Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2015, Vol. 10 Issue (1) : 48-63    https://doi.org/10.1007/s11465-015-0330-5
RESEARCH ARTICLE
Dynamics of structural systems with various frequency-dependent damping models
Li LI,Yujin HU(),Weiming DENG,Lei LÜ,Zhe DING
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(591 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The aim of this paper is to present the dynamic analyses of the system involving various damping models. The assumed frequency-dependent damping forces depend on the past history of motion via convolution integrals over some damping kernel functions. By choosing suitable damping kernel functions of frequency-dependent damping model, it may be derived from the familiar viscoelastic materials. A brief review of literature on the choice of available damping models is presented. Both the mode superposition method and Fourier transform method are developed for calculating the dynamic response of the structural systems with various damping models. It is shown that in the case of non-deficient systems with various damping models, the modal analysis with repeated eigenvalues are very similar to the traditional modal analysis used in undamped or viscously damped systems. Also, based on the pseudo-force approach, we transform the original equations of motion with nonzero initial conditions into an equivalent one with zero initial conditions and therefore present a Fourier transform method for the dynamics of structural systems with various damping models. Finally, some case studies are used to show the application and effectiveness of the derived formulas.

Keywords damping      viscoelasticity      dynamic analysis      mode superposition method      Fourier transform method     
Corresponding Author(s): Yujin HU   
Issue Date: 01 April 2015
 Cite this article:   
Li LI,Yujin HU,Weiming DENG, et al. Dynamics of structural systems with various frequency-dependent damping models[J]. Front. Mech. Eng., 2015, 10(1): 48-63.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-015-0330-5
https://academic.hep.com.cn/fme/EN/Y2015/V10/I1/48
Fig.1  A glass fiber reinforced resin matrix hybrid composite material
Fig.2  The composite material is tested by three point bending load
G/MPa a0 a1 b1 a2 b2
1.0255×104 1.497×10-2 1.0132×104 5.5893 1.2022×104 102.59
Tab.1  Identified damping parameters of the Biot damping model for the material at 94?C
Fig.3  Storage modulus and loss modulus obtained from the experimental test and the Biot damping model
Fig.4  A floating raft isolation system
Fig.5  Displacement, velocity and acceleration of the first DOF
Fig.6  A frequency-dependent damped system with repeated eigenvalues
Fig.7  FRF measured at the first DOF
1 Rayleigh L. The Theory of Sound. New York: Dover Publications, 1877
2 Caughey T K, O’Kelly M E J. Classical normal modes in damped linear dynamic systems. Journal of Applied Mechanics, 1965, 32(3): 583–588
https://doi.org/10.1115/1.3627262
3 Adhikari S. Structural Dynamic Analysis with Generalized Damping Models: Analysis. Hoboken: John Wiley & Sons, 2013
4 Liu C, Jing X, Daley S, Recent advances in micro-vibration isolation. Mechanical Systems and Signal Processing, 2015, 56–57(May): 55–80
https://doi.org/10.1016/j.ymssp.2014.10.007
5 Li L, Hu Y. Generalized mode acceleration and modal truncation augmentation methods for the harmonic response analysis of nonviscously damped systems. Mechanical Systems and Signal Processing, 2015, 52–53(February): 46–59
https://doi.org/10.1016/j.ymssp.2014.07.003
6 Bagley R L, Torvik P J. Fractional calculus— A different approach to the analysis of viscoelastically damped structures. AIAA Journal, 1983, 21(5): 741–748
https://doi.org/10.2514/3.8142
7 Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Singapore: World Scientific, 2010
8 Lewandowski R, Chor??yczewski B. Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers. Computers & Structures, 2010, 88(1–2): 1–17
https://doi.org/10.1016/j.compstruc.2009.09.001
9 Di Paola M, Pinnola F P, Zingales M. Fractional differential equations and related exact mechanical models. Computers & Mathematics with Applications (Oxford, England), 2013, 66(5): 608–620
https://doi.org/10.1016/j.camwa.2013.03.012
10 Enelund M, Lesieutre G A. Time domain modeling of damping using anelastic displacement fields and fractional calculus. International Journal of Solids and Structures, 1999, 36(29): 4447– 4472
https://doi.org/10.1016/S0020-7683(98)00194-2
11 Di Paola M, Pirrotta A, Valenza A. Visco-elastic behavior through fractional calculus: An easier method for best fitting experimental results. Mechanics of Materials, 2011, 43(12): 799–806
https://doi.org/10.1016/j.mechmat.2011.08.016
12 Biot M A. Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena. Journal of Applied Physics, 1954, 25(11): 1385–1391
https://doi.org/10.1063/1.1721573
13 Biot M A. Variational principles in irreversible thermodynamics with application to viscoelasticity. Physical Review, 1955, 97(6): 1463–1469
https://doi.org/10.1103/PhysRev.97.1463
14 Adhikari S. Structural Dynamic Analysis with Generalized Damping Models: Identification. Hoboken: John Wiley & Sons, 2013
15 Li L, Hu Y, Wang X. Design sensitivity analysis of dynamic response of nonviscously damped systems. Mechanical Systems and Signal Processing, 2013, 41(1–2): 613–638
https://doi.org/10.1016/j.ymssp.2013.08.009
16 Li L, Hu Y, Wang X. Improved approximate methods for calculating frequency response function matrix and response of MDOF systems with viscoelastic hereditary terms. Journal of Sound and Vibration, 2013, 332(15): 3945–3956
https://doi.org/10.1016/j.jsv.2013.01.043
17 Zopf C, Hoque S, Kaliske M. Comparison of approaches to model viscoelasticity based on fractional time derivatives. Computational Materials Science, 2015, 98(February): 287–296
https://doi.org/10.1016/j.commatsci.2014.11.012
18 Woodhouse J. Linear damping models for structural vibration. Journal of Sound and Vibration, 1998, 215(3): 547–569
https://doi.org/10.1006/jsvi.1998.1709
19 Golla D F, Hughes P C. Dynamics of viscoelastic structures-A time domain finite element formulation. Journal of Applied Mechanics, 1985, 52(4): 897–906
https://doi.org/10.1115/1.3169166
20 McTavish D J, Hughes P C. Modeling of linear viscoelastic space structures. Journal of Vibration and Acoustics, 1993, 115(1): 103–110
https://doi.org/10.1115/1.2930302
21 Lesieutre G A. Finite element modeling of frequency-dependent material damping using augmented thermodynamic fields. Journal of Guidance, Control, and Dynamics, 1990, 13(6): 1040–1050
https://doi.org/10.2514/3.20577
22 Lesieutre G A. Finite elements for dynamic modeling of uniaxial rods with frequency-dependent material properties. International Journal of Solids and Structures, 1992, 29(12): 1567–1579
https://doi.org/10.1016/0020-7683(92)90134-F
23 Renaud F, Dion J L, Chevallier G, A new identification method of viscoelastic behavior: Application to the generalized Maxwell model. Mechanical Systems and Signal Processing, 2011, 25(3): 991–1010
https://doi.org/10.1016/j.ymssp.2010.09.002
24 Koeller R. Applications of fractional calculus to the theory of viscoelasticity. Journal of Applied Mechanics, 1984, 51(2): 299–307
https://doi.org/10.1115/1.3167616
25 Adhikari S, Woodhouse J. Identification of damping: Part 1, viscous damping. Journal of Sound and Vibration, 2001, 243(1): 43–61
https://doi.org/10.1006/jsvi.2000.3391
26 García-Barruetabeía J, Cortés F, Manuel Abete J. Influence of nonviscous modes on transient response of lumped parameter systems with exponential damping. Journal of Vibration and Acoustics, 2011, 133(6): 064502
https://doi.org/10.1115/1.4005004
27 Li L, Hu Y, Wang X, Eigensensitivity analysis for asymmetric nonviscous systems. AIAA Journal, 2013, 51(3): 738–741
https://doi.org/10.2514/1.J051931
28 Adhikari S. Damping models for structural vibration. Dissertation for the Doctoral Degree. Cambridge: University of Cambridge, 2000
29 Gonzalez-Lopez S, Fernandez-Saez J. Vibrations in Euler-Bernoulli beams treated with non-local damping patches. Computers & Structures, 2012, 108–109: 125–134
https://doi.org/10.1016/j.compstruc.2012.02.007
30 Friswell M I, Adhikari S, Lei Y. Non-local finite element analysis of damped beams. International Journal of Solids and Structures, 2007, 44(22–23): 7564–7576
https://doi.org/10.1016/j.ijsolstr.2007.04.023
31 Pan Y, Wang Y. Frequency-domain analysis of exponentially damped linear systems. Journal of Sound and Vibration, 2013, 332(7): 1754–1765
https://doi.org/10.1016/j.jsv.2012.11.026
32 Adhikari S, Friswell M I, Lei Y. Modal analysis of nonviscously damped beams. Journal of Applied Mechanics, 2007, 74(5): 1026–1030
https://doi.org/10.1115/1.2712315
33 Palmeri A, Ricciardelli F, De Luca A, State space formulation for linear viscoelastic dynamic systems with memory. Journal of Engineering Mechanics, 2003, 129(7): 715–724
https://doi.org/10.1061/(ASCE)0733-9399(2003)129:7(715)
34 Wagner N, Adhikari S. Symmetric state-space formulation for a class of non-viscously damped systems. AIAA Journal, 2003, 41(5): 951–956
https://doi.org/10.2514/2.2032
35 Palmeri A, Adhikari S. A Galerkin-type state-space approach for transverse vibrations of slender double-beam systems with visco-elastic inner layer. Journal of Sound and Vibration, 2011, 330(26): 6372–6386
https://doi.org/10.1016/j.jsv.2011.07.037
36 Tran Q H, Ouisse M, Bouhaddi N. A robust component mode synthesis method for stochastic damped vibroacoustics. Mechanical Systems and Signal Processing, 2010, 24(1): 164–181
https://doi.org/10.1016/j.ymssp.2009.06.016
37 Di Paola M, Pinnola F P, Spanos P D. Analysis of multi-degree-of-freedom systems with fractional derivative elements of rational order. In: Proceedings of 2014 International Conference on Fractional Differentiation and Its Applications (ICFDA). IEEE, 2014, 1–6
38 Adhikari S, Pascual B. Iterative methods for eigenvalues of viscoelastic systems. Journal of Vibration and Acoustics, 2011, 133(2): 021002
https://doi.org/10.1115/1.4002220
39 Adhikari S, Pascual B. Eigenvalues of linear viscoelastic systems. Journal of Sound and Vibration, 2009, 325(4–5): 1000–1011
https://doi.org/10.1016/j.jsv.2009.04.008
40 Cortés F, Elejabarrieta M J. Computational methods for complex eigenproblems in finite element analysis of structural systems with viscoelastic damping treatments. Computer Methods in Applied Mechanics and Engineering, 2006, 195(44–47): 6448–6462
https://doi.org/10.1016/j.cma.2006.01.006
41 Bilasse M, Charpentier I, Daya E M, A generic approach for the solution of nonlinear residual equations. Part II: Homotopy and complex nonlinear eigenvalue method. Computer Methods in Applied Mechanics and Engineering, 2009, 198(49–52): 3999–4004
42 Daya E, Potier-Ferry M. A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures. Computers & Structures, 2001, 79(5): 533–541
https://doi.org/10.1016/S0045-7949(00)00151-6
43 Lázaro M, Pérez-Aparicio J L, Epstein M. A viscous approach based on oscillatory eigensolutions for viscoelastically damped vibrating systems. Mechanical Systems and Signal Processing, 2013, 40(2): 767–782
https://doi.org/10.1016/j.ymssp.2013.06.005
44 LáZaro M, Pérez–Aparicio J L. Multiparametric computation of eigenvalues for linear viscoelastic structures. Computers & Structures, 2013, 117(February): 67–81
https://doi.org/10.1016/j.compstruc.2012.12.003
45 Lázaro M, Pérez-Aparicio J L. Dynamic analysis of frame structures with free viscoelastic layers: New closed-form solutions of eigenvalues and a viscous approach. Engineering Structures, 2013, 54(September): 69–81
https://doi.org/10.1016/j.engstruct.2013.03.052
46 Pawlak Z, Lewandowski R. The continuation method for the eigenvalue problem of structures with viscoelastic dampers. Computers & Structures, 2013, 125(September): 53–61
https://doi.org/10.1016/j.compstruc.2013.04.021
47 Van Beeumen R, Meerbergen K, Michiels W. A rational Krylov method based on Hermite interpolation for nonlinear eigenvalue problems. SIAM Journal on Scientific Computing, 2013, 35(1): A327–A350
https://doi.org/10.1137/120877556
48 Güttel S, van Beeumen R, Meerbergen K, NLEIGS: A class of fully rational Krylov methods for nonlinear eigenvalue problems. SIAM Journal on Scientific Computing, 2014, 36(6): A2842– A2864
https://doi.org/10.1137/130935045
49 MSC. Software Corporation. MD/MSC Nastran 2010 Dynamic Analysis User’s Guide, 2010
50 Li L, Hu Y, Wang X. Design sensitivity and Hessian matrix of generalized eigenproblems. Mechanical Systems and Signal Processing, 2014, 43(1–2): 272–294
https://doi.org/10.1016/j.ymssp.2013.09.007
51 Murthy D V, Haftka R T. Derivatives of eigenvalues and eigenvectors of a general complex matrix. International Journal for Numerical Methods in Engineering, 1988, 26(2): 293–311
https://doi.org/10.1002/nme.1620260202
52 Andrew A L. Convergence of an iterative method for derivatives of eigensystems. Journal of Computational Physics, 1978, 26(1): 107–112
https://doi.org/10.1016/0021-9991(78)90102-X
53 Diekmann O, van Gils S A, Lunel S V, Delay Equations: Functional-, Complex-, and Nonlinear Analysis. Berlin: Springer-Verlag, 1995
54 Li L, Hu Y, Wang X. Eliminating the modal truncation problem encountered in frequency responses of viscoelastic systems. Journal of Sound and Vibration, 2014, 333(4): 1182–1192
https://doi.org/10.1016/j.jsv.2013.10.018
55 Li L, Hu Y, Wang X, A hybrid expansion method for frequency response functions of non-proportionally damped systems. Mechanical Systems and Signal Processing, 2014, 42(1–2): 31–41
https://doi.org/10.1016/j.ymssp.2013.07.020
56 Adhiakri S. Classical normal modes in nonviscously damped linear systems. AIAA Journal, 2001, 39(5): 978–980
https://doi.org/10.2514/2.1409
57 Veletsos A S, Ventura C E. Dynamic analysis of structures by the DFT method. Journal of Structural Engineering, 1985, 111(12): 2625–2642
https://doi.org/10.1061/(ASCE)0733-9445(1985)111:12(2625)
58 Lee U, Kim S, Cho J. Dynamic analysis of the linear discrete dynamic systems subjected to the initial conditions by using an FFT-based spectral analysis method. Journal of Sound and Vibration, 2005, 288(1–2): 293–306
https://doi.org/10.1016/j.jsv.2005.01.014
59 Mansur W, Soares D Jr, Ferro M. Initial conditions in frequency-domain analysis: The FEM applied to the scalar wave equation. Journal of Sound and Vibration, 2004, 270(4–5): 767–780
https://doi.org/10.1016/S0022-460X(03)00256-6
60 Barkanov E, Hufenbach W, Kroll L. Transient response analysis of systems with different damping models. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1–2): 33–46
https://doi.org/10.1016/S0045-7825(02)00495-4
61 Brigham E O. The Fast Fourier Transform and Its Applications. Englewood Cliffs: Prentice-Hall, 1988
62 Duhamel P, Vetterli M. Fast Fourier transforms: A tutorial review and a state of the art. Signal Processing, 1990, 19(4): 259–299
https://doi.org/10.1016/0165-1684(90)90158-U
64 Zghal S, Bouazizi M L, Bouhaddi N. Reduced-order model for non-linear dynamic analysis of viscoelastic sandwich structures in time domain. In: Proceedings of International Conference on Structure Nonlinear Dynamics and Diagnosis. EDP Sciences, 2014, 08003
[1] Xumin GUO, Jin ZENG, Hui MA, Chenguang ZHAO, Lin QU, Bangchun WEN. Dynamic characteristics of a shrouded blade with impact and friction[J]. Front. Mech. Eng., 2020, 15(2): 209-226.
[2] Xiaoming YUAN, Jiabing HU, Shijie CHENG. Multi-time scale dynamics in power electronics-dominated power systems[J]. Front. Mech. Eng., 2017, 12(3): 303-311.
[3] Paolo BOSCARIOL,Alessandro GASPARETTO. Vibration suppression of speed-controlled robots with nonlinear control[J]. Front. Mech. Eng., 2016, 11(2): 204-212.
[4] Z. K. PENG, Z. Q. LANG, G. MENG. Evaluation of transmissibility for a class of nonlinear passive vibration isolators[J]. Front Mech Eng, 2012, 7(4): 401-409.
[5] Jing LU, Yu XIANG, Qiao NI. Dynamic characteristics analysis of active constrained layer damping plate with various boundary conditions[J]. Front Mech Eng, 2011, 6(4): 449-455.
[6] Yang ZHOU, Xingyu WANG, Xianzhou ZHANG, Weihua LI. Variable stiffness and damping magnetorheological isolator[J]. Front Mech Eng Chin, 2009, 4(3): 310-315.
[7] ZHAI Wenjie, LIU Changxiong, LIANG Yingchun. Numerical analysis of hydrodynamic process of circular-translational-moving polishing (CTMP)[J]. Front. Mech. Eng., 2008, 3(4): 441-448.
[8] CHEN Xuedong, LI Zhixin. Air-bearing position optimization based on dynamic characteristics of ultra-precision linear stages[J]. Front. Mech. Eng., 2008, 3(4): 400-407.
[9] DONG Mingming, HUANG Hua, GU Lian. Design of damping valve for vehicle hydro pneumatic suspension[J]. Front. Mech. Eng., 2008, 3(1): 97-100.
[10] ZHANG Jianming, ZHANG Weigang, YANG Bing, WANG Yawei. Fluid damping clearance in a control valve of injector[J]. Front. Mech. Eng., 2007, 2(4): 439-441.
[11] ZHOU Yu-feng, CHEN Hua-ling. Study on damping properties of magnetorheological damper[J]. Front. Mech. Eng., 2006, 1(4): 452-455.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed