Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng Chin    2009, Vol. 4 Issue (3) : 300-304    https://doi.org/10.1007/s11465-009-0038-5
RESEARCH ARTICLE
Oscillation frequency of simplified arterial tubes
Hui AN(), Fan HE, Lingxia XING, Xiaoyang LI
College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China
 Download: PDF(209 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To construct the spatial kinetic equation of an arterial tube and obtain its radial natural frequency, a linear-elastic and small deformation condition is assumed. The theoretical analysis is first presented and the finite element method is then used to numerically simulate the spatial kinematics. The results show that the first-order frequency is 15.8 Hz and the obtained exact analytical solutions agree well with numerical solutions, which proves that the theoretical analysis and numerical simulation are both correct.

Keywords spatial kinematics      natural frequency      finite element method     
Corresponding Author(s): AN Hui,Email:anhui1618@emails.bjut.edu.cn   
Issue Date: 05 September 2009
 Cite this article:   
Hui AN,Fan HE,Lingxia XING, et al. Oscillation frequency of simplified arterial tubes[J]. Front Mech Eng Chin, 2009, 4(3): 300-304.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-009-0038-5
https://academic.hep.com.cn/fme/EN/Y2009/V4/I3/300
Fig.1  Cylindrical coordinate system
Fig.2  First four order modes
(a) First order, (b) second order, (c) third order, and (d) fourth order
1 Ku D, Giddens D, Zarins C, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque and low and oscillating shear stress. Arteriosclerosis , 1985, 5: 293-302
2 Nerem R M. Vascular fluid mechanics: the arterial wall and atherosclerosis. Journal of Biomechanical Engineering , 1992, 114: 274-282
doi: 10.1115/1.2891384
3 Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature , 1993, 362: 801-809
doi: 10.1038/362801a0
4 Araim O, Chen A H, Sumpio B. Hemodynamic forces: effects on atherosclerosis. New Surgery , 2001, 1: 92-100
5 Papaioannou G T, Karatzis N E, Manolis V, John P L, Christodoulos S. Assessment of vascular wall shear stress and implications for atherosclerotic disease. International Journal of Cardiology , 2006, 113: 12-18
doi: 10.1016/j.ijcard.2006.03.035
6 Hoogstraten H W, Kootstra J G, Hillen B, Krijger J K B, Wensing P J W. Numerical simulation of blood flow in an artery with two successive bends. Journal of Biomechanics , 1996, 29(8): 1075-1083
doi: 10.1016/0021-9290(95)00174-3
7 Shahcheraghi N, Dwyer H A, Cheer A Y, Barakat A I, Rutaganira T. Unsteady and three-dimensional simulation of blood flow in the human aortic arch. Journal of Biomechanical Engineering , 2002, 124(4): 378-387
doi: 10.1115/1.1487357
8 Buchanan J R, Kleinstreuer C, Hyun S, Truskey G A. Hemodynamics simulation and identification of susceptible sites of atherosclerotic lesion formation in a model abdominal aorta. Journal of Biomechanics , 2003, 36: 1185-1196
doi: 10.1016/S0021-9290(03)00088-5
9 Choung C J, Fung Y C. On residual stress in arteries. Journal of Biomechanical Engineering , 1986, 108: 189-192
10 Takamizawa K, Hayashi K. Uniform strain hypothesis and thin-walled theory in arterial mechanics. Biorheology , 1988, 25(3): 555-565
11 Delfino A, Stergiopulos N, Moore J E, Meister J J. Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. Journal of Biomechanics , 1997, 30(8): 777-786
doi: 10.1016/S0021-9290(97)00025-0
12 Tang Dalin, Yang Chun, Homer W, Shunichi K, David N K. Simulating cyclic artery compression using a 3D unsteady model with fluid-structure interactions. Computers and Structures , 2002, 80: 1651-1665
doi: 10.1016/S0045-7949(02)00111-6
13 Moayeri M S, Zendehbudi G R. Effects of elastic property of the wall on flow characteristics through arterial stenoses. Journal of Biomechanics , 2003, 36: 525-535
doi: 10.1016/S0021-9290(02)00421-9
14 Li Zhonghua, Clement K. Blood flow and structure interactions in a stented abdominal aortic aneurysm model. Medical Engineering & Physics , 2005, 27: 369-382
doi: 10.1016/j.medengphy.2004.12.003
15 Fung Y C. Biodynamics: Circulation. New York: Springer Verlag, 1984
16 Valencia A, Solis F. Blood flow dynamics and arterial wall interaction in a saccular aneurysm model of the basilar artery. Computers and Structures , 2006, 84: 1326-1337
doi: 10.1016/j.compstruc.2006.03.008
[1] Bo WANG, Feng ZHAO, Zixu ZHAO, Kunpeng XU. Influence factors on natural frequencies of composite materials[J]. Front. Mech. Eng., 2020, 15(4): 571-584.
[2] Xinyu HUI, Yingjie XU, Weihong ZHANG. Multiscale model of micro curing residual stress evolution in carbon fiber-reinforced thermoset polymer composites[J]. Front. Mech. Eng., 2020, 15(3): 475-483.
[3] Tianfeng ZHOU, Ying WANG, Benshuai RUAN, Zhiqiang LIANG, Xibin WANG. Modeling of the minimum cutting thickness in micro cutting with consideration of the friction around the cutting zone[J]. Front. Mech. Eng., 2020, 15(1): 81-88.
[4] Dawei ZHANG, Fan LI, Shuaipeng LI, Shengdun ZHAO. Finite element modeling of counter-roller spinning for large-sized aluminum alloy cylindrical parts[J]. Front. Mech. Eng., 2019, 14(3): 351-357.
[5] Jie SHAO, Tielin SHI, Li DU, Lei SU, Xiangning LU, Guanglan LIAO. Analysis on annealing-induced stress of blind-via TSV using FEM[J]. Front. Mech. Eng., 2018, 13(3): 401-410.
[6] Rongjing ZHANG,Lihui LANG,Rizwan ZAFAR. FEM-based strain analysis study for multilayer sheet forming process[J]. Front. Mech. Eng., 2015, 10(4): 373-379.
[7] Bhaskar Kumar MADETI,Srinivasa Rao CHALAMALASETTI,S K Sundara siva rao BOLLA PRAGADA. Biomechanics of knee joint – A review[J]. Front. Mech. Eng., 2015, 10(2): 176-186.
[8] Lezhi YE,Guangzhao YANG,Desheng LI. Analytical model and finite element computation of braking torque in electromagnetic retarder[J]. Front. Mech. Eng., 2014, 9(4): 368-379.
[9] Van Thanh NGO, Danmei XIE, Yangheng XIONG, Hengliang ZHANG, Yi YANG. Dynamic analysis of a rig shafting vibration based on finite element[J]. Front Mech Eng, 2013, 8(3): 244-251.
[10] Li LI, Michael Yu WANG, Peng WEI. XFEM schemes for level set based structural optimization[J]. Front Mech Eng, 2012, 7(4): 335-356.
[11] Jianxun LIANG, Ou MA, Caishan LIU. Model reduction of contact dynamics simulation using a modified Lyapunov balancing method[J]. Front Mech Eng, 2011, 6(4): 383-391.
[12] Wenbin LI, Hiromasa SAKAI, Shota HARADA, Yasushi TAKASE, Nao-Aki NODA. Separation mechanism for double cylinder with shrink fitting system used for ceramics conveying rollers[J]. Front Mech Eng, 2011, 6(3): 277-286.
[13] Lezhi YE, Desheng LI, Bingfeng JIAO. Three-dimensional electromagnetic analysis and design of permanent magnet retarder[J]. Front Mech Eng Chin, 2010, 5(4): 438-441.
[14] SHI Shengjun, CHEN Weishan, LIU Junkao, ZHAO Xuetao. Ultrasonic linear motor using the L-B mode Langevin transducer with an exponential horn[J]. Front. Mech. Eng., 2008, 3(2): 212-217.
[15] TANG Kelun, ZHANG Xiangwei, CHENG Siyuan, XIONG Hanwei, ZHANG Hong. Research on physical shape preserving curve reconstruction[J]. Front. Mech. Eng., 2007, 2(3): 305-309.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed