Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2022, Vol. 17 Issue (2) : 24    https://doi.org/10.1007/s11465-022-0680-8
REVIEW ARTICLE
Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies
Teng GAO1, Yanbin ZHANG1, Changhe LI1(), Yiqi WANG2, Yun CHEN3, Qinglong AN4, Song ZHANG5, Hao Nan LI6, Huajun CAO7, Hafiz Muhammad ALI8, Zongming ZHOU9, Shubham SHARMA10
1. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
2. School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
3. Chengdu Tool Research Institute Co., Ltd., Chengdu 610500, China
4. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
5. School of Mechanical Engineering, Shandong University, Jinan 250061, China
6. School of Aerospace, University of Nottingham Ningbo China, Ningbo 315100, China
7. School of Mechanical Engineering, Chongqing University, Chongqing 400044, China
8. Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
9. Hanergy (Qingdao) Lubrication Technology Co., Ltd., Qingdao 266100, China
10. Department of Mechanical Engineering, IK Gujral Punjab Technical University, Punjab 144603, India
 Download: PDF(20083 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fiber-reinforced composites have become the preferred material in the fields of aviation and aerospace because of their high-strength performance in unit weight. The composite components are manufactured by near net-shape and only require finishing operations to achieve final dimensional and assembly tolerances. Milling and grinding arise as the preferred choices because of their precision processing. Nevertheless, given their laminated, anisotropic, and heterogeneous nature, these materials are considered difficult-to-machine. As undesirable results and challenging breakthroughs, the surface damage and integrity of these materials is a research hotspot with important engineering significance. This review summarizes an up-to-date progress of the damage formation mechanisms and suppression strategies in milling and grinding for the fiber-reinforced composites reported in the literature. First, the formation mechanisms of milling damage, including delamination, burr, and tear, are analyzed. Second, the grinding mechanisms, covering material removal mechanism, thermal mechanical behavior, surface integrity, and damage, are discussed. Third, suppression strategies are reviewed systematically from the aspects of advanced cutting tools and technologies, including ultrasonic vibration-assisted machining, cryogenic cooling, minimum quantity lubrication (MQL), and tool optimization design. Ultrasonic vibration shows the greatest advantage of restraining machining force, which can be reduced by approximately 60% compared with conventional machining. Cryogenic cooling is the most effective method to reduce temperature with a maximum reduction of approximately 60%. MQL shows its advantages in terms of reducing friction coefficient, force, temperature, and tool wear. Finally, research gaps and future exploration directions are prospected, giving researchers opportunity to deepen specific aspects and explore new area for achieving high precision surface machining of fiber-reinforced composites.

Keywords milling      grinding      fiber-reinforced composites      damage formation mechanism      delamination      material removal mechanism      surface integrity      minimum quantity lubrication     
Corresponding Author(s): Changhe LI   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Just Accepted Date: 01 March 2022   Issue Date: 30 June 2022
 Cite this article:   
Teng GAO,Yanbin ZHANG,Changhe LI, et al. Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies[J]. Front. Mech. Eng., 2022, 17(2): 24.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-022-0680-8
https://academic.hep.com.cn/fme/EN/Y2022/V17/I2/24
Fig.1  Logical relationship of integral structure. Reproduced with permission from Refs. [13,30,31] from Elsevier.
Fig.2  Mechanism of milling delamination. Part of this figure was drawn based on Refs. [48,49] to introduce their comments. Reproduced with permission from Refs. [47] from SAGE Publications.
Fig.3  Burr formation mechanism of fiber-reinforced composites in edge milling and slot milling. Reproduced with permission from Refs. [31,57?59] from Elsevier and Springer Nature.
Fig.4  Material removal mechanism of fiber-reinforced composite grinding. Reproduced with permission from Refs. [25,67?69] from Elsevier and Springer Nature.
Fig.5  Various experimental devices of single grain grinding. Reproduced with permission from Refs. [74,75,83] from Elsevier and Springer Nature.
Fig.6  Mechanical behavior of fiber reinforced composites grinding. Reproduced with permission from Refs. [71,74,77,86] from Elsevier.
Fig.7  Grinding damage mechanism and surface roughness trend. Part of the figure was drawn based on Ref. [98]. Reproduced with permission from Refs. [77,97] from Elsevier.
Reference Vibration mode Amplitude/μm Frequency/kHz Composites Output parameters (compared with CM)
Wang et al. [13] 1D horizontal 2; 4; 5 28 UD-CFRP ?
Liu et al. [90] 1D longitudinal 10 20 MD-CFRP ?
Wang et al. [96] 1D longitudinal ? 20 UD-CFRP ?
Xu et al. [104] Longitudinal–torsional 6; 3 22.5 AFRP Cutting force: ↓ 15%?48%
Chen et al. [112] Longitudinal–torsional Longitudinal amplitude (LA)/torsional amplitude (TA) = 14/5;LA = 3; 8; 11 19.3 2D C/SiC Specific grinding energy: ≈ ↓ max 50%;Sa: ≈ ↓ max 38%
Ding et al. [113] 1D longitudinal 3.85 21.5 2D C/SiC Fn: ↓ 9%?21%;Ft: ↓ 9.7%?19.4%;Sa: ↓ 6.6%?12%;Fracture size: ↓ 25%
Ning et al. [114] Horizontal–vertical 3 20 MD-CFRP ?
Xue et al. [115] 1D longitudinal 4; 6; 8; 10 20 3D C/SiC Standard deviation of height of each point in the area Sq: ↓ 37.9%;fatigue damage rate: ↓ 31%?80%
Wang et al. [120] Horizontal;horizontal–vertical Horizontal 4;vertical 6 28; 20 CFRP Cutting force: ≈ ↓ 21%?36%;surface roughness: ≈ ↓ 50%?62%
Amin et al. [122,123,129] 1D longitudinal 10 16; 20.5 MD-CFRP ?
Wang et al. [124] 1D longitudinal 4; 6; 7; 8 20 ?
Ning et al. [125] 1D longitudinal 4; 5; 6; 7; 8 20 MD-CFRP ?
Li et al. [126] 1D longitudinal 6 20 MD-CFRP ?
Wang et al. [127] 1D longitudinal ? 20 MD-CFRP ?
Xue et al. [128] 1D longitudinal 10 20 3D C/SiC Distance between the highest and lowest points of the contour Rt: ↓ 37.5%; Ra: ↓ 32.4%; Rz: ↓ 32.8%
Yuan et al. [130] 1D longitudinal 10; 15 ? MD-CFRP ?
Liu et al. [131] 1D longitudinal 2; 4; 6; 8; 10 21.19 C/SiC Fx: ↓ 43.7%; Fy: ↓ 9.16%; Fz: ↓ 68.09%; Ra: ≈ ↓ 12%?16.7%
Chen et al. [132] Longitudinal?torsional LA/TA = 14/5;LA = 2; 4; 6; 7 19.32 2D C/SiC Temperature: ↓ 30.4%; specific milling energy: ≈ ↓ 33.3%; Sa: ≈↓ 28.6%
Xie et al. [133] 1D longitudinal 2; 4; 6; 8; 10 23.98 2.5D C/SiC Fx: ↓ 27%; Fy: ↓ 49.5%; Fz: ↓ 28.6%; Sa: ↓ 53%
Geng et al. [134] Double bending 9.6 20.73 CFRP Fx: ↓ 8%?27%; Fy: ↓ 12%?43%; Fz: ↓ 2%?40%; surface roughness: ↓ 54%
Shu et al. [135] 1D longitudinal 10 30 C/C Fiber pull-out length: ↓ 10%?50%
Zhang et al. [136] 1D longitudinal 15 21.5 C/SiC ?
Islam et al. [137] 1D longitudinal ? 17 C/SiC ?
Liang et al. [138] 1D longitudinal 5 20?30 MD-CFRP ?
Li et al. [139] 1D longitudinal ? 26.5 2.5D SiO2/SiO2 Grinding forces: ↓ 30%?35%;Sq: ↓ 12.5%; maximum height of 2D profile Sz: ↓ 12.3%
Wang et al. [140] 1D longitudinal 4 21.2 C/SiC Grinding forces: ≈ ↓ max 60%
Wang et al. [141] Vertical;vertical?horizontal 4; 6 ? CFRP Vertical vibration:Fx: ↓ 11%?20%;Fz: ↓ 12%?40%;Sa: ↓ 12%?21%.Vertical?horizontal vibration:Fx: ↓ 21%?57%;Fz: ↓ 30%?52%;Sa: ↓ 50%?60%
Azarhoushang and Tawakoli [142] 1D tangential 8 20 C/SiC Grinding forces: ≈ ↓ max 20%;surface roughness Ra and Rz : ≈ ↓ max 30%;G-ratio: ≈ ↑ 30%?40%;radial wear: ≈ ↓ max 28%?45%
Chen et al. [143] 1D longitudinal 14 29.7 CFRP ?
Liang et al. [144] 1D longitudinal 4 26 UD-CFRP Ft: ↓ max 19% at 135°;Fn: ↓ max 7.2% at 135°;maximum fiber chip length: ≈ ↓ 66%?78%;Sa: ↓ max 17.7%
Tab.1  Ultrasonic vibration parameters and output parameters
Fig.8  Damage suppression mechanism of ultrasonic vibration assisted machining. UVAS: ultrasonic vibration-assisted scratching. Reproduced with permission from Refs. [112?115] from Elsevier and Springer Nature.
Reference Cryogenic medium Temperature/°C Composites Output parameters (compared with dry)
Supplied Machined
Kumar and Gururaja [31] LN2 ? 44.6 CFRP Temperature: ↓ 68.9%;damage factor: ≈ ↓ max 10.6%;Ra: ↓ 8.60%, ↓ 26.71%, ↓ 22.53%, and ↓ 4.45%, for 0°, 45°, 90°, and 135°, respectively
El-Hofy et al. [61] Chilled air of vortex tube 8 ? CFRP ?
Jia et al. [150] LN2 –170 –34.4–135.4 CFRP ?
Zhang et al. [151] LN2 ? ? SiC/SiC Sa: ↓ 13% and 22.4% for CVD and PCD tool, respectively
Nor Khairusshima et al. [152] Chilled air of vortex tube –10 52 CFRP Tool life: ↑ 45.6%;Ra: ↓ 16.6%
Nor Khairusshima and Sharifah [153] Chilled air of vortex tube –10 ? CFRP Tool life: ↑ 29.6%
Danish et al. [154] LN2; CO2-snow ?196; ?78 100–125; 65–85 CFRP ?
Zou et al. [155] Supercritical CO2 –76 34.5 CFRP Sa: ≈ ↓ max 45.4%;damage factor: ≈ ↓ max 53%;temperature: ↓ 62.9%
Zou et al. [156] Supercritical CO2 –70 40–75 CFRP Temperature: ↓ 58.5%;Sa: ↓ 42.2%
Muhamad Khairussaleh et al. [157] Chilled air of vortex tube –10 51.2 CFRP Temperature: ↓ 49%
Morkavuk et al. [158] LN2 –49.9 20.6–23.1 CFRP Cutting force: ≈ ↑ 45%;surface roughness: ≈ ↓ 23%;tensile strength: ↓ 3.65%;elastic modulus: ↓ 3.04%
F. Wang and Y. Wang [161] LN2 –190 ? Quartz-reinforced polyimide composite (QRPC) ?
Cococcetta et al. [162] LN2 –198 ? CFRP Slot milling:linear tool wear: ↓ 60%;tool wear area: ↑ 43%.Edge milling:linear tool wear: ↓ 62%;tool wear area: ↓ 27%
Tab.2  Cryogenic cooling conditions and output parameters
Fig.9  Mechanisms and advantages of cryogenic cooling in the machining of fiber-reinforced composites. Reproduced with permission from Refs. [31,158] from Elsevier.
Reference Lubricant Supply parameters Composites Output parameters (compared with dry)
Flow rate/(mL·h?1) Air pressure/bar Device
Qu et al. [30] MQL oil 80, 100, 120 3, 5, 7 KINS KS-2107 C/SiC Fn: ↓ 57.8%; Ft: ↓ 64.7%;Sa: ≈ ↓ 41.3%;Sz: ≈ ↓ 42.9%
Qu et al. [100] Deionized water-based carbon nanofluid 40, 60, 80, 100 3, 5, 7, 9 KINS KS-2107 C/SiC Fn: ↓ 62.5%; Ft: ↓ 71.7%;Sa: ≈ ↓ 53.3%;Sz: ≈ ↓ 54.9%
Danish et al. [154] Eco-friendly MQL oil 150 6 ? CFRP Friction coefficient: ≈ ↓ 60%
Zou et al. [156] Cryogenic MQL: soluble vegetable oil 20 85?90 ? CFRP Temperature: ↓ 70.3%
Cococcetta et al. [162] Coolube® 2210 oil-based cutting fluid ? ? UNIST MQL system CFRP Slot milling:linear tool wear: ↓ 44%;tool wear area: ↓ 16%.Edge milling:linear tool wear: ↓ 43%;tool wear area: ↓ 30%
Esmaeili et al. [187] Corn oil 6000 4 MQL system produced by Royal Dutch C/SiC Cutting force: ↓ 37.95%;power: ↓ 38.39%;Ra: ↓ 75.93%;G-ratio: ≈ ↑ 70%
Adibi et al. [188] Corn oil 6000 4 ? C/SiC Fn: ↓ 31.16%;Ft: ↓ 38.88%;specific grinding energy: ↓ 41.77%;G-ratio: ≈ ↑ 115.38%;Ra: ↓ 75.26%;radial wheel wear: ≈ ↓ 50%–66.7%;grain flattening wear: ≈ ↓ 93.75%
Helmy et al. [191] Water-based cutting fluid Two-nozzle system: 2220 4 NEX FLOW mist cooling system CFRP ?
Gao et al. [207,208] Palm oil-based CNTs nanofluids 60 6 KINS KS-2106 CFRP Ra: ↓ 12.68%–17.7%;Rz: ↓ 20.78%–25.06%;average width of profile micro unevenness RSm: ↓ 11.43%–25.4%;single grain Fn: ↓ 20.07%;single grain Ft: ↓ 26.81%;friction coefficient: ↓ 54%
James and Nejadian [210] Mixture of castor oil and jojoba oil; oil mixture is enhanced using CNT, Al2O3, Ni, and Al 13097 1.013 ? CFRP ?
Rodriguez et al. [211] Accu-Lube LB-1000 with chlorinated extreme pressure additives 100 8000 ? CFRP ?
Tab.3  MQL conditions and output parameters
Fig.10  Lubrication mechanism, force reduction mechanism, and beneficial effects of MQL and NMQL. Reproduced with permission from Refs. [100,187,208] from Elsevier.
Fig.11  Typical optimization design of milling and grinding tools. Reproduced with permission from Refs. [138,213?217] from Springer Nature, SAGE Publications, and Elsevier.
2D Two-dimensional
CBN Cubic boron nitride
CFRP Carbon fiber reinforced polymer
CG Conventional grinding
CM Conventional machining
CMC Ceramic matrix composite
FCA Fiber cutting angle
FRP Fiber reinforced polymer
GFRP Glass fiber-reinforced plastic
LA Longitudinal amplitude
LN2 Liquid nitrogen
MD-CFRP Multi-directional CFRP
MQL Minimum quantity lubrication
NMQL Nanofluid minimum quantity lubrication
QRPC Quartz-reinforced polyimide composite
SiC Silicon carbide
SiO2 Silicon dioxide
SiO2/SiO2 Quartz fiber-reinforced silicon dioxide ceramic matrix composite
TA Torsional amplitude
UD-CFRP Unidirectional CFRP
UVAG Ultrasonic vibration-assisted grinding
UVAM Ultrasonic vibration-assisted machining
UVAS Ultrasonic vibration-assisted scratching
Fn Normal force
Ft Tangential force
Fx Force in the feeding direction
Fy Force in the vertical feed direction
Fz Force in the axial direction
hmax Maximum undeformed chip thickness
Ra Arithmetical mean deviation of the profile
Rz Maximum height of the profile
Rt Distance between the highest and lowest points of the contour
RSm Average width of profile micro unevenness
Sa Arithmetical mean deviation of regional morphology
Sq Standard deviation of height of each point in the area
Sz Maximum height of 2D profile
μ Friction coefficient
Perpendicular to the fiber-bundle axis
Parallel to the fiber-bundle axis
On the plane normal to the fiber-bundle axis
  
1 G V G Rao, P Mahajan, N Bhatnagar. Three-dimensional macro-mechanical finite element model for machining of unidirectional-fiber reinforced polymer composites. Materials Science and Engineering A, 2008, 498( 1–2): 142– 149
https://doi.org/10.1016/j.msea.2007.11.157
2 B Niu, S J Li, R Yang. Manufacturing and mechanical properties of composite orthotropic Kagome honeycomb using novel modular method. Frontiers of Mechanical Engineering, 2020, 15( 3): 484– 495
https://doi.org/10.1007/s11465-020-0593-3
3 B Wang, F Zhao, Z X Zhao, K P Xu. Influence factors on natural frequencies of composite materials. Frontiers of Mechanical Engineering, 2020, 15( 4): 571– 584
https://doi.org/10.1007/s11465-020-0592-4
4 M Henerichs, R Voß, F Kuster, K Wegener. Machining of carbon fiber reinforced plastics: influence of tool geometry and fiber orientation on the machining forces. CIRP Journal of Manufacturing Science and Technology, 2015, 9 : 136– 145
https://doi.org/10.1016/j.cirpj.2014.11.002
5 J B Bai, G Y Bu. Progress in 4D printing technology. Journal of Advanced Manufacturing Science and Technology, 2022, 2( 1): 2022001
https://doi.org/10.51393/j.jamst.2022001
6 T Gao, C H Li, Y Q Wang, X S Liu, Q L An, H N Li, Y B Zhang, H J Cao, B Liu, D Z Wang, Z Said, S Debnath, M Jamil, H M Ali, S Sharma. Carbon fiber reinforced polymer in drilling: from damage mechanisms to suppression. Composite Structures, 2022, 286 : 115232
https://doi.org/10.1016/j.compstruct.2022.115232
7 T Rajasekaran, K Palanikumar, B K Vinayagam. Experimental investigation and analysis in turning of CFRP composites. Journal of Composite Materials, 2012, 46( 7): 809– 821
https://doi.org/10.1177/0021998311410500
8 K Abhishek, V R Kumar, S Datta, S S Mahapatra. Application of JAYA algorithm for the optimization of machining performance characteristics during the turning of CFRP (epoxy) composites: comparison with TLBO, GA, and ICA. Engineering with Computers, 2017, 33( 3): 457– 475
https://doi.org/10.1007/s00366-016-0484-8
9 A Hosokawa, N Hirose, T Ueda, T Furumoto. High-quality machining of CFRP with high helix end mill. CIRP Annals, 2014, 63( 1): 89– 92
https://doi.org/10.1016/j.cirp.2014.03.084
10 R Voss, L Seeholzer, F Kuster, K Wegener. Influence of fibre orientation, tool geometry and process parameters on surface quality in milling of CFRP. CIRP Journal of Manufacturing Science and Technology, 2017, 18 : 75– 91
https://doi.org/10.1016/j.cirpj.2016.10.002
11 D X Geng, Y H Liu, Z Y Shao, Z H Lu, J Cai, X Li, X G Jiang, D Y Zhang. Delamination formation, evaluation and suppression during drilling of composite laminates: a review. Composite Structures, 2019, 216 : 168– 186
https://doi.org/10.1016/j.compstruct.2019.02.099
12 N Geier, J P Davim, T Szalay. Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: a review. Composites Part A: Applied Science and Manufacturing, 2019, 125 : 105552
https://doi.org/10.1016/j.compositesa.2019.105552
13 H Wang, Y B Hu, W L Cong, Z L Hu. A mechanistic model on feeding-directional cutting force in surface grinding of CFRP composites using rotary ultrasonic machining with horizontal ultrasonic vibration. International Journal of Mechanical Sciences, 2019, 155 : 450– 460
https://doi.org/10.1016/j.ijmecsci.2019.03.009
14 P J Kim, D G Lee, J K Choi. Grinding characteristics of carbon fiber epoxy composite hollow shafts. Journal of Composite Materials, 2000, 34( 23): 2016– 2035
https://doi.org/10.1177/002199800772661958
15 B T Huang, C H Li, Y B Zhang, W F Ding, M Yang, Y Y Yang, H Zhai, X F Xu, D Z Wang, S Debnath, M Jamil, H N Li, H M Ali, M K Gupta, Z Said. Advances in fabrication of ceramic corundum abrasives based on sol-gel process. Chinese Journal of Aeronautics, 2021, 34( 6): 1– 17
https://doi.org/10.1016/j.cja.2020.07.004
16 J B Niu, J T Xu, F Ren, Y W Sun, D M Guo. A short review on milling dynamics in low-stiffness cutting conditions: modeling and analysis. Journal of Advanced Manufacturing Science and Technology, 2021, 1( 1): 2020004
https://doi.org/10.51393/j.jamst.2020004
17 G J Xiao, Y D Zhang, Y Huang, S Y Song, B Q Chen. Grinding mechanism of titanium alloy: research status and prospect. Journal of Advanced Manufacturing Science and Technology, 2021, 1( 1): 2020001
https://doi.org/10.51393/j.jamst.2020001
18 X B Dang, M Wan, Y Yang. Prediction and suppression of chatter in milling of structures with low-rigidity: a review. Journal of Advanced Manufacturing Science and Technology, 2021, 1( 3): 2021010
https://doi.org/10.51393/j.jamst.2021010
19 Z Q Yao, C Fan, Z Zhang, D H Zhang, M Luo. Position-varying surface roughness prediction method considering compensated acceleration in milling of thin-walled workpiece. Frontiers of Mechanical Engineering, 2021, 16( 4): 855– 867
https://doi.org/10.1007/s11465-021-0649-z
20 S W Zhu, G J Xiao, Y He, G Liu, S Y Song, S L Jiahua. Tip vortex cavitation of propeller bionic noise reduction surface based on precision abrasive belt grinding. Journal of Advanced Manufacturing Science and Technology, 2022, 2( 1): 2022003
https://doi.org/10.51393/j.jamst.2022003
21 B T Huang, Y B Zhang, X M Wang, Y Chen, H J Cao, B Liu, X L Nie, C H Li. Experimental evaluation of wear mechanism and grinding performance of SG wheel in machining nickel-based alloy GH4169. Surface Technology, 2021, 50( 12): 62– 70
https://doi.org/10.16490/j.cnki.issn.1001-3660.2021.12.006
22 Y F Xiong, W H Wang, Y Y Shi, R S Jiang, K Y Lin, G D Song, M W Shao, X F Liu, J C Li, C W Shan. Machining performance of in-situ TiB2 particle reinforced Al-based metal matrix composites: a literature review. Journal of Advanced Manufacturing Science and Technology, 2021, 1( 2): 2021003
https://doi.org/10.51393/j.jamst.2021003
23 G Chardon, H Chanal, E Duc, T Garnier. Study of surface finish of fiber-reinforced composite molds. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2017, 231( 4): 576– 587
https://doi.org/10.1177/0954405415617929
24 H Wang, J Sun, J Li, W Li. Roughness modelling analysis for milling of carbon fibre reinforced polymer composites. Materials Technology, 2015, 30( sup1): A46– A50
https://doi.org/10.1179/1753555715Y.0000000002
25 G Garcia Luna, D Axinte, D Novovic. Influence of grit geometry and fibre orientation on the abrasive material removal mechanisms of SiC/SiC ceramic matrix composites (CMCs). International Journal of Machine Tools and Manufacture, 2020, 157 : 103580
https://doi.org/10.1016/j.ijmachtools.2020.103580
26 J L Yuan, B H Lyu, W Hang, Q F Deng. Review on the progress of ultra-precision machining technologies. Frontiers of Mechanical Engineering, 2017, 12( 2): 158– 180
https://doi.org/10.1007/s11465-017-0455-9
27 A K Sen, G Litak, A Syta, R Rusinek. Intermittency and multiscale dynamics in milling of fiber reinforced composites. Meccanica, 2013, 48( 4): 783– 789
https://doi.org/10.1007/s11012-012-9631-5
28 E Antwi, K Liu, H Wang. A review on ductile mode cutting of brittle materials. Frontiers of Mechanical Engineering, 2018, 13( 2): 251– 263
https://doi.org/10.1007/s11465-018-0504-z
29 D F Mu, X L Liu, C X Yue, Q Liu, Z Y Bai, S Y Liang, Y P Ding. On-line tool wear monitoring based on machine learning. Journal of Advanced Manufacturing Science and Technology, 2021, 1( 2): 2021002
https://doi.org/10.51393/j.jamst.2021002
30 S S Qu, Y D Gong, Y Y Yang, Y Sun, X L Wen, Y Qi. Investigating minimum quantity lubrication in unidirectional Cf/SiC composite grinding. Ceramics International, 2020, 46( 3): 3582– 3591
https://doi.org/10.1016/j.ceramint.2019.10.076
31 D Kumar, S Gururaja. Machining damage and surface integrity evaluation during milling of UD-CFRP laminates: dry vs. cryogenic. Composite Structures, 2020, 247 : 112504
https://doi.org/10.1016/j.compstruct.2020.112504
32 A Koplev, A Lystrup, T Vorm. The cutting process, chips, and cutting forces in machining CFRP. Composites, 1983, 14( 4): 371– 376
https://doi.org/10.1016/0010-4361(83)90157-X
33 T Kaneeda, M Takahashi. CFRP cutting mechanism (1st report): surface generation mechanism at very low cutting speeds. Journal of the Japan Society for Precision Engineering, 1989, 55( 8): 1456– 1461
https://doi.org/10.2493/jjspe.55.1456
34 D Arola, M Ramulu, D H Wang. Chip formation in orthogonal trimming of graphite/epoxy composite. Composites Part A: Applied Science and Manufacturing, 1996, 27( 2): 121– 133
https://doi.org/10.1016/1359-835X(95)00013-R
35 D Nayak, N Bhatnagar, P Mahajan. Machining studies of uni-directional glass fiber reinforced plastic (UD-GFRP) composites part 1: effect of geometrical and process parameters. Machining Science and Technology, 2005, 9( 4): 481– 501
https://doi.org/10.1080/10910340500398167
36 H Li, X D Qin, G Y He, Y Jin, D Sun, M Price. Investigation of chip formation and fracture toughness in orthogonal cutting of UD-CFRP. The International Journal of Advanced Manufacturing Technology, 2016, 82( 5–8): 1079– 1088
https://doi.org/10.1007/s00170-015-7471-x
37 J Ahmad. Machining of Polymer Composites. Boston: Springer, 2009
38 D H Wang, M Ramulu, D Arola. Orthogonal cutting mechanisms of graphite/epoxy composite. Part I: unidirectional laminate. International Journal of Machine Tools and Manufacture, 1995, 35( 12): 1623– 1638
https://doi.org/10.1016/0890-6955(95)00014-O
39 Y Karpat, O Bahtiyar, B Değer. Mechanistic force modeling for milling of unidirectional carbon fiber reinforced polymer laminates. International Journal of Machine Tools and Manufacture, 2012, 56 : 79– 93
https://doi.org/10.1016/j.ijmachtools.2012.01.001
40 H T Liu, J Lin, Y Z Sun, J Y Zhang. Micro model of carbon fiber/cyanate ester composites and analysis of machining damage mechanism. Chinese Journal of Mechanical Engineering, 2019, 32( 1): 52
https://doi.org/10.1186/s10033-019-0364-4
41 S Ghafarizadeh, J F Chatelain, G Lebrun. Finite element analysis of surface milling of carbon fiber-reinforced composites. The International Journal of Advanced Manufacturing Technology, 2016, 87( 1–4): 399– 409
https://doi.org/10.1007/s00170-016-8482-y
42 A I Azmi. Chip formation studies in machining fibre reinforced polymer composites. International Journal of Materials and Product Technology, 2013, 46( 1): 32– 46
https://doi.org/10.1504/IJMPT.2013.052790
43 A Uysal, M Altan. Quality during milling of a glass fiber reinforced polymer composite. Materials Testing, 2015, 57( 9): 767– 772
https://doi.org/10.3139/120.110772
44 Y H Çelik, E Kılıçkap, A Yardımeden. Estimate of cutting forces and surface roughness in end milling of glass fiber reinforced plastic composites using fuzzy logic system. Science and Engineering of Composite Materials, 2014, 21( 3): 435– 443
https://doi.org/10.1515/secm-2013-0129
45 F B Wang, Y Q Wang. Milling properties of Kevlar 49 fiber composite based on fiber orientation in cryogenic cooling. The International Journal of Advanced Manufacturing Technology, 2019, 103( 9–12): 4609– 4619
https://doi.org/10.1007/s00170-019-03933-6
46 Q Fu, S J Wu, C H Li, J Y Xu, D Z Wang. Delamination and chip breaking mechanism of orthogonal cutting CFRP/Ti6Al4V composite. Journal of Manufacturing Processes, 2022, 73 : 183– 196
https://doi.org/10.1016/j.jmapro.2021.11.015
47 F J Wang G J Bi F D Ning. Modeling of dynamic milling forces considering the interlaminar effect during milling multidirectional CFRP laminate. Journal of Reinforced Plastics and Composites, 2021, 40(11‒12): 437– 449
48 K Colligan, M Ramulu. Delamination in surface plies of graphite/epoxy caused by the edge trimming process. In: Proceedings of the Symposium, the 112th ASME Winter Annual Meeting. Atlanta: ASME, 1991, 49( 27): 113– 125
49 K Colligan, M Ramulu. The effect of edge trimming on composite surface plies. Manufacturing Review, 1992, 5( 4): 274– 283
50 J B Sui, C Y Wang. Machinability study of unidirectional CFRP laminates by slot milling. The International Journal of Advanced Manufacturing Technology, 2019, 100( 1–4): 189– 197
https://doi.org/10.1007/s00170-018-2730-2
51 H F Ning, H L Zheng, S G Zhang, X M Yuan. Milling force prediction model development for CFRP multidirectional laminates and segmented specific cutting energy analysis. The International Journal of Advanced Manufacturing Technology, 2021, 113( 9−10): 2437– 2445
https://doi.org/10.1007/s00170-021-06690-7
52 W Hintze, M Cordes, G Koerkel. Influence of weave structure on delamination when milling CFRP. Journal of Materials Processing Technology, 2015, 216 : 199– 205
https://doi.org/10.1016/j.jmatprotec.2014.09.004
53 J Sheikh-Ahmad, N Urban, H Cheraghi. Machining damage in edge trimming of CFRP. Materials and Manufacturing Processes, 2012, 27( 7): 802– 808
https://doi.org/10.1080/10426914.2011.648253
54 W Hintze, D Hartmann, C Schütte. Occurrence and propagation of delamination during the machining of carbon fibre reinforced plastics (CFRPs)—an experimental study. Composites Science and Technology, 2011, 71( 15): 1719– 1726
https://doi.org/10.1016/j.compscitech.2011.08.002
55 W Hintze, D Hartmann. Modeling of delamination during milling of unidirectional CFRP. Procedia CIRP, 2013, 8 : 444– 449
https://doi.org/10.1016/j.procir.2013.06.131
56 A I Azmi, R J T Lin, D Bhattacharyya. Machinability study of glass fibre-reinforced polymer composites during end milling. The International Journal of Advanced Manufacturing Technology, 2013, 64( 1–4): 247– 261
https://doi.org/10.1007/s00170-012-4006-6
57 F J Wang, T Y Gu, X N Wang, X H Jin, B Y Zhang. Analysis of burr and tear in milling of carbon fiber reinforced plastic (CFRP) using finite element method. Applied Composite Materials, 2021, 28( 4): 991– 1018
https://doi.org/10.1007/s10443-021-09896-w
58 H J Wang, J Sun, D D Zhang, K Guo, J F Li. The effect of cutting temperature in milling of carbon fiber reinforced polymer composites. Composites Part A: Applied Science and Manufacturing, 2016, 91 : 380– 387
https://doi.org/10.1016/j.compositesa.2016.10.025
59 Y L He, H A Qing, S G Zhang, D Z Wang, S W Zhu. The cutting force and defect analysis in milling of carbon fiber-reinforced polymer (CFRP) composite. The International Journal of Advanced Manufacturing Technology, 2017, 93( 5–8): 1829– 1842
https://doi.org/10.1007/s00170-017-0613-6
60 G J Liu, H Y Chen, Z Huang, F Gao, T Chen. Surface quality of staggered PCD end mill in milling of carbon fiber reinforced plastics. Applied Sciences, 2017, 7( 2): 199
https://doi.org/10.3390/app7020199
61 M H El-Hofy, S L Soo, D K Aspinwall, W M Sim, D Pearson, P Harden. Factors affecting workpiece surface integrity in slotting of CFRP. Procedia Engineering, 2011, 19 : 94– 99
https://doi.org/10.1016/j.proeng.2011.11.085
62 P Ghidossi, M El Mansori, F Pierron. Influence of specimen preparation by machining on the failure of polymer matrix off-axis tensile coupons. Composites Science and Technology, 2006, 66( 11–12): 1857– 1872
https://doi.org/10.1016/j.compscitech.2005.10.009
63 P Ghidossi, M El Mansori, F Pierron. Edge machining effects on the failure of polymer matrix composite coupons. Composites Part A: Applied Science and Manufacturing, 2004, 35( 78): 989– 999
https://doi.org/10.1016/j.compositesa.2004.01.015
64 Y Hou, P Yao, H Y Zhang, X Liu, H L Liu, C Z Huang, Z H Zhang. Chatter stability and surface quality in milling of unidirectional carbon fiber reinforced polymer. Composite Structures, 2021, 271 : 114131
https://doi.org/10.1016/j.compstruct.2021.114131
65 L F Zhang, S Wang, W L Qiao, Z Li, N Wang, J Zhang, T Wang. High-speed milling of CFRP composites: a progressive damage model of cutting force. The International Journal of Advanced Manufacturing Technology, 2020, 106( 3–4): 1005– 1015
https://doi.org/10.1007/s00170-019-04662-6
66 S S Qu, P Yao, Y D Gong, Y Y Yang, D K Chu, Q S Zhu. Modelling and grinding characteristics of unidirectional C–SiCs. Ceramics International, 2022, 48( 6): 8314– 8324
https://doi.org/10.1016/j.ceramint.2021.12.036
67 N S Hu, L C Zhang. A study on the grindability of multidirectional carbon fibre-reinforced plastics. Journal of Materials Processing Technology, 2003, 140( 1–3): 152– 156
https://doi.org/10.1016/S0924-0136(03)00704-0
68 Q Liu, G Q Huang, X P Xu, C F Fang, C C Cui. A study on the surface grinding of 2D C/SiC composites. The International Journal of Advanced Manufacturing Technology, 2017, 93( 5–8): 1595– 1603
https://doi.org/10.1007/s00170-017-0626-1
69 J F Yin, J H Xu, W F Ding, H H Su. Effects of grinding speed on the material removal mechanism in single grain grinding of SiCf/SiC ceramic matrix composite. Ceramics International, 2021, 47( 9): 12795– 12802
https://doi.org/10.1016/j.ceramint.2021.01.140
70 S S Qu, Y D Gong, Y Y Yang, Y C Xu, W W Wang, B Xin, S Y Pang. Mechanical model and removal mechanism of unidirectional carbon fibre-reinforced ceramic composites. International Journal of Mechanical Sciences, 2020, 173 : 105465
https://doi.org/10.1016/j.ijmecsci.2020.105465
71 L F Zhang, C Z Ren, C H Ji, Z Q Wang, G Chen. Effect of fiber orientations on surface grinding process of unidirectional C/SiC composites. Applied Surface Science, 2016, 366 : 424– 431
https://doi.org/10.1016/j.apsusc.2016.01.142
72 Y Y Yang, S S Qu, Y D Gong. Investigating the grinding performance of unidirectional and 2.5D-C/SiCs. Ceramics International, 2021, 47( 4): 5123– 5132
https://doi.org/10.1016/j.ceramint.2020.10.090
73 Q Liu, G Q Huang, X P Xu, C F Fang, C C Cui. Influence of grinding fiber angles on grinding of the 2D-Cf/C-SiC composites. Ceramics International, 2018, 44( 11): 12774– 12782
https://doi.org/10.1016/j.ceramint.2018.04.083
74 Q Liu, G Q Huang, C C Cui, Z Tong, X P Xu. Investigation of grinding mechanism of a 2D Cf/C-SiC composite by single-grain scratching. Ceramics International, 2019, 45( 10): 13422– 13430
https://doi.org/10.1016/j.ceramint.2019.04.041
75 Y C Li, X Ge, H Wang, Y B Hu, F D Ning, W L Cong, C Z Ren. Study of material removal mechanisms in grinding of C/SiC composites via single-abrasive scratch tests. Ceramics International, 2019, 45( 4): 4729– 4738
https://doi.org/10.1016/j.ceramint.2018.11.165
76 J H Wei, H J Wang, B Lin, T Y Sui, F F Zhao, S Fang. Acoustic emission signal of fiber-reinforced composite grinding: frequency components and damage pattern recognition. The International Journal of Advanced Manufacturing Technology, 2019, 103( 1–4): 1391– 1401
https://doi.org/10.1007/s00170-019-03645-x
77 Y G Wang, H J Wang, J H Wei, B Lin, J Y Xu, S Fang. Finite element analysis of grinding process of long fiber reinforced ceramic matrix woven composites: modeling, experimental verification and material removal mechanism. Ceramics International, 2019, 45( 13): 15920– 15927
https://doi.org/10.1016/j.ceramint.2019.05.100
78 J G Cao, Y B Wu, D Lu, M Fujimoto, M Nomura. Material removal behavior in ultrasonic-assisted scratching of SiC ceramics with a single diamond tool. International Journal of Machine Tools and Manufacture, 2014, 79 : 49– 61
https://doi.org/10.1016/j.ijmachtools.2014.02.002
79 P Suya Prem Anand, N Arunachalam, L Vijayaraghavan. Study on grinding of pre-sintered zirconia using diamond wheel. Materials and Manufacturing Processes, 2018, 33( 6): 634– 643
https://doi.org/10.1080/10426914.2017.1364761
80 H Inoue, I Kawaguchi. Study on the grinding mechanism of glass fiber reinforced plastics. Journal of Engineering Materials and Technology, 1990, 112( 3): 341– 345
https://doi.org/10.1115/1.2903335
81 P Chockalingam, K C Kuang, T R Vijayaram. Effects of grinding process parameters and coolants on the grindability of GFRP laminates. Materials and Manufacturing Processes, 2013, 28( 10): 1071– 1076
https://doi.org/10.1080/10426914.2013.792411
82 P Chockalingam, K C Kuang. Effects of abrasive types on grinding of chopped strand mat glass fiber-reinforced polymer composite laminates. Machining Science and Technology, 2015, 19( 2): 313– 324
https://doi.org/10.1080/10910344.2015.1018534
83 J H Wei, H J Wang, B Lin, T Y Sui, F F Zhao, S Fang. A force model in single grain grinding of long fiber reinforced woven composite. The International Journal of Advanced Manufacturing Technology, 2019, 100( 1–4): 541– 552
https://doi.org/10.1007/s00170-018-2719-x
84 K Sambhav, A Kumar, S K Choudhury. Mechanistic force modeling of single point cutting tool in terms of grinding angles. International Journal of Machine Tools and Manufacture, 2011, 51( 10–11): 775– 786
https://doi.org/10.1016/j.ijmachtools.2011.06.007
85 J L Sun, F Qin, P Chen, T An. A predictive model of grinding force in silicon wafer self-rotating grinding. International Journal of Machine Tools and Manufacture, 2016, 109 : 74– 86
https://doi.org/10.1016/j.ijmachtools.2016.07.009
86 X Y Cao, B Lin, X F Zhang. Investigations on grinding process of woven ceramic matrix composite based on reinforced fiber orientations. Composites Part B: Engineering, 2015, 71 : 184– 192
https://doi.org/10.1016/j.compositesb.2014.11.029
87 L F Zhang, S Wang, Z Li, W L Qiao, Y Wang, T Wang. Influence factors on grinding force in surface grinding of unidirectional C/SiC composites. Applied Composite Materials, 2019, 26( 3): 1073– 1085
https://doi.org/10.1007/s10443-019-09767-5
88 J Y Chen, J Y Shen, H Huang, X P Xu. Grinding characteristics in high speed grinding of engineering ceramics with brazed diamond wheels. Journal of Materials Processing Technology, 2010, 210( 6–7): 899– 906
https://doi.org/10.1016/j.jmatprotec.2010.02.002
89 K Ding, Y C Fu, H H Su, H X Xu, F F Cui, Q L Li. Experimental studies on matching performance of grinding and vibration parameters in ultrasonic assisted grinding of SiC ceramics. The International Journal of Advanced Manufacturing Technology, 2017, 88( 9–12): 2527– 2535
https://doi.org/10.1007/s00170-016-8977-6
90 S L Liu, T Chen, C Q Wu. Rotary ultrasonic face grinding of carbon fiber reinforced plastic (CFRP): a study on cutting force model. The International Journal of Advanced Manufacturing Technology, 2017, 89( 1–4): 847– 856
https://doi.org/10.1007/s00170-016-9151-x
91 H Kodama, S Okazaki, Y F Jiang, H Yoden, K Ohashi. Thermal influence on surface layer of carbon fiber reinforced plastic (CFRP) in grinding. Precision Engineering, 2020, 65 : 53– 63
https://doi.org/10.1016/j.precisioneng.2020.04.005
92 J Sheikh-Ahmad, J Mohammed. Optimization of process parameters in diamond abrasive machining of carbon fiber-reinforced epoxy. Materials and Manufacturing Processes, 2014, 29( 11–12): 1361– 1366
https://doi.org/10.1080/10426914.2014.941869
93 B P Fan Y Chen B B Chen Y H Liang L Sun. Finite element analysis on heat distribution ratio during grinding CFRP. Diamond and Abrasives Engineering, 2019, 39(1): 66− 71 (in Chinese)
94 J Y Sheikh-Ahmad, F Almaskari, F Hafeez, F Y Meng. Evaluation of heat partition in machining CFRP using inverse method. Machining Science and Technology, 2019, 23( 4): 530– 546
https://doi.org/10.1080/10910344.2019.1575401
95 M Qian, J Z Xiao, G F Wang, P C Huang, Z Z Chen, G R Han. Evaluation of heat generation using a microscopic cutting model with thermo-mechanical coupling for carbon fiber reinforced polymer composites. Journal of Reinforced Plastics and Composites, 2020, 39( 21–22): 793– 804
https://doi.org/10.1177/0731684420931589
96 H Wang, W L Cong, F D Ning, Y B Hu. A study on the effects of machining variables in surface grinding of CFRP composites using rotary ultrasonic machining. The International Journal of Advanced Manufacturing Technology, 2018, 95( 9–12): 3651– 3663
https://doi.org/10.1007/s00170-017-1468-6
97 A Choudhary, N Das Chakladar, S Paul. Identification and estimation of defects in high-speed ground C/SiC ceramic matrix composites. Composite Structures, 2021, 261 : 113274
https://doi.org/10.1016/j.compstruct.2020.113274
98 S Hanasaki J Fujiwara. Tashiro T. Study on surface grinding of unidirectional carbon fiber reinforced plastics in dry method. In: Proceedings of International Conference on Leading Edge Manufacturing in 21st Century: LEM21. 2003, 297– 302
99 S L Soo, I S Shyha, T Barnett, D K Aspinwall, W M Sim. Grinding performance and workpiece integrity when superabrasive edge routing carbon fibre reinforced plastic (CFRP) composites. CIRP Annals, 2012, 61( 1): 295– 298
https://doi.org/10.1016/j.cirp.2012.03.042
100 S S Qu, Y D Gong, Y Y Yang, W W Wang, C Y Liang, B Han. An investigation of carbon nanofluid minimum quantity lubrication for grinding unidirectional carbon fibre-reinforced ceramic matrix composites. Journal of Cleaner Production, 2020, 249 : 119353
https://doi.org/10.1016/j.jclepro.2019.119353
101 X Y Cao, B Lin, X F Zhang. A study on grinding surface waviness of woven ceramic matrix composites. Applied Surface Science, 2013, 270 : 503– 512
https://doi.org/10.1016/j.apsusc.2013.01.069
102 O Gavalda Diaz D A Axinte. Towards understanding the cutting and fracture mechanism in ceramic matrix composites. International Journal of Machine Tools and Manufacture, 2017, 118–119: 12– 25
103 X Y Cao, B Lin, Y Wang, S L Wang. Influence of diamond wheel grinding process on surface micro-topography and properties of SiO2/SiO2 composite. Applied Surface Science, 2014, 292 : 181– 189
https://doi.org/10.1016/j.apsusc.2013.11.109
104 J Xu, P F Feng, F Feng, H T Zha, G Q Liang. Subsurface damage and burr improvements of aramid fiber reinforced plastics by using longitudinal–torsional ultrasonic vibration milling. Journal of Materials Processing Technology, 2021, 297 : 117265
https://doi.org/10.1016/j.jmatprotec.2021.117265
105 S M Yuan, H T Fan, M Amin, C Zhang, M Guo. A cutting force prediction dynamic model for side milling of ceramic matrix composites C/SiC based on rotary ultrasonic machining. The International Journal of Advanced Manufacturing Technology, 2016, 86( 1–4): 37– 48
https://doi.org/10.1007/s00170-015-8099-6
106 S Xu, T Kuriyagawa, K Shimada, M Mizutani. Recent advances in ultrasonic-assisted machining for the fabrication of micro/nano-textured surfaces. Frontiers of Mechanical Engineering, 2017, 12( 1): 33– 45
https://doi.org/10.1007/s11465-017-0422-5
107 A Babbar, A Sharma, V Jain, A K Jain. Rotary ultrasonic milling of C/SiC composites fabricated using chemical vapor infiltration and needling technique. Materials Research Express, 2019, 6( 8): 085607
https://doi.org/10.1088/2053-1591/ab1bf7
108 G C Verma, P M Pandey. Machining forces in ultrasonic-vibration assisted end milling. Ultrasonics, 2019, 94 : 350– 363
https://doi.org/10.1016/j.ultras.2018.07.004
109 T Gao, X P Zhang, C H Li, Y B Zhang, M Yang, D Z Jia, H J Ji, Y J Zhao, R Z Li, P Yao, L D Zhu. Surface morphology evaluation of multi-angle 2D ultrasonic vibration integrated with nanofluid minimum quantity lubrication grinding. Journal of Manufacturing Processes, 2020, 51 : 44– 61
https://doi.org/10.1016/j.jmapro.2020.01.024
110 Y Wang, V K Sarin, B Lin, H Li, S Gillard. Feasibility study of the ultrasonic vibration filing of carbon fiber reinforced silicon carbide composites. International Journal of Machine Tools and Manufacture, 2016, 101 : 10– 17
https://doi.org/10.1016/j.ijmachtools.2015.11.003
111 G F Ma, R K Kang, Z G Dong, S Yin, Y Bao, D M Guo. Hole quality in longitudinal–torsional coupled ultrasonic vibration assisted drilling of carbon fiber reinforced plastics. Frontiers of Mechanical Engineering, 2020, 15( 4): 538– 546
https://doi.org/10.1007/s11465-020-0598-y
112 J Chen, Q L An, W W Ming, M Chen. Investigation on machined surface quality in ultrasonic-assisted grinding of Cf/SiC composites based on fracture mechanism of carbon fibers. The International Journal of Advanced Manufacturing Technology, 2020, 109( 5–6): 1583– 1599
https://doi.org/10.1007/s00170-020-05739-3
113 K Ding, Y C Fu, H H Su, F F Cui, Q L Li, W N Lei, H X Xu. Study on surface/subsurface breakage in ultrasonic assisted grinding of C/SiC composites. The International Journal of Advanced Manufacturing Technology, 2017, 91( 9–12): 3095– 3105
https://doi.org/10.1007/s00170-017-0012-z
114 F D Ning, H Wang, W L Cong. Rotary ultrasonic machining of carbon fiber reinforced plastic composites: a study on fiber material removal mechanism through single-grain scratching. The International Journal of Advanced Manufacturing Technology, 2019, 103( 1–4): 1095– 1104
https://doi.org/10.1007/s00170-019-03433-7
115 F Xue, K Zheng, W H Liao, J Shu, D D Miao. Experimental investigation on fatigue property at room temperature of C/SiC composites machined by rotary ultrasonic milling. Journal of the European Ceramic Society, 2021, 41( 6): 3341– 3356
https://doi.org/10.1016/j.jeurceramsoc.2021.01.046
116 W L Cong, Z J Pei, N Mohanty, E Van Vleet, C Treadwell. Vibration amplitude in rotary ultrasonic machining: a novel measurement method and effects of process variables. Journal of Manufacturing Science and Engineering, 2011, 133( 3): 034501
https://doi.org/10.1115/1.4004133
117 P K S C Fernando, M Zhang, Z J Pei. Rotary ultrasonic machining: effects of tool natural frequency on ultrasonic vibration amplitude. Machining Science and Technology, 2019, 23( 4): 595– 611
https://doi.org/10.1080/10910344.2019.1575404
118 W X Xu, L C Zhang, Y B Wu. Elliptic vibration-assisted cutting of fibre-reinforced polymer composites: understanding the material removal mechanisms. Composites Science and Technology, 2014, 92 : 103– 111
https://doi.org/10.1016/j.compscitech.2013.12.011
119 Z C Yang, L D Zhu, G X Zhang, C B Ni, B Lin. Review of ultrasonic vibration-assisted machining in advanced materials. International Journal of Machine Tools and Manufacture, 2020, 156 : 103594
https://doi.org/10.1016/j.ijmachtools.2020.103594
120 H Wang, Y B Hu, W L Cong, Z Y Hu, Y Q Wang. A novel investigation on horizontal and 3D elliptical ultrasonic vibrations in rotary ultrasonic surface machining of carbon fiber reinforced plastic composites. Journal of Manufacturing Processes, 2020, 52 : 12– 25
https://doi.org/10.1016/j.jmapro.2020.01.027
121 J J Wang, J F Zhang, P F Feng. Effects of tool vibration on fiber fracture in rotary ultrasonic machining of C/SiC ceramic matrix composites. Composites Part B: Engineering, 2017, 129 : 233– 242
https://doi.org/10.1016/j.compositesb.2017.07.081
122 M Amin, S M Yuan, M Z Khan, C Zhang, Q Wu. Development of cutting force prediction model for carbon fiber reinforced polymers based on rotary ultrasonic slot milling. Machining Science and Technology, 2018, 22( 3): 402– 426
https://doi.org/10.1080/10910344.2017.1365895
123 M Amin, S M Yuan, M Z Khan, Q Wu, G Y Zhu. Development of a generalized cutting force prediction model for carbon fiber reinforced polymers based on rotary ultrasonic face milling. The International Journal of Advanced Manufacturing Technology, 2017, 93( 5–8): 2655– 2666
https://doi.org/10.1007/s00170-017-0469-9
124 H Wang, Z J Pei, W L Cong. A mechanistic cutting force model based on ductile and brittle fracture material removal modes for edge surface grinding of CFRP composites using rotary ultrasonic machining. International Journal of Mechanical Sciences, 2020, 176 : 105551
https://doi.org/10.1016/j.ijmecsci.2020.105551
125 F D Ning, W L Cong, H Wang, Y B Hu, Z L Hu, Z J Pei. Surface grinding of CFRP composites with rotary ultrasonic machining: a mechanistic model on cutting force in the feed direction. The International Journal of Advanced Manufacturing Technology, 2017, 92( 1–4): 1217– 1229
https://doi.org/10.1007/s00170-017-0149-9
126 Y C Li, C Z Ren, H Wang, Y B Hu, F D Ning, X L Wang, W L Cong. Edge surface grinding of CFRP composites using rotary ultrasonic machining: comparison of two machining methods. The International Journal of Advanced Manufacturing Technology, 2019, 100( 9–12): 3237– 3248
https://doi.org/10.1007/s00170-018-2901-1
127 H Wang, F D Ning, Y B Hu, W L Cong. Surface grinding of CFRP composites using rotary ultrasonic machining: a comparison of workpiece machining orientations. The International Journal of Advanced Manufacturing Technology, 2018, 95( 5–8): 2917– 2930
https://doi.org/10.1007/s00170-017-1401-z
128 F Xue, K Zheng, W H Liao, J Shu, S Dong. Investigation on fiber fracture mechanism of C/SiC composites by rotary ultrasonic milling. International Journal of Mechanical Sciences, 2021, 191 : 106054
https://doi.org/10.1016/j.ijmecsci.2020.106054
129 M Amin, S M Yuan, A Israr, L Zhen, W Qi. Development of cutting force prediction model for vibration-assisted slot milling of carbon fiber reinforced polymers. The International Journal of Advanced Manufacturing Technology, 2018, 94( 9–12): 3863– 3874
https://doi.org/10.1007/s00170-017-1087-2
130 S M Yuan, G Y Zhu, C Zhang. Modeling of tool blockage condition in cutting tool design for rotary ultrasonic machining of composites. The International Journal of Advanced Manufacturing Technology, 2017, 91( 5–8): 2645– 2654
https://doi.org/10.1007/s00170-016-9911-7
131 Y Liu, Z B Liu, X B Wang, T Huang. Experimental study on cutting force and surface quality in ultrasonic vibration-assisted milling of C/SiC composites. The International Journal of Advanced Manufacturing Technology, 2021, 112( 7–8): 2003– 2014
https://doi.org/10.1007/s00170-020-06355-x
132 J Chen, W W Ming, Q L An, M Chen. Mechanism and feasibility of ultrasonic-assisted milling to improve the machined surface quality of 2D Cf/SiC composites. Ceramics International, 2020, 46( 10): 15122– 15136
https://doi.org/10.1016/j.ceramint.2020.03.047
133 Z W Xie, Z Q Liu, B Wang, M Z Xin, Q H Song, L P Jiang. Longitudinal amplitude effect on material removal mechanism of ultrasonic vibration-assisted milling 2.5D C/SiC composites. Ceramics International, 2021, 47( 22): 32144– 32152
https://doi.org/10.1016/j.ceramint.2021.08.106
134 D X Geng, D Y Zhang, Y G Xu, F T He, D P Liu, Z H Duan. Rotary ultrasonic elliptical machining for side milling of CFRP: tool performance and surface integrity. Ultrasonics, 2015, 59 : 128– 137
https://doi.org/10.1016/j.ultras.2015.02.006
135 J Shu, W H Liao, K Zheng, A M F Hussein Youssef. Surface morphology on carbon fiber composites by rotary ultrasonic milling. Machining Science and Technology, 2021, 25( 5): 721– 737
https://doi.org/10.1080/10910344.2021.1971705
136 C Zhang, S M Yuan, M Amin, H T Fan, Q Liu. Development of a cutting force prediction model based on brittle fracture for C/SiC in rotary ultrasonic facing milling. The International Journal of Advanced Manufacturing Technology, 2016, 85( 1–4): 573– 583
https://doi.org/10.1007/s00170-015-7894-4
137 S Islam, S M Yuan, Z Li. A cutting force prediction model, experimental studies, and optimization of cutting parameters for rotary ultrasonic face milling of C/SiC composites. Applied Composite Materials, 2020, 27( 4): 407– 431
https://doi.org/10.1007/s10443-020-09815-5
138 Y H Liang, Y Chen, B B Chen, B P Fan, C R Yan, Y C Fu. Feasibility of ultrasonic vibration assisted grinding for carbon fiber reinforced polymer with monolayer brazed grinding tools. International Journal of Precision Engineering and Manufacturing, 2019, 20( 7): 1083– 1094
https://doi.org/10.1007/s12541-019-00135-8
139 H Li, B Lin, S M Wan, Y Wang, X F Zhang. An experimental investigation on ultrasonic vibration-assisted grinding of SiO2f/SiO2 composites. Materials and Manufacturing Processes, 2016, 31( 7): 887– 895
https://doi.org/10.1080/10426914.2015.1090586
140 D P Wang, S X Lu, D Xu, Y L Zhang. Research on material removal mechanism of C/SiC composites in ultrasound vibration-assisted grinding. Materials, 2020, 13( 8): 1918
https://doi.org/10.3390/ma13081918
141 H Wang, D Z Zhang, Y Z Li, W L Cong. The effects of elliptical ultrasonic vibration in surface machining of CFRP composites using rotary ultrasonic machining. The International Journal of Advanced Manufacturing Technology, 2020, 106( 11–12): 5527– 5538
https://doi.org/10.1007/s00170-020-04976-w
142 B Azarhoushang, T Tawakoli. Development of a novel ultrasonic unit for grinding of ceramic matrix composites. The International Journal of Advanced Manufacturing Technology, 2011, 57( 9–12): 945
https://doi.org/10.1007/s00170-011-3347-x
143 T Chen, H B Li, M L Ye, C Xiang, S L Tian. Experimental study on effects of structural characteristics of C/E composite laminates on grinding temperature. Composites Part B: Engineering, 2019, 157 : 100– 108
https://doi.org/10.1016/j.compositesb.2018.08.120
144 Y H Liang, Y Chen, Y J Zhu, J J Ji, W F Ding. Investigations on tool clogging and surface integrity in ultrasonic vibration-assisted slot grinding of unidirectional CFRP. The International Journal of Advanced Manufacturing Technology, 2021, 112( 5): 1557– 1570
https://doi.org/10.1007/s00170-020-06364-w
145 H J Wang, J Sun, J F Li, L X Lu, N Li. Evaluation of cutting force and cutting temperature in milling carbon fiber-reinforced polymer composites. The International Journal of Advanced Manufacturing Technology, 2016, 82( 9–12): 1517– 1525
https://doi.org/10.1007/s00170-015-7479-2
146 F B Wang, Z Bin, Y Q Wang. Milling force of quartz fiber-reinforced polyimide composite based on cryogenic cooling. The International Journal of Advanced Manufacturing Technology, 2019, 104( 5–8): 2363– 2375
https://doi.org/10.1007/s00170-019-04050-0
147 M Z Liu, C H Li, Y B Zhang, Q L An, M Yang, T Gao, C Mao, B Liu, H J Cao, X F Xu, Z Said, S Debnath, M Jamil, H M Ali, S Sharma. Cryogenic minimum quantity lubrication machining: from mechanism to application. Frontiers of Mechanical Engineering, 2021, 16( 4): 649– 697
https://doi.org/10.1007/s11465-021-0654-2
148 M Z Liu, C H Li, H J Cao, S Zhang, Y Chen, B Liu, N Q Zhang, Z M Zhou. Research progress and application of cryogenic minimum quantity lubrication machining technology. China Mechanical Engineering, 2022, 33( 5): 529– 550
https://doi.org/10.3969/j.issn.1004-132X
149 X M Wang, J C Zhang, X P Wang, Y B Zhang, B Liu, L Luo, W Zhao, N Q Zhang, X L Nie, C H Li. Effect of nanoparticle volume on grinding performance of titanium alloy in cryogenic air minimum quantity lubrication. Diamond & Abrasives Engineering, 2020, 40( 5): 23– 29
https://doi.org/10.13394/j.cnki.jgszz.2020.05.0004
150 Z Y Jia, R Fu, F J Wang, B W Qian, C L He. Temperature effects in end milling carbon fiber reinforced polymer composites. Polymer Composites, 2018, 39( 2): 437– 447
https://doi.org/10.1002/pc.23954
151 B Zhang, Y Du, H Liu, L Xin, Y Yang, L Li. Experimental study on high-speed milling of SiCf/SiC composites with PCD and CVD diamond tools. Materials, 2021, 14( 13): 3470
https://doi.org/10.3390/ma14133470
152 M K Nor Khairusshima, C H Che Hassan, A G Jaharah, A K M Amin, A N Md Idriss. Effect of chilled air on tool wear and workpiece quality during milling of carbon fibre-reinforced plastic. Wear, 2013, 302( 1–2): 1113– 1123
https://doi.org/10.1016/j.wear.2013.01.043
153 M K Nor Khairusshima, I S S Sharifah. Study on tool wear during milling CFRP under dry and chilled air machining. Procedia Engineering, 2017, 184 : 506– 517
https://doi.org/10.1016/j.proeng.2017.04.121
154 M Danish, M K Gupta, S Rubaiee, A Ahmed, A Mahfouz, M Jamil. Machinability investigations on CFRP composites: a comparison between sustainable cooling conditions. The International Journal of Advanced Manufacturing Technology, 2021, 114( 11–12): 3201– 3216
https://doi.org/10.1007/s00170-021-07073-8
155 F Zou, B F Zhong, H Zhang, Q L An, M Chen. Machinability and surface quality during milling CFRP laminates under dry and supercritical CO2-based cryogenic conditions. International Journal of Precision Engineering and Manufacturing—Green Technology, 2022, 9( 3): 765– 781
https://doi.org/10.1007/s40684-021-00386-9
156 F Zou, J Q Dang, X F Wang, H Z Zhang, X F Sun, Q L An, M Chen. Performance and mechanism evaluation during milling of CFRP laminates under cryogenic-based conditions. Composite Structures, 2021, 277 : 114578
https://doi.org/10.1016/j.compstruct.2021.114578
157 N K Muhamad Khairussaleh, C H Che Haron, J A Ghani. Study on wear mechanism of solid carbide cutting tool in milling CFRP. Journal of Materials Research, 2016, 31( 13): 1893– 1899
https://doi.org/10.1557/jmr.2016.21
158 S Morkavuk, U Köklü, M Bağcı, L Gemi. Cryogenic machining of carbon fiber reinforced plastic (CFRP) composites and the effects of cryogenic treatment on tensile properties: a comparative study. Composites Part B: Engineering, 2018, 147 : 1– 11
https://doi.org/10.1016/j.compositesb.2018.04.024
159 K Ohashi, H Maeno, R Fujihara, S Kubota, M Yoshikawa, S Tsukamoto. Influence of grinding atmosphere on grinding characteristics of CFRP (effect of soluble coolant or liquid nitrogen supply). Transactions of the Japan Society of Mechanical Engineers Series C, 2013, 79( 808): 5068– 5078
https://doi.org/10.1299/kikaic.79.5068
160 R Fujihara, K Ohashi, M Yoshikawa, S Kubota, T Onishi, S Tsukamoto. Investigation of grinding temperature of carbon fiber reinforced plastics. In: Proceedings of International Conference on Leading Edge Manufacturing in 21st Century: LEM21, 2013, 103– 106
https://doi.org/10.1299/jsmelem.2013.7.103
161 F B Wang, Y Q Wang. Effect of fiber orientation on the milling performance of quartz fiber composites in cryogenic cooling. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234( 1): 18– 31
https://doi.org/10.1177/0954406219871972
162 N M Cococcetta, M P Jahan, J Schoop, J F Ma, D Pearl, M Hassan. Post-processing of 3D printed thermoplastic CFRP composites using cryogenic machining. Journal of Manufacturing Processes, 2021, 68 : 332– 346
https://doi.org/10.1016/j.jmapro.2021.05.054
163 S Larbi, R Bensaada, A Bilek, S Djebali. Hygrothermal ageing effect on mechanical properties of FRP laminates. AIP Conference Proceedings, 2015, 1653( 1): 020066
https://doi.org/10.1063/1.4914257
164 D Scida, M Assarar, C Poilâne, R Ayad. Influence of hygrothermal ageing on the damage mechanisms of flax-fibre reinforced epoxy composite. Composites Part B: Engineering, 2013, 48 : 51– 58
https://doi.org/10.1016/j.compositesb.2012.12.010
165 X F Wu, C H Li, Z M Zhou, X L Nie, Y Chen, Y B Zhang, H J Cao, B Liu, N Q Zhang, Z Said, S Debnath, M Jamil, H M Ali, S Sharma. Circulating purification of cutting fluid: an overview. The International Journal of Advanced Manufacturing Technology, 2021, 117( 9–10): 2565– 2600
https://doi.org/10.1007/s00170-021-07854-1
166 M Haddad, R Zitoune, F Eyma, B Castanie. Study of the surface defects and dust generated during trimming of CFRP: influence of tool geometry, machining parameters and cutting speed range. Composites Part A: Applied Science and Manufacturing, 2014, 66 : 142– 154
https://doi.org/10.1016/j.compositesa.2014.07.005
167 L Z Tang, Y B Zhang, C H Li, Z M Zhou, X L Nie, Y Chen, H J Cao, B Liu, N Q Zhang, Z Said, S Debnath, M Jamil, H M Ali, S Sharma. Biological stability of water-based cutting fluids: progress and application. Chinese Journal of Mechanical Engineering, 2022, 35( 1): 3
https://doi.org/10.1186/s10033-021-00667-z
168 M Senthilkumar, A Prabukarthi, V Krishnaraj. Machining of CFRP/Ti6Al4V stacks under minimal quantity lubricating condition. Journal of Mechanical Science and Technology, 2018, 32( 8): 3787– 3796
https://doi.org/10.1007/s12206-018-0731-6
169 K Giasin, S Ayvar-Soberanis, A Hodzic. Evaluation of cryogenic cooling and minimum quantity lubrication effects on machining GLARE laminates using design of experiments. Journal of Cleaner Production, 2016, 135 : 533– 548
https://doi.org/10.1016/j.jclepro.2016.06.098
170 B K Li, C H Li, Y B Zhang, Y G Wang, D Z Jia, M Yang, N Q Zhang, Q D Wu, Z G Han, K Sun. Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil. Journal of Cleaner Production, 2017, 154 : 1– 11
https://doi.org/10.1016/j.jclepro.2017.03.213
171 Y G Wang, C H Li, Y B Zhang, M Yang, B K Li, L Dong, J Wang. Processing characteristics of vegetable oil-based nanofluid MQL for grinding different workpiece materials. International Journal of Precision Engineering and Manufacturing—Green Technology, 2018, 5( 2): 327– 339
https://doi.org/10.1007/s40684-018-0035-4
172 S Zhang, J F Li, Y W Wang. Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions. Journal of Cleaner Production, 2012, 32 : 81– 87
https://doi.org/10.1016/j.jclepro.2012.03.014
173 M Yang, C H Li, Y B Zhang, Y G Wang, B K Li, D Z Jia, Y L Hou, R Z Li. Research on microscale skull grinding temperature field under different cooling conditions. Applied Thermal Engineering, 2017, 126 : 525– 537
https://doi.org/10.1016/j.applthermaleng.2017.07.183
174 Y B Zhang, C H Li, D Z Jia, B K Li, Y G Wang, M Yang, Y L Hou, X W Zhang. Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. Journal of Materials Processing Technology, 2016, 232 : 100– 115
https://doi.org/10.1016/j.jmatprotec.2016.01.031
175 D Jia N Q Zhang B Liu Z M Zhou X M Wang Y B Zhang C Mao C H Li. Particle size distribution characteristics of electrostatic minimum quantity lubrication and grinding surface quality evaluation. Diamond & Abrasives Engineering, 2021, 41(3): 89‒ 95 (in Chinese)
176 D Z Jia, Y B Zhang, C H Li, M Yang, T Gao, Z Said, S Sharma. Lubrication-enhanced mechanisms of titanium alloy grinding using lecithin biolubricant. Tribology International, 2022, 169 : 107461
https://doi.org/10.1016/j.triboint.2022.107461
177 D Z Jia, C H Li, Y B Zhang, D K Zhang, X W Zhang. Experimental research on the influence of the jet parameters of minimum quantity lubrication on the lubricating property of Ni-based alloy grinding. The International Journal of Advanced Manufacturing Technology, 2016, 82( 1–4): 617– 630
https://doi.org/10.1007/s00170-015-7381-y
178 D Z Jia, C H Li, Y B Zhang, M Yang, H J Cao, B Liu, Z M Zhou. Grinding performance and surface morphology evaluation of titanium alloy using electric traction bio micro lubricant. Journal of Mechanical Engineering, 2022, 58( 5): 198– 211
https://doi.org/10.3901/JME.2022.05.198
179 X M Wang J C Zhang X P Wang Y B Zhang L Luo W Zhao B Liu X L Nie C H Li. Temperature field model and verification of titanium alloy grinding under different cooling conditions. China Mechanical Engineering, 2021, 32(5): 572‒ 578, 586
180 X M Wang, C H Li, Y B Zhang, W F Ding, M Yang, T Gao, H J Cao, X F Xu, D Z Wang, Z Said, S Debnath, M Jamil, H M Ali. Vegetable oil-based nanofluid minimum quantity lubrication turning: academic review and perspectives. Journal of Manufacturing Processes, 2020, 59 : 76– 97
https://doi.org/10.1016/j.jmapro.2020.09.044
181 S M Guo, C H Li, Y B Zhang, Y G Wang, B K Li, M Yang, X P Zhang, G T Liu. Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy. Journal of Cleaner Production, 2017, 140 : 1060– 1076
https://doi.org/10.1016/j.jclepro.2016.10.073
182 Z Shi, S M Guo, H J Liu, C H Li, Y B Zhang, M Yang, Y Chen, B Liu, Z M Zhou, X L Nie. Experimental evaluation of minimum quantity lubrication of biological lubricant on grinding properties of GH4169 nickel-base alloy. Surface Technology, 2021, 50( 12): 71– 84
https://doi.org/10.16490/j.cnki.issn.1001-3660.2021.12.007
183 M Yang, C H Li, Y B Zhang, D Z Jia, R Z Li, Y L Hou, H J Cao. Effect of friction coefficient on chip thickness models in ductile-regime grinding of zirconia ceramics. The International Journal of Advanced Manufacturing Technology, 2019, 102( 5–8): 2617– 2632
https://doi.org/10.1007/s00170-019-03367-0
184 M Yang, C H Li, Y B Zhang, D Z Jia, R Z Li, Y L Hou, H J Cao, J Wang. Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions. Ceramics International, 2019, 45( 12): 14908– 14920
https://doi.org/10.1016/j.ceramint.2019.04.226
185 Z J Duan, C H Li, Y B Zhang, L Dong, X F Bai, M Yang, D Z Jia, R Z Li, H J Cao, X F Xu. Milling surface roughness for 7050 aluminum alloy cavity influenced by nozzle position of nanofluid minimum quantity lubrication. Chinese Journal of Aeronautics, 2021, 34( 6): 33– 53
https://doi.org/10.1016/j.cja.2020.04.029
186 N M Cococcetta, D Pearl, M P Jahan, J F Ma. Investigating surface finish, burr formation, and tool wear during machining of 3D printed carbon fiber reinforced polymer composite. Journal of Manufacturing Processes, 2020, 56 : 1304– 1316
https://doi.org/10.1016/j.jmapro.2020.04.025
187 H Esmaeili, H Adibi, S M Rezaei. An efficient strategy for grinding carbon fiber-reinforced silicon carbide composite using minimum quantity lubricant. Ceramics International, 2019, 45( 8): 10852– 10864
https://doi.org/10.1016/j.ceramint.2019.02.163
188 H Adibi, H Esmaeili, S M Rezaei. Study on minimum quantity lubrication (MQL) in grinding of carbon fiber-reinforced SiC matrix composites (CMCs). The International Journal of Advanced Manufacturing Technology, 2018, 95( 9–12): 3753– 3767
https://doi.org/10.1007/s00170-017-1464-x
189 S Pervaiz, S Kannan, D H Huo, R Mamidala. Ecofriendly inclined drilling of carbon fiber-reinforced polymers (CFRP). The International Journal of Advanced Manufacturing Technology, 2020, 111( 7–8): 2127– 2153
https://doi.org/10.1007/s00170-020-06203-y
190 Y Iskandar, A Tendolkar, M H Attia, P Hendrick, A Damir, C Diakodimitris. Flow visualization and characterization for optimized MQL machining of composites. CIRP Annals—Manufacturing Technology, 2014, 63( 1): 77– 80
https://doi.org/10.1016/j.cirp.2014.03.078
191 M O Helmy, M H El-Hofy, H El-Hofy. Effect of cutting fluid delivery method on ultrasonic assisted edge trimming of multidirectional CFRP composites at different machining conditions. Procedia CIRP, 2018, 68 : 450– 455
https://doi.org/10.1016/j.procir.2017.12.077
192 M Li, T B Yu, R C Zhang, L Yang, Z L Ma, B C Li, X Z Wang, W S Wang, J Zhao. Experimental evaluation of an eco-friendly grinding process combining minimum quantity lubrication and graphene-enhanced plant-oil-based cutting fluid. Journal of Cleaner Production, 2020, 244 : 118747
https://doi.org/10.1016/j.jclepro.2019.118747
193 M Yang, C H Li, Z Said, Y B Zhang, R Z Li, S Debnath, H M Ali, T Gao, Y Z Long. Semiempirical heat flux model of hard-brittle bone material in ductile microgrinding. Journal of Manufacturing Processes, 2021, 71 : 501– 514
https://doi.org/10.1016/j.jmapro.2021.09.053
194 Z Said, P Sharma, L S Sundar, A Afzal, C H Li. Synthesis, stability, thermophysical properties and AI approach for predictive modelling of Fe3O4 coated MWCNT hybrid nanofluids. Journal of Molecular Liquids, 2021, 340 : 117291
https://doi.org/10.1016/j.molliq.2021.117291
195 X Cui C H Li W F Ding Y Chen C Mao X F Xu B Liu D Z Wang H N Li Y B Zhang Z Said S Debnath M Jamil H M Ali S Sharma. Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant: from mechanisms to application. Chinese Journal of Aeronautics, 2021 (in press)
196 Y B Zhang, H N Li, C H Li, C Z Huang, H M Ali, X F Xu, C Mao, W F Ding, X Cui, M Yang, T B Yu, M Jamil, M K Gupta, D Z Jia, Z Said. Nano-enhanced biolubricant in sustainable manufacturing: from processability to mechanisms. Friction, 2022, 10( 6): 803– 841
https://doi.org/10.1007/s40544-021-0536-y
197 M H Sui N Q Zhang C H Li W T Wu Y B Zhang M Yang. Theoretical analysis and experiment on temperature field of nano-fluid micro-lubrication grinding cemented carbide. Manufacturing Technology & Machine Tool, 2020, (3): 85‒ 91 (in Chinese)
198 Z Said, S Arora, S Farooq, L S Sundar, C H Li, A Allouhi. Recent advances on improved optical, thermal, and radiative characteristics of plasmonic nanofluids: academic insights and perspectives. Solar Energy Materials and Solar Cells, 2022, 236 : 111504
https://doi.org/10.1016/j.solmat.2021.111504
199 Y B Zhang, C H Li, D Z Jia, D K Zhang, X W Zhang. Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding. International Journal of Machine Tools and Manufacture, 2015, 99 : 19– 33
https://doi.org/10.1016/j.ijmachtools.2015.09.003
200 X P Zhang, C H Li, Y B Zhang, Y G Wang, B K Li, M Yang, S M Guo, G T Liu, N Q Zhang. Lubricating property of MQL grinding of Al2O3/SiC mixed nanofluid with different particle sizes and microtopography analysis by cross-correlation. Precision Engineering, 2017, 47 : 532– 545
https://doi.org/10.1016/j.precisioneng.2016.09.016
201 L Dong, C Li, X Bai, M Zhai, Q Qi, Q Yin, X Lv, L Li. Analysis of the cooling performance of Ti-6Al-4V in minimum quantity lubricant milling with different nanoparticles. The International Journal of Advanced Manufacturing Technology, 2019, 103( 5−8): 2197– 2206
https://doi.org/10.1007/s00170-019-03466-y
202 X Bai, C Li, L Dong, Q Yin. Experimental evaluation of the lubrication performances of different nanofluids for minimum quantity lubrication (MQL) in milling Ti-6Al-4V. The International Journal of Advanced Manufacturing Technology, 2019, 101( 9–12): 2621– 2632
https://doi.org/10.1007/s00170-018-3100-9
203 M Yang, C H Li, L Luo, R Z Li, Y Z Long. Predictive model of convective heat transfer coefficient in bone micro-grinding using nanofluid aerosol cooling. International Communications in Heat and Mass Transfer, 2021, 125 : 105317
https://doi.org/10.1016/j.icheatmasstransfer.2021.105317
204 X Cui, C H Li, Y B Zhang, D Z Jia, Y J Zhao, R Z Li, H J Cao. Tribological properties under the grinding wheel and workpiece interface by using graphene nanofluid lubricant. The International Journal of Advanced Manufacturing Technology, 2019, 104( 9–12): 3943– 3958
https://doi.org/10.1007/s00170-019-04129-8
205 T Gao, C H Li, Y B Zhang, M Yang, D Z Jia, T Jin, Y L Hou, R Z Li. Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribology International, 2019, 131 : 51– 63
https://doi.org/10.1016/j.triboint.2018.10.025
206 Z C Zhang, M H Sui, C H Li, Z M Zhou, B Liu, Y Chen, Z Said, S Debnath, S Sharma. Residual stress of grinding cemented carbide using MoS2 nano-lubricant. The International Journal of Advanced Manufacturing Technology, 2022, 119( 9–10): 5671– 5685
https://doi.org/10.1007/s00170-022-08660-z
207 T Gao, C H Li, D Z Jia, Y B Zhang, M Yang, X M Wang, H J Cao, R Z Li, H M Ali, X F Xu. Surface morphology assessment of CFRP transverse grinding using CNT nanofluid minimum quantity lubrication. Journal of Cleaner Production, 2020, 277 : 123328
https://doi.org/10.1016/j.jclepro.2020.123328
208 T Gao, C H Li, M Yang, Y B Zhang, D Z Jia, W F Ding, S Debnath, T B Yu, Z Said, J Wang. Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant. Journal of Materials Processing Technology, 2021, 290 : 116976
https://doi.org/10.1016/j.jmatprotec.2020.116976
209 T Gao, Y B Zhang, C H Li, Y Q Wang, Q L An, B Liu, Z Said, S Sharma. Grindability of carbon fiber reinforced polymer using CNT biological lubricant. Scientific Reports, 2021, 11( 1): 22535
https://doi.org/10.1038/s41598-021-02071-y
210 S James, S M Nejadian. Experimental study on high-speed saw cutting of hybrid composite stacks using nanoparticle-enhanced minimum quantity lubrication. The International Journal of Advanced Manufacturing Technology, 2020, 110( 11–12): 3077– 3090
https://doi.org/10.1007/s00170-020-06008-z
211 R L Rodriguez, J C Lopes, S D Mancini, Ângelo Sanchez L E de, Almeida Varasquim F M F de, R S Volpato, Mello H J de, Aguiar P R de, E C Bianchi. Contribution for minimization the usage of cutting fluids in CFRP grinding. The International Journal of Advanced Manufacturing Technology, 2019, 103( 1–4): 487– 497
https://doi.org/10.1007/s00170-019-03529-0
212 X M Wang C H Li Y B Zhang Z Said S Debnath S Sharma M Yang T Gao. Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning. The International Journal of Advanced Manufacturing Technology, 2022, 119(1‒2): 631– 646
213 F J Wang, J B Yan, M Zhao, D Wang, X N Wang, J X Hao. Surface damage reduction of dry milling carbon fiber reinforced plastic/polymer using left–right edge milling tool. Journal of Reinforced Plastics and Composites, 2020, 39( 11–12): 409– 421
https://doi.org/10.1177/0731684420912018
214 de Lacalle N López, A Lamikiz, F J Campa, A F Valdivielso, I Etxeberria. Design and test of a multitooth tool for CFRP milling. Journal of Composite Materials, 2009, 43( 26): 3275– 3290
https://doi.org/10.1177/0021998309345354
215 Y D Chen, X H Guo, K D Zhang, D L Guo, C C Zhou, L W Gai. Study on the surface quality of CFRP machined by micro-textured milling tools. Journal of Manufacturing Processes, 2019, 37 : 114– 123
https://doi.org/10.1016/j.jmapro.2018.11.021
216 I Shyha, D H Huo, P Hesamikojidi, H Eldessouky, M A El-Sayed. Performance of a new hybrid cutting-abrasive tool for the machining of fibre reinforced polymer composites. The International Journal of Advanced Manufacturing Technology, 2021, 112( 3–4): 1101– 1113
https://doi.org/10.1007/s00170-020-06464-7
217 H Sasahara, T Kikuma, R Koyasu, Y Yao. Surface grinding of carbon fiber reinforced plastic (CFRP) with an internal coolant supplied through grinding wheel. Precision Engineering, 2014, 38( 4): 775– 782
https://doi.org/10.1016/j.precisioneng.2014.04.005
218 H P Yuan, H Gao, Y D Liang. Fabrication of a new-type electroplated wheel with controlled abrasive cluster and its application in dry grinding of CFRP. International Journal of Abrasive Technology, 2010, 3( 4): 299– 315
https://doi.org/10.1504/IJAT.2010.036963
219 S Okuyama, T Kitajima, A Yui. Grinding performance of a grain-arranged diamond wheel and a GC wheel against CFRP. Journal of the Japan Society for Abrasive Technology, 2011, 55( 10): 611– 615
https://doi.org/10.11420/jsat.55.611
220 D Handa, V S Sooraj. An eccentric sleeve grinding strategy for fibre-reinforced composites. Composites Part B: Engineering, 2019, 176 : 107332
https://doi.org/10.1016/j.compositesb.2019.107332
[1] Xin CUI, Changhe LI, Yanbin ZHANG, Wenfeng DING, Qinglong AN, Bo LIU, Hao Nan LI, Zafar SAID, Shubham SHARMA, Runze LI, Sujan DEBNATH. Comparative assessment of force, temperature, and wheel wear in sustainable grinding aerospace alloy using biolubricant[J]. Front. Mech. Eng., 2023, 18(1): 3-.
[2] Long BAI, Fei XU, Xiao CHEN, Xin SU, Fuyao LAI, Jianfeng XU. A hybrid deep learning model for robust prediction of the dimensional accuracy in precision milling of thin-walled structural components[J]. Front. Mech. Eng., 2022, 17(3): 32-.
[3] Xin YANG, Renke KANG, Shang GAO, Zihe WU, Xianglong ZHU. Subsurface damage pattern and formation mechanism of monocrystalline β-Ga2O3 in grinding process[J]. Front. Mech. Eng., 2022, 17(2): 21-.
[4] Zequan YAO, Chang FAN, Zhao ZHANG, Dinghua ZHANG, Ming LUO. Position-varying surface roughness prediction method considering compensated acceleration in milling of thin-walled workpiece[J]. Front. Mech. Eng., 2021, 16(4): 855-867.
[5] Mingzheng LIU, Changhe LI, Yanbin ZHANG, Qinglong AN, Min YANG, Teng GAO, Cong MAO, Bo LIU, Huajun CAO, Xuefeng XU, Zafar SAID, Sujan DEBNATH, Muhammad JAMIL, Hafz Muhammad ALI, Shubham SHARMA. Cryogenic minimum quantity lubrication machining: from mechanism to application[J]. Front. Mech. Eng., 2021, 16(4): 649-697.
[6] Zhigang DONG, Qian ZHANG, Haijun LIU, Renke KANG, Shang GAO. Effects of taping on grinding quality of silicon wafers in backgrinding[J]. Front. Mech. Eng., 2021, 16(3): 559-569.
[7] Binxun LI, Xinzhi ZHANG, Song ZHANG. Microstructure investigation of dynamic recrystallization in hard machining: From thermodynamic irreversibility perspective[J]. Front. Mech. Eng., 2021, 16(2): 315-330.
[8] Tao SUN, Lufang QIN, Junming HOU, Yucan FU. Machinability of damage-tolerant titanium alloy in orthogonal turn-milling[J]. Front. Mech. Eng., 2020, 15(3): 504-515.
[9] A. DAVOUDINEJAD, P. PARENTI, M. ANNONI. 3D finite element prediction of chip flow, burr formation, and cutting forces in micro end-milling of aluminum 6061-T6[J]. Front. Mech. Eng., 2017, 12(2): 203-214.
[10] Julong YUAN, Binghai LYU, Wei HANG, Qianfa DENG. Review on the progress of ultra-precision machining technologies[J]. Front. Mech. Eng., 2017, 12(2): 158-180.
[11] Xibin WANG,Tianfeng ZHOU,Lijing XIE,Li JIAO,Zhibing LIU,Zhiqiang LIANG,Pei YAN. Mesoscale fabrication of a complex surface for integral impeller blades[J]. Front. Mech. Eng., 2017, 12(1): 116-131.
[12] Vladimir A. GODLEVSKIY. Technological lubricating means: Evolution of materials and ideas[J]. Front. Mech. Eng., 2016, 11(1): 101-107.
[13] Fangyu PENG,Wei WANG,Rong YAN,Xianyin DUAN,Bin LI. Variable eccentric distance-based tool path generation for orthogonal turn-milling[J]. Front. Mech. Eng., 2015, 10(4): 352-366.
[14] Shaodan ZHI,Jianyong LI,A. M. ZAREMBSKI. Modelling of dynamic contact length in rail grinding process[J]. Front. Mech. Eng., 2014, 9(3): 242-248.
[15] Yulun CHI, Haolin LI. Simulation and analysis of grinding wheel based on Gaussian mixture model[J]. Front Mech Eng, 2012, 7(4): 427-432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed