Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2017, Vol. 12 Issue (2) : 215-223    https://doi.org/10.1007/s11465-017-0446-x
RESEARCH ARTICLE
A decomposition approach to the design of a multiferroic memory bit
Ruben ACEVEDO(), Cheng-Yen LIANG, Gregory P. CARMAN, Abdon E. SEPULVEDA
Mechanical and Aerospace Engineering Department, University of California Los Angeles, Los Angeles, CA 90095-1597, USA
 Download: PDF(258 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The objective of this paper is to present a methodology for the design of a memory bit to minimize the energy required to write data at the bit level. By straining a ferromagnetic nickel nano-dot by means of a piezoelectric substrate, its magnetization vector rotates between two stable states defined as a 1 and 0 for digital memory. The memory bit geometry, actuation mechanism and voltage control law were used as design variables. The approach used was to decompose the overall design process into simpler sub-problems whose structure can be exploited for a more efficient solution. This method minimizes the number of fully dynamic coupled finite element analyses required to converge to a near optimal design, thus decreasing the computational time for the design process. An in-plane sample design problem is presented to illustrate the advantages and flexibility of the procedure.

Keywords multiferroics      nano memory      piezoelectric      optimization     
Corresponding Author(s): Ruben ACEVEDO   
Just Accepted Date: 03 May 2017   Online First Date: 26 May 2017    Issue Date: 19 June 2017
 Cite this article:   
Ruben ACEVEDO,Cheng-Yen LIANG,Gregory P. CARMAN, et al. A decomposition approach to the design of a multiferroic memory bit[J]. Front. Mech. Eng., 2017, 12(2): 215-223.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-017-0446-x
https://academic.hep.com.cn/fme/EN/Y2017/V12/I2/215
Fig.1  The ferromagnetic/piezoelectric system with its schematic on the right indicating the design variables
Fig.2  Schematic of the total energy at different positions of y with and without strain applied to the system
Fig.3  Input voltage and energy required to rotate the magnetization vector vs. its respective electrode distance d
Fig.4  (a) Magnetization with no strain at State 1; (b) magnetization when the disk is strained in an intermediate state; (c) magnetization once strain is removed at State 0
Fig.5  Magnetization vector rotation q and voltage control law Vi(t)
1 Wang K L, Alzate J G, Khalili Amiri P. Low-power non-volatile spintronic memory: STT-RAM and beyond. Journal of Physics D: Applied Physics, 2013, 46(7): 074003 
https://doi.org/10.1088/0022-3727/46/7/074003
2 Pertsev N A, Kohlstedt H. Resistive switching via the converse magnetoelectric effect in ferromagnetic multilayers on ferroelectric substrates. Nanotechnology, 2010, 21(47): 475202
https://doi.org/10.1088/0957-4484/21/47/475202
3 Tiercelin N, Dusch Y, Preobrazhensky V, et al.Magnetoelectric memory using orthogonal magnetization states and magnetoelastic switching. Journal of Applied Physics, 2011, 109(7): 07D726
https://doi.org/10.1063/1.3559532
4 Dusch Y, Tiercelin N, Klimov A, et al.Stress-mediated magnetoelectric memory effect with uni-axial TbCo2/FeCo multilayer on 011-cut PMN-PT ferroelectric relaxor. Journal of Applied Physics, 2013, 113(17): 17C719
https://doi.org/10.1063/1.4795440
5 Cui J, Hockel J L, Nordeen P K, et al. A method to control magnetism in individual strain-mediated magnetoelectric islands. Applied Physics Letters, 2013, 103(23): 232905
https://doi.org/10.1063/1.4838216
6 Gibiansky L V, Torquato S. Optimal design of 1-3 composite piezoelectrics. Structural Optimization, 1997, 13(1): 23–28
https://doi.org/10.1007/BF01198372
7 Ruiz D, Bellido J C, Donoso A. Design of piezoelectric modal filters by simultaneously optimizing the structure layout and the electrode profile. Structural and Multidisciplinary Optimization, 2016, 53(4): 715–730
https://doi.org/10.1007/s00158-015-1354-5
8 Donoso A, Bellido J C. Systematic design of distributed piezoelectric modal sensors/actuators for rectangular plates by optimizing the polarization profile. Structural and Multidisciplinary Optimization, 2009, 38(4): 347–356
https://doi.org/10.1007/s00158-008-0279-7
9 Zhang X, Kang Z, Li M. Topology optimization of electrode coverage of piezoelectric thin-walled structures with CGVF control for minimizing sound radiation. Structural and Multidisciplinary Optimization, 2014, 50(5): 799–814
https://doi.org/10.1007/s00158-014-1082-2
10 Schmit L A, Farshi B. Some approximation concepts for structural synthesis. AIAA Journal, 1974, 12(5): 692–699 
https://doi.org/10.2514/3.49321
11 Schmit L A, Miura H. Approximation Concepts for Efficient Structural Analysis. NASA Contractor Report 2552. 1976
12 Barthelemy J F, Haftka R T. Approximation concepts for optimum structural design—A review. Structural Optimization, 1993, 5(3): 129–144
https://doi.org/10.1007/BF01743349
13 Toropov V V, Filatov A A, Polynkin A A. Multiparameter structural optimization using FEM and multipoint explicit approximations. Structural Optimization, 1993, 6(1): 7–14
https://doi.org/10.1007/BF01743169
14 Sepulveda A E, Schmit L A. Approximation-based global optimization strategy for structural synthesis. AIAA Journal, 1993, 31(1): 180–188
https://doi.org/10.2514/3.11335
15 Park Y S, Lee S H, Park G J. A study of direct vs. approximation methods in structural optimization. Structural Optimization, 1995, 10(1): 64–66
https://doi.org/10.1007/BF01743697
16 Sepulveda A E, Thomas H. Global optimization using accurate approximations in design synthesis. Structural Optimization, 1996, 12(4): 251–256
https://doi.org/10.1007/BF01197365
17 Abspoel S J, Etman L F P, Vervoort J, et al.Simulation based optimization of stochastic systems with integer design variables by sequential multipoint linear approximation. Structural and Multidisciplinary Optimization, 2001, 22(2): 125–139
https://doi.org/10.1007/s001580100130
18 Shu Y C, Lin M P, Wu K C. Micromagnetic modeling of magnetostrictive materials under intrinsic stress. Mechanics of Materials, 2004, 36(10): 975–997
https://doi.org/ 10.1016/j.mechmat.2003.04.004
19 Zhang J X, Chen L Q. Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials. Acta Materialia, 2005, 53(9): 2845–2855
https://doi.org/ 10.1016/j.actamat.2005.03.002
20 Cullity B D, Graham C D. Introduction to Magnetic Materials. 2nd ed. Hoboken: Wiley-IEEE Press, 2009
21 O’Handley R C. Modern Magnetic Materials: Principles and Applications. New York: Wiley, 1999
22 Baňas L U. Adaptive techniques for Landau-Lifshitz-Gilbert equation with magnetostriction. Journal of Computational and Applied Mathematics, 2008, 215(2): 304–310 
https://doi.org/10.1016/j.cam.2006.03.043
23 Gilbert T L. A phenomenological theory of damping in ferromagnetic materials. IEEE Transactions on Magnetics, 2004, 40(6): 3443–3449
https://doi.org/10.1109/TMAG.2004.836740
24 Fredkin D R, Koehler T R. Hybrid method for computing demagnetizing fields. IEEE Transactions on Magnetics, 1990, 26(2): 415–417
https://doi.org/10.1109/20.106342
25 Szambolics H, Toussaint J C, Buda-Prejbeanu L D, et al.Innovative weak formulation for the Landau-Lifshitz-Gilbert equations. IEEE Transactions on Magnetics, 2008, 44(11): 3153–3156
https://doi.org/10.1109/TMAG.2008.2001667
26 Liang C Y, Keller S M, Sepulveda A E, et al.Electrical control of a single magnetoelastic domain structure on a clamped piezoelectric thin film—Analysis. Journal of Applied Physics, 2014, 116(12): 123909
https://doi.org/10.1063/1.4896549
27 Biswas A K, Bandyopadhyay S, Atulasimha J. Complete magnetization reversal in a magnetostrictive nanomagnet with voltage-generated stress: A reliable energy-efficient non-volatile magneto-elastic memory. Applied Physics Letters, 2014, 105(7): 072408
https://doi.org/10.1063/1.4893617
28 Biswas A K, Bandyopadhyay S, Atulasimha J. Energy-efficient magnetoelastic non-volatile memory. Applied Physics Letters, 2014, 104(23): 232403
https://doi.org/10.1063/1.4882276
29 Stoner E C, Wohlfarth E P. A mechanism of magnetic hysteresis in heterogeneous alloys. Philosophical Transactions of the Royal Society A: Mathematical, 1948, 240(826): 599–642
https://doi.org/ 10.1098/rsta.1948.0007
30 COMSOL Multiphysics. 2017. Retrieved from 
[1] Yongliang YUAN, Liye LV, Shuo WANG, Xueguan SONG. Multidisciplinary co-design optimization of structural and control parameters for bucket wheel reclaimer[J]. Front. Mech. Eng., 2020, 15(3): 406-416.
[2] Peng WEI, Wenwen WANG, Yang YANG, Michael Yu WANG. Level set band method: A combination of density-based and level set methods for the topology optimization of continuums[J]. Front. Mech. Eng., 2020, 15(3): 390-405.
[3] Shuo ZHU, Hua ZHANG, Zhigang JIANG, Bernard HON. A carbon efficiency upgrading method for mechanical machining based on scheduling optimization strategy[J]. Front. Mech. Eng., 2020, 15(2): 338-350.
[4] Zhen-Pei WANG, Zhifeng XIE, Leong Hien POH. An isogeometric numerical study of partially and fully implicit schemes for transient adjoint shape sensitivity analysis[J]. Front. Mech. Eng., 2020, 15(2): 279-293.
[5] Song ZHANG, Lelun WANG, Anze YI, Honggang GU, Xiuguo CHEN, Hao JIANG, Shiyuan LIU. Dynamic modulation performance of ferroelectric liquid crystal polarization rotators and Mueller matrix polarimeter optimization[J]. Front. Mech. Eng., 2020, 15(2): 256-264.
[6] Emmanuel TROMME, Atsushi KAWAMOTO, James K. GUEST. Topology optimization based on reduction methods with applications to multiscale design and additive manufacturing[J]. Front. Mech. Eng., 2020, 15(1): 151-165.
[7] Xianda XIE, Shuting WANG, Ming YE, Zhaohui XIA, Wei ZHAO, Ning JIANG, Manman XU. Isogeometric topology optimization based on energy penalization for symmetric structure[J]. Front. Mech. Eng., 2020, 15(1): 100-122.
[8] Hong PENG, Han WANG, Daojia CHEN. Optimization of remanufacturing process routes oriented toward eco-efficiency[J]. Front. Mech. Eng., 2019, 14(4): 422-433.
[9] Weichang KONG, Fei QIAO, Qidi WU. A naive optimization method for multi-line systems with alternative machines[J]. Front. Mech. Eng., 2019, 14(4): 377-392.
[10] Manman XU, Shuting WANG, Xianda XIE. Level set-based isogeometric topology optimization for maximizing fundamental eigenfrequency[J]. Front. Mech. Eng., 2019, 14(2): 222-234.
[11] Jikai LIU, Qian CHEN, Xuan LIANG, Albert C. TO. Manufacturing cost constrained topology optimization for additive manufacturing[J]. Front. Mech. Eng., 2019, 14(2): 213-221.
[12] Mariana MORETTI, Emílio C. N. SILVA. Topology optimization of piezoelectric bi-material actuators with velocity feedback control[J]. Front. Mech. Eng., 2019, 14(2): 190-200.
[13] Junjie ZHAN, Yangjun LUO. Robust topology optimization of hinge-free compliant mechanisms with material uncertainties based on a non-probabilistic field model[J]. Front. Mech. Eng., 2019, 14(2): 201-212.
[14] Long JIANG, Yang GUO, Shikui CHEN, Peng WEI, Na LEI, Xianfeng David GU. Concurrent optimization of structural topology and infill properties with a CBF-based level set method[J]. Front. Mech. Eng., 2019, 14(2): 171-189.
[15] Markus J. GEISS, Jorge L. BARRERA, Narasimha BODDETI, Kurt MAUTE. A regularization scheme for explicit level-set XFEM topology optimization[J]. Front. Mech. Eng., 2019, 14(2): 153-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed