053
29 Z D Chang W S Huang J Chen. A new tool path with point contact and its effect on incremental sheet forming process. The International Journal of Advanced Manufacturing Technology, 2020, 110(5‒6): 1515– 1525
30 C X Xu, Y L Li, Z J Wang, Z N Cheng, F Y Liu. The influence of self-lubricating coating during incremental sheet forming of TA1 sheet. The International Journal of Advanced Manufacturing Technology, 2020, 110( 9): 2465– 2477
https://doi.org/10.1007/s00170-020-06013-2
31 Z F Li, S H Lu, T Zhang, Z X Mao, C Zhang. A simple and low-cost lubrication method for improvement in the surface quality of incremental sheet metal forming. Transactions of the Indian Institute of Metals, 2018, 71( 7): 1715– 1719
https://doi.org/10.1007/s12666-018-1305-0
32 H R Zhang, X R Chu, W K Bao, J Gao, L Chen. Microstructure evolution of AZ31B sheet deformed by electric hot temperature-controlled single point incremental forming. Materials Science and Engineering: A, 2021, 823 : 141732
https://doi.org/10.1016/j.msea.2021.141732
33 S Mishra, K U Yazar, A M More, L Kumar, R Lingam, N V Reddy, O Prakash, S Suwas. Elucidating the deformation modes in incremental sheet forming process: insights from crystallographic texture, microstructure and mechanical properties. Materials Science and Engineering: A, 2020, 790 : 139311
https://doi.org/10.1016/j.msea.2020.139311
34 Y L Li, W D Zhai, Z J Wang, X Q Li, L L Sun, J F Li, G Q Zhao. Investigation on the material flow and deformation behavior during ultrasonic-assisted incremental forming of straight grooves. Journal of Materials Research and Technology, 2020, 9( 1): 433– 454
https://doi.org/10.1016/j.jmrt.2019.10.072
35 R Hajavifard, F Maqbool, A Schmiedt-Kalenborn, J Buhl, M Bambach, F Walther. Integrated forming and surface engineering of disc springs by inducing residual stresses by incremental sheet forming. Materials, 2019, 12( 10): 1646
https://doi.org/10.3390/ma12101646
36 Y L Li W J T Daniel P A Meehan. Deformation analysis in single-point incremental forming through finite element simulation. The International Journal of Advanced Manufacturing Technology, 2016, 88(1‒4): 1– 13
37 F Maqbool, M Bambach. Dominant deformation mechanisms in single point incremental forming (SPIF) and their effect on geometrical accuracy. International Journal of Mechanical Sciences, 2018, 136 : 279– 292
https://doi.org/10.1016/j.ijmecsci.2017.12.053
38 M J Mirnia, M Shamsari. Numerical prediction of failure in single point incremental forming using a phenomenological ductile fracture criterion. Journal of Materials Processing Technology, 2017, 244 : 17– 43
https://doi.org/10.1016/j.jmatprotec.2017.01.029
39 M J Mirnia, M Vahdani, M Shamsari. Ductile damage and deformation mechanics in multistage single point incremental forming. International Journal of Mechanical Sciences, 2018, 136 : 396– 412
https://doi.org/10.1016/j.ijmecsci.2017.12.051
40 A Mohammadi, H Vanhove, A Van Bael, J R Duflou. Towards accuracy improvement in single point incremental forming of shallow parts formed under laser assisted conditions. International Journal of Material Forming, 2016, 9( 3): 339– 351
https://doi.org/10.1007/s12289-014-1203-x
41 Z N Cheng, Y L Li, J H Li, F Y Li, P A Meehan. Ultrasonic assisted incremental sheet forming: constitutive modeling and deformation analysis. Journal of Materials Processing Technology, 2022, 299 : 117365
https://doi.org/10.1016/j.jmatprotec.2021.117365
42 K Han, X Q Li, X Y Peng, H B Wang, D S Li, Y L Li, Q Li. Experimental and numerical study on the deformation mechanism of straight flanging by incremental sheet forming. International Journal of Mechanical Sciences, 2019, 160 : 75– 89
https://doi.org/10.1016/j.ijmecsci.2019.06.024
43 K Jin, X Z Guo, J Tao, H Wang, N Kim, Y B Gu. A model of one-surface cyclic plasticity with Lemaitre damage criterion for plastic instability prediction in the incremental forming process. International Journal of Mechanical Sciences, 2016, 114 : 88– 97
https://doi.org/10.1016/j.ijmecsci.2016.05.016
44 R Esmaeilpour, H Kim, T Park, F Pourboghrat, B Mohammed. Comparison of 3D yield functions for finite element simulation of single point incremental forming (SPIF) of aluminum 7075. International Journal of Mechanical Sciences, 2017, 133 : 544– 554
https://doi.org/10.1016/j.ijmecsci.2017.09.019
45 R Esmaeilpour, H Kim, T Park, F Pourboghrat, Z Xu, B Mohammed, F Abu-Farha. Calibration of barlat Yld2004-18P yield function using CPFEM and 3D RVE for the simulation of single point incremental forming (SPIF) of 7075-O aluminum sheet. International Journal of Mechanical Sciences, 2018, 145 : 24– 41
https://doi.org/10.1016/j.ijmecsci.2018.05.015
46 S He A Van Bael P Van Houtte J R Duflou A Szekeres C Henrard A M Habraken. Finite element modeling of incremental forming of aluminum sheets. Advanced Materials Research, 2005, 6– 8: 525-532
47 J Belchior, L Leotoing, D Guines, E Courteille, P Maurine. A process/machine coupling approach: application to robotized incremental sheet forming. Journal of Materials Processing Technology, 2014, 214( 8): 1605– 1616
https://doi.org/10.1016/j.jmatprotec.2014.03.005
48 P Memicoglu, O Music, C Karadogan. Simulation of incremental sheet forming using partial sheet models. Procedia Engineering, 2017, 207 : 831– 835
https://doi.org/10.1016/j.proeng.2017.10.837
49 C F Guzmán, J Gu, J Duflou, H Vanhove, P Flores, A M Habraken. Study of the geometrical inaccuracy on a SPIF two-slope pyramid by finite element simulations. International Journal of Solids and Structures, 2012, 49( 25): 3594– 3604
https://doi.org/10.1016/j.ijsolstr.2012.07.016
50 E Ndip-Agbor, J Smith, H Q Ren, Z Jiang, J C Xu, N Moser, W Chen, Z C Xia, J Cao. Optimization of relative tool position in accumulative double sided incremental forming using finite element analysis and model bias correction. International Journal of Material Forming, 2016, 9( 3): 371– 382
https://doi.org/10.1007/s12289-014-1209-4
51 M B Silva, M Skjoedt, P A F Martins, N Bay. Revisiting the fundamentals of single point incremental forming by means of membrane analysis. International Journal of Machine Tools and Manufacture, 2008, 48( 1): 73– 83
https://doi.org/10.1016/j.ijmachtools.2007.07.004
52 M B Silva, P A F Martins. Two-point incremental forming with partial die: theory and experimentation. Journal of Materials Engineering and Performance, 2013, 22( 4): 1018– 1027
https://doi.org/10.1007/s11665-012-0400-3
53 Y Fang, B Lu, J Chen, D K Xu, H Ou. Analytical and experimental investigations on deformation mechanism and fracture behavior in single point incremental forming. Journal of Materials Processing Technology, 2014, 214( 8): 1503– 1515
https://doi.org/10.1016/j.jmatprotec.2014.02.019
54 H Zhang, Z X Zhang, H Q Ren, J Cao, J Chen. Deformation mechanics and failure mode in stretch and shrink flanging by double-sided incremental forming. International Journal of Mechanical Sciences, 2018, 144 : 216– 222
https://doi.org/10.1016/j.ijmecsci.2018.06.002
55 S Basak, K S Prasad, A M Sidpara, S K Panda. Single point incremental forming of AA6061 thin sheet: calibration of ductile fracture models incorporating anisotropy and post forming analyses. International Journal of Material Forming, 2019, 12( 4): 623– 642
https://doi.org/10.1007/s12289-018-1439-y
56 Z D Chang, M Li, J Chen. Analytical modeling and experimental validation of the forming force in several typical incremental sheet forming processes. International Journal of Machine Tools and Manufacture, 2019, 140 : 62– 76
https://doi.org/10.1016/j.ijmachtools.2019.03.003
57 Y L Li, W J T Daniel, Z B Liu, H B Lu, P A Meehan. Deformation mechanics and efficient force prediction in single point incremental forming. Journal of Materials Processing Technology, 2015, 221 : 100– 111
https://doi.org/10.1016/j.jmatprotec.2015.02.009
58 F Y Liu, X Q Li, Y L Li, Z J Wang, W D Zhai, F Y Li, J F Li. Modelling of the effects of process parameters on energy consumption for incremental sheet forming process. Journal of Cleaner Production, 2020, 250 : 119456
https://doi.org/10.1016/j.jclepro.2019.119456
59 Y L Li, X X Chen, W D Zhai, L M Wang, J F Li, G Q Zhao. Effects of process parameters on thickness thinning and mechanical properties of the formed parts in incremental sheet forming. The International Journal of Advanced Manufacturing Technology, 2018, 98( 9): 3071– 3080
https://doi.org/10.1007/s00170-018-2469-9
60 X Z Guo, Y B Gu, H Wang, K Jin, J Tao. The Bauschinger effect and mechanical properties of AA5754 aluminum alloy in incremental forming process. The International Journal of Advanced Manufacturing Technology, 2018, 94( 1): 1387– 1396
https://doi.org/10.1007/s00170-017-0965-y
61 Y L Li, Z J Wang, W D Zhai, Z N Cheng, F Y Li, X Q Li. The influence of ultrasonic vibration on parts properties during incremental sheet forming. Advances in Manufacturing, 2021, 9( 2): 250– 261
https://doi.org/10.1007/s40436-021-00347-0
[1] Teng GAO, Yanbin ZHANG, Changhe LI, Yiqi WANG, Yun CHEN, Qinglong AN, Song ZHANG, Hao Nan LI, Huajun CAO, Hafiz Muhammad ALI, Zongming ZHOU, Shubham SHARMA. Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies[J]. Front. Mech. Eng., 2022, 17(2): 24-.
[2] B. J. WANG, D. K. XU, S. D. WANG, E. H. HAN. Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review[J]. Front. Mech. Eng., 2019, 14(1): 113-127.
[3] Kirsten BOBZIN, Nazlim BAGCIVAN, Lidong ZHAO, Ivica PETKOVIC, Jochen SCHEIN, Karsten HARTZ-BEHREND, Stefan KIRNER, José-Luis MARQUéS, Günter FORSTER. Modelling and diagnostics of multiple cathodes plasma torch system for plasma spraying[J]. Front Mech Eng, 2011, 6(3): 324-331.
[4] Bingfeng JIAO, Desheng LI, Yunkang SUI, Lezhi YE. Structure optimization for magnetic equipment of permanent magnet retarder[J]. Front Mech Eng Chin, 2010, 5(4): 442-445.
[5] Zhaomiao LIU, Huamin LIU, Xin LIU, . Dynamical analysis of droplet impact spreading on solid substrate[J]. Front. Mech. Eng., 2010, 5(3): 308-315.
[6] Fubing BAO, Jianzhong LIN. Burnett simulations of gas flow and heat transfer in microchannels[J]. Front Mech Eng Chin, 2009, 4(3): 252-263.
[7] Zhiyi YU, Guoyu WANG, Shuliang CAO. Extended two-fluid model applied to analysis of bubbly flow in multiphase rotodynamic pump impeller[J]. Front Mech Eng Chin, 2009, 4(1): 53-59.
[8] SHANG Tao, ZHAO Dingxuan, ZHANG Yuankun, GUO Xiangen, SHI Xiangzhong. Method of internal 3D flow field numerical simulation for hydrodynamic torque converter[J]. Front. Mech. Eng., 2008, 3(1): 86-90.
[9] JI Weihong, SONG Yupu, LIANG Bing. Numeric simulation for structure’s damage identification of space truss[J]. Front. Mech. Eng., 2007, 2(4): 423-428.
[10] HE Cunfu, HANG Lijun, WU Bin. Design of a piezoelectric transducer cylindrical phase modulator for simulating acoustic emission signals[J]. Front. Mech. Eng., 2007, 2(3): 370-373.
[11] HU Guo-liang, XU Bing, YANG Hua-yong, ZHANG Yi-ding. Design and Experimental Research on a New Pipe Rupture Valve[J]. Front. Mech. Eng., 2006, 1(1): 26-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed