Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2014, Vol. 9 Issue (1) : 50-57    https://doi.org/10.1007/s11465-014-0286-x
RESEARCH ARTICLE
Shape and topology optimization for tailoring the ratio between two flexural eigenfrequencies of atomic force microscopy cantilever probe
Qi XIA1,*(),Tao ZHOU1,Michael Yu WANG2,Tielin SHI1
1. The State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
2. Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
 Download: PDF(309 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In an operation mode of atomic force microscopy that uses a higher eigenmode to determine the physical properties of material surface, the ratio between the eigenfrequency of a higher flexural eigenmode and that of the first flexural eigenmode was identified as an important parameter that affects the sensitivity and accessibility. Structure features such as cut-out are often used to tune the ratio of eigenfrequencies and to enhance the performance. However, there lacks a systematic and automatic method for tailoring the ratio. In order to deal with this issue, a shape and topology optimization problem is formulated, where the ratio between two eigenfrequencies is defined as a constraint and the area of the cantilever is maximized. The optimization problem is solved via the level set based method.

Keywords atomic force microscopy      cantilever probe      eigenfrequency      optimization     
Corresponding Author(s): Qi XIA   
Issue Date: 16 May 2014
 Cite this article:   
Qi XIA,Tao ZHOU,Michael Yu WANG, et al. Shape and topology optimization for tailoring the ratio between two flexural eigenfrequencies of atomic force microscopy cantilever probe[J]. Front. Mech. Eng., 2014, 9(1): 50-57.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-014-0286-x
https://academic.hep.com.cn/fme/EN/Y2014/V9/I1/50
Fig.1  Design velocity and propagation of a free boundary
Fig.2  Design problem
Fig.3  Initial design and the optimal design. (a) Initial design; (b) optimal design
Fig.4  Transverse displacement w of flexural eigenmodes of the optimal design. (a) The first flexural eigenmode; (b) the third flexural eigenmode
Fig.5  Convergence history
Fig.6  Intermediate results of the optimization. (a) Step 100; (b) step 200; (c) step 300; (d) step 400
Iteration numberf1 /kHzfk /kHzfk/f1A /μm2
135.6685.619.279312
10040.5642.915.8710144
20042.1668.215.8910861
30043.5690.315.8811437
40045.0719.715.9911953
45345.3727.716.0612068
Tab.1  Numerical results of the optimization (f1: the first flexural eigenfrequency; fk: the k-th flexural eigenfrequency; A: area of the cantilever)
Fig.7  Design problem
Fig.8  Initial design and the optimal design. (a) initial design; (b) optimal design
Fig.9  Transverse displacement of flexural eigenmodes of the optimal design. (a) The first flexural eigenmode; (b) the second flexural eigenmode
1 StarkR W, DrobekT, HecklW M. Tapping-mode atomic force microscopy and phase imaging in higher eigenmodes. Applied Physics Letters, 1999, 74(22): 3296
2 HillenbrandR, StarkM, GuckenbergerR. Higher-harmonic generation in tapping-mode atomic-force microscopy: Insights into the tip–sample interaction. Applied Physics Letters, 2000, 76(23): 3478
3 SahinO, QuateC F, SolgaardO, AtalarA. Resonant harmonic response in tapping-mode atomic force microscopy. Physical Review B: Condensed Matter and Materials Physics, 2004, 69(16): 165416
4 SahinO, YaraliogluG, GrowR, ZappeS F, AtalarA, QuateC, SolgaardO. High-resolution imaging of elastic properties using harmonic cantilevers. Sensors and Actuators A: Physical, 2004, 114(2-3): 183-190
5 LiH, ChenY, DaiL. Concentrated-mass cantilever enhances multiple harmonics in tapping-mode atomic force microscopy. Applied Physics Letters, 2008, 92(15): 151903
6 SethianJ A, WiegmannA. Structural boundary design via level set and immersed interface methods. Journal of Computational Physics, 2000, 163(2): 489-528
7 OsherS, SantosaF. Level-set methods for optimization problems involving geometry and constraints: Frequencies of a two-density inhomogeneous drum. Journal of Computational Physics, 2001, 171(1): 272-288
8 AllaireG, JouveF, ToaderA M. A level-set method for shape optimization. Comptes Rendus Mathematique, 2002, 334(12): 1125-1130
9 AllaireG, JouveF, ToaderA M. Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics, 2004, 194(1): 363-393
10 WangM Y, WangX M, GuoD M. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1-2): 227-246
11 PedersenN L. Maximization of eigenvalue using topology optimization. Structural and Multidisciplinary Optimization, 2000, 20(1): 2-11
12 PedersenN L. Design of cantilever probes for atomic force microscopy (AFM). Engineering Optimization, 2000, 32(3): 373-392
13 ChenK N. Model updating and optimum designs for V-shaped atomic force microscope probes. Engineering Optimization, 2006, 38(7): 755-770
14 DíaazA, KikuchiN. Solution to shape and topology eigenvalue optimization problems using a homogenization method. International Journal for Numerical Methods in Engineering, 1992, 35(7): 1487-1502
15 MaZ D, ChengH C, KikuchiN. Structural design for obtaining desired eigenfrequencies 23 by using the topology and shape optimizationg method. Computing Systems in Engineering, 1994, 5(1): 77-89
16 KosakaI, SwanC C. A symmetry reduction method for continuum structural topology optimization. Computers & Structures, 1999, 70(1): 47-61
17 AllaireG, JouveF. A level–set method for vibration and multiple loads structural optimization. Computer Methods in Applied Mechanics and Engineering, 2005, 194(30-33): 3269-3290
18 DuJ B, OlhoffN. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Structural and Multidisciplinary Optimization, 2007, 34(2): 91-110
19 XiaQ, ShiT, WangM Y. A level set based shape and topology optimization method for maximizing the simple or repeated first eigenvalue of structure vibration. Structural and Multidisciplinary Optimization, 2011, 43(4): 473-485
20 HopcroftM A, NixW D, KennyT W. What is the Young’s modulus of silicon? Journal of Microelectromechanical Systems, 2010, 19(2): 229-238
21 ZienkiewiczO C, TaylorR L. The Finite Element Method (5th Edition), Vol. 2. Butterworth-Heinemann, 2000
22 LiewK M, WangC M, XiangY, KitipornchaiS. Vibration of Mindlin Plates: Programming the P-Version Ritz Method. Elsevier, 1998
23 XingY, LiuB. Closed form solutions for free vibrations of rectangular Mendelian plates. Acta Mechanica Sinica, 2009, 25(5): 689-698
24 ChoiK K, KimN H. Structural Sensitivity Analysis and Optimization. Springer, 2005
25 HaugE J, ChoiK K, KomkovV. Design Sensitivity Analysis of Structural Systems. Academic Press, 1986
26 NocedalJ, WrightS J. Numerical Optimization. Springer, 1999
27 WangX M, WangM Y, GuoD M. Structural shape and topology optimization in a level-set-based framework of region representation. Structural and Multidisciplinary Optimization, 2004, 27(1-2): 1-19
28 MeiY, WangX. A level set method for structural topology optimization and its applications. Advances in Engineering Software, 2004, 35(7): 415-441
29 XiaQ, ShiT L, WangM Y, LiuS Y. A level set based method for the optimization of cast part. Structural and Multidisciplinary Optimization, 2010, 41(5): 735-747
30 XiaQ, ShiT, LiuS, WangM Y. A level set solution to the stress-based structural shape and topology optimization. Computers & Structures, 2012, 90-91: 55-64
31 SethianJ A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. 2nd Edition. Cambridge Monographs on Applied and Computational Mathematics. Cambridge, UK:Cambridge University Press, 1999
32 OsherS, FedkiwR. Level Set Methods and Dynamic Implicit Surfaces. New York: Springer-Verlag, 2002
33 TcherniakD. Topology optimization of resonating structures using SIMP method. International Journal for Numerical Methods in Engineering, 2002
[1] Yongliang YUAN, Liye LV, Shuo WANG, Xueguan SONG. Multidisciplinary co-design optimization of structural and control parameters for bucket wheel reclaimer[J]. Front. Mech. Eng., 2020, 15(3): 406-416.
[2] Peng WEI, Wenwen WANG, Yang YANG, Michael Yu WANG. Level set band method: A combination of density-based and level set methods for the topology optimization of continuums[J]. Front. Mech. Eng., 2020, 15(3): 390-405.
[3] Shuo ZHU, Hua ZHANG, Zhigang JIANG, Bernard HON. A carbon efficiency upgrading method for mechanical machining based on scheduling optimization strategy[J]. Front. Mech. Eng., 2020, 15(2): 338-350.
[4] Zhen-Pei WANG, Zhifeng XIE, Leong Hien POH. An isogeometric numerical study of partially and fully implicit schemes for transient adjoint shape sensitivity analysis[J]. Front. Mech. Eng., 2020, 15(2): 279-293.
[5] Song ZHANG, Lelun WANG, Anze YI, Honggang GU, Xiuguo CHEN, Hao JIANG, Shiyuan LIU. Dynamic modulation performance of ferroelectric liquid crystal polarization rotators and Mueller matrix polarimeter optimization[J]. Front. Mech. Eng., 2020, 15(2): 256-264.
[6] Emmanuel TROMME, Atsushi KAWAMOTO, James K. GUEST. Topology optimization based on reduction methods with applications to multiscale design and additive manufacturing[J]. Front. Mech. Eng., 2020, 15(1): 151-165.
[7] Xianda XIE, Shuting WANG, Ming YE, Zhaohui XIA, Wei ZHAO, Ning JIANG, Manman XU. Isogeometric topology optimization based on energy penalization for symmetric structure[J]. Front. Mech. Eng., 2020, 15(1): 100-122.
[8] Hong PENG, Han WANG, Daojia CHEN. Optimization of remanufacturing process routes oriented toward eco-efficiency[J]. Front. Mech. Eng., 2019, 14(4): 422-433.
[9] Weichang KONG, Fei QIAO, Qidi WU. A naive optimization method for multi-line systems with alternative machines[J]. Front. Mech. Eng., 2019, 14(4): 377-392.
[10] Manman XU, Shuting WANG, Xianda XIE. Level set-based isogeometric topology optimization for maximizing fundamental eigenfrequency[J]. Front. Mech. Eng., 2019, 14(2): 222-234.
[11] Jikai LIU, Qian CHEN, Xuan LIANG, Albert C. TO. Manufacturing cost constrained topology optimization for additive manufacturing[J]. Front. Mech. Eng., 2019, 14(2): 213-221.
[12] Mariana MORETTI, Emílio C. N. SILVA. Topology optimization of piezoelectric bi-material actuators with velocity feedback control[J]. Front. Mech. Eng., 2019, 14(2): 190-200.
[13] Junjie ZHAN, Yangjun LUO. Robust topology optimization of hinge-free compliant mechanisms with material uncertainties based on a non-probabilistic field model[J]. Front. Mech. Eng., 2019, 14(2): 201-212.
[14] Long JIANG, Yang GUO, Shikui CHEN, Peng WEI, Na LEI, Xianfeng David GU. Concurrent optimization of structural topology and infill properties with a CBF-based level set method[J]. Front. Mech. Eng., 2019, 14(2): 171-189.
[15] Markus J. GEISS, Jorge L. BARRERA, Narasimha BODDETI, Kurt MAUTE. A regularization scheme for explicit level-set XFEM topology optimization[J]. Front. Mech. Eng., 2019, 14(2): 153-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed