Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2013, Vol. 8 Issue (1) : 104-108    https://doi.org/10.1007/s11465-013-0360-9
RESEARCH ARTICLE
Computation of the protein molecular mechanism using adaptive dihedral angle increments
Mikel DIEZ(), Victor PETUYA, Mónica URIZAR, Erik MACHO, Oscar ALTUZARRRA
Department of Mechanical Engineering, University of the Basque Country UPV/EHU, Bizkaia 48013, Spain
 Download: PDF(187 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Protein motion simulation is still a troublesome problem yet to be solved, especially due to its high computational requirements. The procedure presented in this paper makes use of the proteins’ real degrees of freedom (DOFs). The procedure makes no use of any intermediate energy minimization processes that may alter the motion path or result in very high computational cost requirements. In order to reduce the computational cost, presented algorithms make use of the balls and rods approach for protein structure modelization. Also, structures are normalized in order to minimize inaccuracies introduced by experimental methods, providing a more efficient but still accurate structure for motion simulation.

Keywords kinematics      serial robot      proteins      folding      molecular mechanism     
Corresponding Author(s): DIEZ Mikel,Email:mikel.diez@ehu.es   
Issue Date: 05 March 2013
 Cite this article:   
Mikel DIEZ,Victor PETUYA,Mónica URIZAR, et al. Computation of the protein molecular mechanism using adaptive dihedral angle increments[J]. Front Mech Eng, 2013, 8(1): 104-108.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-013-0360-9
https://academic.hep.com.cn/fme/EN/Y2013/V8/I1/104
Fig.1  Structural conformation, DOF of the protein
ProteinPrevious ProcedureNew Procedure
Rmsd/?Energy/%RP/(% atoms in favored regions)Rmsd/?Energy/%RP/(% atoms in favored regions)
1k9p 4.01796---
1k206.187.6925.486.292
3cln6.880955.523.792
1zac3.446.997---
Tab.1  Molecular mechanisms simulation results for previous and new procedures
Fig.2  Initial (a) and final (b) positions of 1k9p protein. The movement is concealed to the relative position of two -helixes. Represented with Pymol
ProteinNew Procedure with m=3, n=1 parameter values
Rmsd/?Energy/%RP/(% atoms in favored regions)Error reduction/%
1k9p 3.78a)6a)97a)5.7a)
1k205.294.8933.4
3cln5.343923.3
1zac3.0849810.4
Tab.2  Molecular mechanisms simulation results for the new procedure with modified and parameters
Fig.3  Initial (a) and final (b) positions of 3cln protein. The movement is represented by the formation of the central -helix and the rotation of the upper part of the protein. Represented with Pymol
1 Oyenarte I, Lucas M, Gómez García I, Martínez-Cruz L A. Purification, crystallization and preliminary crystallographic analysis of the CBS-domain protein MJ1004 from Methanocaldococcus jannaschii. Acta Crystallographica Section F: Structural Biology and Crystallization Communications , 2011, 67(Pt 3): 318-324
2 Chirikjian, G.S.: A methodology for determining mechanical properties of macromolecules from ensemble motion data. TrAC Trends in Analytical Chemistry , 2003, 22(9): 549-553
3 Kavraki L. Protein-Ligand Docking, Including Flexible Receptor, 2007
4 Madden C, Bohnenkamp P, Kazerounian K, Ilies H T. Residue level three-dimensional workspace maps for conformational trajectory planning of proteins. The International Journal of Robotics Research , 2009, 28(4): 450-463
5 Jeong J I, Lattman E E, Chirikjian G S. A method for finding candidate conformations for molecular replacement using relative rotation between domains of a known structure. Acta Crystallographica Section D: Biological Crystallography , 2006, 62(Pt 4): 398-409
6 Subramanian R, Kazerounian K, Fellow A. Improved molecular model of a peptide unit for proteins. Journal of Mechanical Design , 2007, 129(11): 1130-1136
7 Diez M, Petuya V, Martínez-Cruzb L A, Hernándeza A. A biokinematic approach for the computational simulation of proteins molecular mechanism. Mechanism and Machine Theory , 2011, 46(12): 1854-1868
8 Cornell W, Cieplak P, Bayly C, Gould I, Merz K, Ferguson D, Spellmeyer D, Fox T, Caldwell J, Kollman P. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society , 1995, 117(3): 5179-5197
9 Diez M, Petuya V, Macho E, Hernandez A. Protein kinematic motion simulation including potential energy feedback. New Trends in Mechanism Science , 2010, 5: 83-90
[1] Yue WANG, Jingjun YU, Xu PEI. Fast forward kinematics algorithm for real-time and high-precision control of the 3-RPS parallel mechanism[J]. Front. Mech. Eng., 2018, 13(3): 368-375.
[2] Fugui XIE,Xin-Jun LIU. Analysis of the kinematic characteristics of a high-speed parallel robot with Schönflies motion: Mobility, kinematics, and singularity[J]. Front. Mech. Eng., 2016, 11(2): 135-143.
[3] Yuzhe LIU,Liping WANG,Jun WU,Jinsong WANG. A comprehensive analysis of a 3-P (Pa) S spatial parallel manipulator[J]. Front. Mech. Eng., 2015, 10(1): 7-19.
[4] Jingjun YU,Dengfeng LU,Zhongxiang ZHANG,Xu PEI. Motion capability analysis of a quadruped robot as a parallel manipulator[J]. Front. Mech. Eng., 2014, 9(4): 295-307.
[5] S. SHANKAR GANESH,A.B. KOTESWARA RAO. Stiffness of a 3-degree of freedom translational parallel kinematic machine[J]. Front. Mech. Eng., 2014, 9(3): 233-241.
[6] Alin STOICA, Doina PISLA, Szilaghyi ANDRAS, Bogdan GHERMAN, Bela-Zoltan GYURKA, Nicolae PLITEA. Kinematic, workspace and singularity analysis of a new parallel robot used in minimally invasive surgery[J]. Front Mech Eng, 2013, 8(1): 70-79.
[7] J. AGUIRREBEITIA, R. AVILéS, I. FERNáNDEZ, M. ABASOLO. Kinematical synthesis of an inversion of the double linked fourbar for morphing wing applications[J]. Front Mech Eng, 2013, 8(1): 17-32.
[8] Po-Chih LEE, Jyh-Jone LEE. Singularity and workspace analysis of three isoconstrained parallel manipulators with schoenflies motion[J]. Front Mech Eng, 2012, 7(2): 163-187.
[9] Hu SHI, Guofang GONG, Huayong YANG. Drive system design and error analysis of the 6 degrees of freedom segment erector of shield tunneling machine[J]. Front Mech Eng, 2011, 6(3): 369-376.
[10] Hui AN, Fan HE, Lingxia XING, Xiaoyang LI. Oscillation frequency of simplified arterial tubes[J]. Front Mech Eng Chin, 2009, 4(3): 300-304.
[11] ZHAO Jie, WANG Weizhong, GAO Yongsheng, CAI Hegao. Generation of closed-form inverse kinematics for reconfigurable robots[J]. Front. Mech. Eng., 2008, 3(1): 91-96.
[12] JIA Dongyong, ZHANG Jianmin, SUN Hongchang, NIU Zhigang. Inverse kinematics analysis and numerical control experiment for PRS-XY style hybrid machining tool[J]. Front. Mech. Eng., 2007, 2(2): 235-238.
[13] WANG Guangming, SHEN Lincheng, WU Yonghui. Research on swimming by undulatory long dorsal fin propulsion[J]. Front. Mech. Eng., 2007, 2(1): 77-81.
[14] PAN Cun-yun, WEN Xi-sen, YANG Kun-yu, XU Xiao-jun, LIU Min, YAO Qi-shui. Research on transmission principle and kinematics analysis for involute spherical gear[J]. Front. Mech. Eng., 2006, 1(2): 183-193.
[15] WANG Yan, HANG Lu-bin, YANG Ting-li. Inverse Kinematics Analysis of General 6R Serial Robot Mechanism Based on Groebner Base[J]. Front. Mech. Eng., 2006, 1(1): 115-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed