Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng Chin    2010, Vol. 5 Issue (4) : 438-441    https://doi.org/10.1007/s11465-010-0111-0
RESEARCH ARTICLE
Three-dimensional electromagnetic analysis and design of permanent magnet retarder
Lezhi YE(), Desheng LI, Bingfeng JIAO
Mechanical & Electronic Technology Research Center, Beijing University of Technology, Beijing 100124, China
 Download: PDF(252 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An eddy current retarder for vehicles generates much heat when it works continuously, which leads to serious decline in braking torque. This paper proposes a novel permanent magnet retarder (PMR) for vehicles, whose cooling system connects with engine cooling-water. A three-dimensional finite element model is developed to model the electromagnetic behavior of a permanent magnet retarder under a constant speed. The magnetic field and eddy current field in PMR are numerically solved by a finite element method. By accounting for the nonlinear permeability of the rotor and the weakened effect in the magnetic field that is generated by the eddy current magnetic field, the calculation accuracy of air-gap magnetic field is enhanced. Experiment shows that the temperature of the retarder is less than 150°C, and the braking torque keeps the hard characteristics curve. The calculated air-gap magnetic flux density is fairly good agreement with the measured one.

Keywords auxiliary brake      permanent magnet retarder      water-cooling      finite element method     
Corresponding Author(s): YE Lezhi,Email:yelezhi@emails.bjut.edu.cn   
Issue Date: 05 December 2010
 Cite this article:   
Bingfeng JIAO,Lezhi YE,Desheng LI. Three-dimensional electromagnetic analysis and design of permanent magnet retarder[J]. Front Mech Eng Chin, 2010, 5(4): 438-441.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-010-0111-0
https://academic.hep.com.cn/fme/EN/Y2010/V5/I4/438
Fig.1  Structure of air-cooling PMR
Fig.2  Structure of water-cooling PMR
Fig.3  Permanent magnet retarder analysis model
projectsizeprojectsize
Rotation degree θ/(°)22.5PM depth d/mm15
rotor radius R1/mm140PM length L/mm75
rotor depth h1/mm14gap g/mm1
PM width w/mm50stator depth h2/mm14
Tab.1  PMR size parameters
Fig.4  Stator eddy currents distribution at 3000 r/min (unit 10 A/m)
Fig.5  Flux density distribution on stator (unit T)
Fig.6  PMR test system
Fig.7  Permanent magnet retarder photos
Fig.8  Flux densities in air gap
Fig.9  Braking torque curve
1 Ye L Z, Li D S. Study on a novel permanent magnet retarder for vehicles. In: Progress in Electromagnetics Research Symposium, Hangzhou , 2008, 531-535
2 Hu Q X, He R. Working principle and usage of vehicle-used permanent-magnet type retarder design. Computation Research , 2005, (3): 22-25
3 Zhu N, Wang Y H. Light type permanent magnet retarder for vehicle. Bus Technology and Research , 2002, 24(4): l9-20
4 He R. Auxiliary Braking Equipment for Vehicle. Beijing: Chemical Industry Press, 2005 (in Chinese)
5 Wang B L. Electromagnetism and Electro-Instrument Design Base. Beijing: National Defense Industry Press, 1989 (in Chinese)
6 Takahashi N, Natsumeda M, Muramatsu K, Yamada C, Ogawa M, Kobayashi S, Kuwahara T. Optimization of permanent magnet type of retarder using 3D finite element method and direct search method. IEEE Transactions on Magnetics , 1998, 34(5): 2996-2999
doi: 10.1109/20.717700
7 Bigeon J, Sabonnadi`ere J C, Coulomb J. Finite element analysis of an electromagnetic brake. IEEE Transactions on Magnetics , 1983, 19(6): 2632-2634
doi: 10.1109/TMAG.1983.1062848
[1] Xinyu HUI, Yingjie XU, Weihong ZHANG. Multiscale model of micro curing residual stress evolution in carbon fiber-reinforced thermoset polymer composites[J]. Front. Mech. Eng., 2020, 15(3): 475-483.
[2] Tianfeng ZHOU, Ying WANG, Benshuai RUAN, Zhiqiang LIANG, Xibin WANG. Modeling of the minimum cutting thickness in micro cutting with consideration of the friction around the cutting zone[J]. Front. Mech. Eng., 2020, 15(1): 81-88.
[3] Dawei ZHANG, Fan LI, Shuaipeng LI, Shengdun ZHAO. Finite element modeling of counter-roller spinning for large-sized aluminum alloy cylindrical parts[J]. Front. Mech. Eng., 2019, 14(3): 351-357.
[4] Jie SHAO, Tielin SHI, Li DU, Lei SU, Xiangning LU, Guanglan LIAO. Analysis on annealing-induced stress of blind-via TSV using FEM[J]. Front. Mech. Eng., 2018, 13(3): 401-410.
[5] Rongjing ZHANG,Lihui LANG,Rizwan ZAFAR. FEM-based strain analysis study for multilayer sheet forming process[J]. Front. Mech. Eng., 2015, 10(4): 373-379.
[6] Bhaskar Kumar MADETI,Srinivasa Rao CHALAMALASETTI,S K Sundara siva rao BOLLA PRAGADA. Biomechanics of knee joint – A review[J]. Front. Mech. Eng., 2015, 10(2): 176-186.
[7] Lezhi YE,Guangzhao YANG,Desheng LI. Analytical model and finite element computation of braking torque in electromagnetic retarder[J]. Front. Mech. Eng., 2014, 9(4): 368-379.
[8] Van Thanh NGO, Danmei XIE, Yangheng XIONG, Hengliang ZHANG, Yi YANG. Dynamic analysis of a rig shafting vibration based on finite element[J]. Front Mech Eng, 2013, 8(3): 244-251.
[9] Li LI, Michael Yu WANG, Peng WEI. XFEM schemes for level set based structural optimization[J]. Front Mech Eng, 2012, 7(4): 335-356.
[10] Jianxun LIANG, Ou MA, Caishan LIU. Model reduction of contact dynamics simulation using a modified Lyapunov balancing method[J]. Front Mech Eng, 2011, 6(4): 383-391.
[11] Wenbin LI, Hiromasa SAKAI, Shota HARADA, Yasushi TAKASE, Nao-Aki NODA. Separation mechanism for double cylinder with shrink fitting system used for ceramics conveying rollers[J]. Front Mech Eng, 2011, 6(3): 277-286.
[12] Bingfeng JIAO, Desheng LI, Yunkang SUI, Lezhi YE. Structure optimization for magnetic equipment of permanent magnet retarder[J]. Front Mech Eng Chin, 2010, 5(4): 442-445.
[13] Hui AN, Fan HE, Lingxia XING, Xiaoyang LI. Oscillation frequency of simplified arterial tubes[J]. Front Mech Eng Chin, 2009, 4(3): 300-304.
[14] SHI Shengjun, CHEN Weishan, LIU Junkao, ZHAO Xuetao. Ultrasonic linear motor using the L-B mode Langevin transducer with an exponential horn[J]. Front. Mech. Eng., 2008, 3(2): 212-217.
[15] TANG Kelun, ZHANG Xiangwei, CHENG Siyuan, XIONG Hanwei, ZHANG Hong. Research on physical shape preserving curve reconstruction[J]. Front. Mech. Eng., 2007, 2(3): 305-309.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed