Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2018, Vol. 13 Issue (1) : 85-95    https://doi.org/10.1007/s11465-018-0491-0
REVIEW ARTICLE
Intelligent methods for the process parameter determination of plastic injection molding
Huang GAO, Yun ZHANG, Xundao ZHOU, Dequn LI()
State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(256 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Injection molding is one of the most widely used material processing methods in producing plastic products with complex geometries and high precision. The determination of process parameters is important in obtaining qualified products and maintaining product quality. This article reviews the recent studies and developments of the intelligent methods applied in the process parameter determination of injection molding. These intelligent methods are classified into three categories: Case-based reasoning methods, expert system-based methods, and data fitting and optimization methods. A framework of process parameter determination is proposed after comprehensive discussions. Finally, the conclusions and future research topics are discussed.

Keywords injection molding      intelligent methods      process parameters      optimization     
Corresponding Author(s): Dequn LI   
Just Accepted Date: 08 November 2017   Online First Date: 26 December 2017    Issue Date: 23 January 2018
 Cite this article:   
Huang GAO,Yun ZHANG,Xundao ZHOU, et al. Intelligent methods for the process parameter determination of plastic injection molding[J]. Front. Mech. Eng., 2018, 13(1): 85-95.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-018-0491-0
https://academic.hep.com.cn/fme/EN/Y2018/V13/I1/85
Fig.1  Flowchart of the initial process parameters setting based on CBR
Methods References Applications
KBR Kim and Suh [10] Weld line
Pandelidis and Kao [11] Bubbles, cracking, shrinkage
Jan and O’Brien [12] Pit marks, surface ripples, flashing
Kameoka et al. [13] Short shot, sink mark, warpage
Yang et al. [1] Short shot, flash, dimension
RBR Shelesh-Nezhad and Siores [8] Burn streaks, weld line, jetting
FR He et al. [14,15] Short shot, sink mark, flash, flow mark, warpage
Tan and Yuen [16] Flash, short shot, black streak
Zhou et al. [9] Short shot, flash
Chen et al. [17] Weld line
Li et al. [18] Short shot, flash
Tab.1  Expert system-based methods and their applications in injection molding
Fig.2  Framework of a typical FR system
Fig.3  The main framework for the data fitting and optimization methods
Method classification References
Space filling Taguchi method [2759]
LHD [6068]
UD [69,70]
Classical CCD [7173]
Others Full factorial experimental design [74,75]
Tab.2  Survey of experimental design methods for injection molding
Fitting model Applications
RSM [27,30,35,36,40,72] Warpage, shrinkage
Kriging [28,64,67,76] Warpage, cycle time, deflection, and max injection pressure
PR [46,71] Sink mark, waviness, weight
ANN [32,33,37,38,61,7786] Warpage, shrinkage, runner volume, weight, cycle time, strength
SVR [87,88] Weight, cycle time, max injection pressure, shrinkage
Tab.3  Survey of surrogate models used in injection molding
Approaches Advantages Disadvantages
PR Can be easily constructed, has clear rules on parameter sensitivity, allows quick convergence of noisy functions Instabilities that may arise for high-order polynomials; difficulty in obtaining sufficient sample data for high-order polynomials; cannot interpolate new sample points and be restricted by the selected function type
Kriging Does not need to construct a specific mathematics model, is extremely flexible in capturing nonlinear behavior, is accurate for nonlinear problems under small sample with moderate scale of variables More complex compared with RSM
RSM Requires less manual intervention, does not need the trial-and-error method to achieve a suitable model because of the benefit of data driven Falls easily into the local minimum value
ANN Has learning capability, is best for repeated application, has a highly nonlinear mapping capability, can approximate any function High computational expense, lack of a complete and mature theoretical system and high dependence on experience, overfitting; it is a “black box” method and cannot obtain explicit and meaningful models for further analysis
SVR Has solid theoretical foundation, is suitable for small sample data, has good generalization ability Not suitable for large sample data
Tab.4  Advantages and disadvantages of several surrogate models
Fig.4  The framework of the hybrid intelligent system
1 Yang D, Danai  K, Kazmer D. A knowledge-based tuning method for injection molding machines. Journal of Manufacturing Science and Engineering, 2000, 123(4): 682–691 
https://doi.org/10.1115/1.1382596
2 Kolodner J L. An introduction to case-based reasoning. Artificial Intelligence Review, 1992, 6(1): 3–34 
https://doi.org/10.1007/BF00155578
3 Mok S L, Kwong  C K, Lau  W S. Review of research in the determination of process parameters for plastic injection molding. Advances in Polymer Technology, 1999, 18(3): 225–236 
https://doi.org/10.1002/(SICI)1098-2329(199923)18:3<225::AID-ADV3>3.0.CO;2-3
4 Kwong C K, Smith  G F, Lau  W S. Application of case based reasoning injection moulding. Journal of Materials Processing Technology, 1997, 63(1–3): 463–467 
https://doi.org/10.1016/S0924-0136(96)02665-9
5 Kwong C K, Smith  G F. A computational system for process design of injection moulding: Combining blackboard-based expert system and case-based reasoning approach. International Journal of Advanced Manufacturing Technology, 1998, 14(4): 239–246 
https://doi.org/10.1007/BF01199878
6 Mok S L, Kwong  C K, Lau  W S. An intelligent hybrid system for initial process parameter setting of injection moulding. International Journal of Production Research, 2000, 38(17): 4565–4576 
https://doi.org/10.1080/00207540050205307
7 Mok S L, Kwong  C K. Application of artificial neural network and fuzzy logic in a case-based system for initial process parameter setting of injection molding. Journal of Intelligent Manufacturing, 2002, 13(3): 165–176 doi:10.1023/A:1015730705078
8 Shelesh-Nezhad K, Siores  E. An intelligent system for plastic injection molding process design. Journal of Materials Processing Technology, 1997, 63(1–3): 458–462
https://doi.org/10.1016/S0924-0136(96)02664-7
9 Zhou H M, Zhao  P, Feng W. An integrated intelligent system for injection molding process determination. Advances in Polymer Technology, 2007, 26(3): 191–205 
https://doi.org/10.1002/adv.20097
10 Kim S G, Suh  N P. Knowledge-based synthesis system for injection molding. Robotics and Computer-Integrated Manufacturing, 1987, 3(2): 181–186 
https://doi.org/10.1016/0736-5845(87)90100-1
11 Pandelidis I, Kao  J F. DETECTOR: A knowledge-based system for injection molding diagnostics. Journal of Intelligent Manufacturing, 1990, 1(1): 49–58 
https://doi.org/10.1007/BF01471341
12 Jan T C, O’Brien  K. A user-friendly, interactive expert system for the injection moulding of engineering thermoplastics. International Journal of Advanced Manufacturing Technology, 1993, 8(1): 42–51 
https://doi.org/10.1007/BF01756636
13 Kameoka S, Haramoto  N, Sakai T. Development of an expert system for injection molding operations. Advances in Polymer Technology, 1993, 12(4): 403–418 
https://doi.org/10.1002/adv.1993.060120407
14 He W, Zhang  Y F, Lee  K S, et al.Automated process parameter resetting for injection moulding: A fuzzy-neuro approach. Journal of Intelligent Manufacturing, 1998, 9(1): 17–27 
https://doi.org/10.1023/A:1008843207417
15 He W, Zhang  Y F, Lee  K S, et al.Development of a fuzzy-neuro system for parameter resetting of injection molding. Journal of Manufacturing Science and Engineering, 2001, 123(1): 110–118 doi:
https://doi.org/10.1115/1.1286732
16 Tan K, Yuen  M. An expert system for injection molding defect correction. In: Proceedings of the 3rd International Conference, Computer Integrated Manufacturing. 1995, 11–14
17 Chen M Y, Tzeng  H W, Chen  Y C, et al.The application of fuzzy theory for the control of weld line positions in injection-molded part. ISA Transactions, 2008, 47(1): 119–126
https://doi.org/10.1016/j.isatra.2007.07.001
18 Li D Q, Zhou  H M, Zhao  P, et al.A real-time process optimization system for injection molding. Polymer Engineering and Science, 2009, 49(10): 2031–2040
https://doi.org/10.1002/pen.21444
19 Dhaliwal J S, Benbasat  I. The use and effects of knowledge-based system explanations: Theoretical foundations and a framework for empirical evaluation. Information Systems Research, 1996, 7(3): 342–362
https://doi.org/10.1287/isre.7.3.342
20 Inaba Y, Sakakibara  S, Taira T, et al.Expert system for injection molding machine to support stable condition during long time production. In: Proceedings of International Conference on Artificial Intelligent in the Pacific Rim. 1991, 909–914
21 Liao S H. Expert system methodologies and applications—A decade review from 1995 to 2004. Expert Systems with Applications, 2005, 28(1): 93–103 
https://doi.org/10.1016/j.eswa.2004.08.003
22 Pardo S A. Fractional factorial designs. In: Pardo S A, ed. Empirical Modeling and Data Analysis for Engineers and Applied Scientists. Cham: Springer, 2016, 59–93
23 Liu T F, Zhang  C L, Yang  G S, et al.Central composite design-based analysis of specific leaf area and related agronomic factors in cultivars of rapeseed (Brassica napus L.). Field Crops Research, 2009, 111(1–2): 92–96 
https://doi.org/10.1016/j.fcr.2008.11.001
24 Roy R K. A Primer on Taguchi Method. New York: Van Nostrand Reinhold, 1990
25 Helton J C, Davis  F J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering & System Safety, 2003, 81(1): 23–69
https://doi.org/10.1016/S0951-8320(03)00058-9
26 Fang K T, Lin  D K J, Winker  P, et al.Uniform design: Theory and application. Technometrics, 2000, 42(3): 237–248
https://doi.org/10.1080/00401706.2000.10486045
27 Chen W C, Nguyen  M H, Chiu  W H, et al.Optimization of the plastic injection molding process using the Taguchi method, RSM, and hybrid GA-PSO. International Journal of Advanced Manufacturing Technology, 2016, 83(9–12): 1873–1886 
https://doi.org/10.1007/s00170-015-7683-0
28 Zhao J, Cheng  G. An innovative surrogate-based searching method for reducing warpage and cycle time in injection molding. Advances in Polymer Technology, 2015, 35(3): 288–297
29 Wang Y, Kim  J, Song J I. Optimization of plastic injection molding process parameters for manufacturing a brake booster valve body. Materials & Design, 2014, 56: 313–317
https://doi.org/10.1016/j.matdes.2013.11.038
30 Jou Y T, Lin  W T, Lee  W C, et al.et al.Integrating the Taguchi method and response surface methodology for process parameter optimization of the injection molding. Applied Mathematics & Information Sciences, 2014, 8(3): 1277–1285
https://doi.org/10.12785/amis/080342
31 Wen T, Chen  X, Yang C, et al.Optimization of processing parameters for minimizing warpage of large thin-walled parts in whole stages of injection molding. Chinese Journal of Polymer Science, 2014, 32(11): 1535–1543
https://doi.org/10.1007/s10118-014-1541-7
32 Chen W C, Liou  P H, Chou  S C. An integrated parameter optimization system for MIMO plastic injection molding using soft computing. International Journal of Advanced Manufacturing Technology, 2014, 73(9–12): 1465–1474 
https://doi.org/10.1007/s00170-014-5941-1
33 Chen W C, Kurniawan  D. Process parameters optimization for multiple quality characteristics in plastic injection molding using Taguchi method, BPNN, GA, and hybrid PSO-GA. International Journal of Precision Engineering and Manufacturing, 2014, 15(8): 1583–1593
https://doi.org/10.1007/s12541-014-0507-6
34 Azaman M D, Sapuan  S M, Sulaiman  S, et al.Optimization and numerical simulation analysis for molded thin-walled parts fabricated using wood-filled polypropylene composites via plastic injection molding. Polymer Engineering & Science, 2015, 5(5): 1082–1095 
https://doi.org/10.1002/pen.23979
35 Chen W C, Wang  L Y, Huang  C C, et al.Parameter optimization of the injection molding process for a LED lighting lens using soft computing. Advanced Materials Research, 2013, 690–693: 2344–2351 
https://doi.org/10.4028/www.scientific.net/AMR.690-693.2344
36 Tzeng C J, Yang  Y K, Lin  Y H, et al.A study of optimization of injection molding process parameters for SGF and PTFE reinforced PC composites using neural network and response surface methodology. International Journal of Advanced Manufacturing Technology, 2012, 63(5–8): 691–704 
https://doi.org/10.1007/s00170-012-3933-6
37 Lu N Y, Gong  G, Yang Y, et al.Multi-objective process parameter optimization for energy saving in injection molding process. Journal of Zhejiang University. Science A, 2012, 13(5): 382–394
https://doi.org/10.1631/jzus.A1100250
38 Yin F, Mao  H, Hua L. A hybrid of back propagation neural network and genetic algorithm for optimization of injection molding process parameters. Materials & Design, 2011, 32(6): 3457–3464 
https://doi.org/10.1016/j.matdes.2011.01.058
39 Mehat N M, Kamaruddin  S. Multi-response optimization of injection moulding processing parameters using the Taguchi method. Polymer-Plastics Technology and Engineering, 2011, 50(15): 1519–1526
https://doi.org/10.1080/03602559.2011.603776
40 Chen W L, Huang  C Y, Hung  C W. Optimization of plastic injection molding process by dual response surface method with non-linear programming. Engineering Computations, 2010, 27(8): 951–966 
https://doi.org/10.1108/02644401011082971
41 Ting P H, Hsu  C I, Hwang  J R. Optimization of the wear properties of polyoxymethylene components under injection process conditions. Polymer-Plastics Technology and Engineering, 2010, 49(9): 892–899
https://doi.org/10.1080/03602551003681853
42 Altan M. Reducing shrinkage in injection moldings via the Taguchi, ANOVA and neural network methods. Materials & Design, 2010, 31(1): 599–604 
https://doi.org/10.1016/j.matdes.2009.06.049
43 Chen W C, Fu  G L, Tai  P H, et al.Process parameter optimization for MIMO plastic injection molding via soft computing. Expert Systems with Applications, 2009, 36(2): 1114–1122 
https://doi.org/10.1016/j.eswa.2007.10.020
44 Chen C P, Chuang  M T, Hsiao  Y H, et al.Simulation and experimental study in determining injection molding process parameters for thin-shell plastic parts via design of experiments analysis. Expert Systems with Applications, 2009, 36(7): 10752–10759
https://doi.org/10.1016/j.eswa.2009.02.017
45 Chen W C, Wang  M W, Chen  C T, et al.An integrated parameter optimization system for MISO plastic injection molding. International Journal of Advanced Manufacturing Technology, 2009, 44(5–6): 501–511 
https://doi.org/10.1007/s00170-008-1843-4
46 Deng W J, Chen  C T, Sun  C H, et al.An effective approach for process parameter optimization in injection molding of plastic housing components. Polymer-Plastics Technology and Engineering, 2008, 47(9): 910–919 
https://doi.org/10.1080/03602550802189142
47 Cheng  W S,  Chen C S,  Chen S C, et al.Investigation of the effects of injection molding processing parameters on conductive polymeric composites for electromagnetic interference shielding effectiveness. Polymer-Plastics Technology and Engineering, 2009, 48(2): 216–220
https://doi.org/10.1080/03602550802634592
48 Tsai K M, Hsieh  C Y, Lo  W C. A study of the effects of process parameters for injection molding on surface quality of optical lenses. Journal of Materials Processing Technology, 2009, 209(7): 3469–3477
https://doi.org/10.1016/j.jmatprotec.2008.08.006
49 Yang Y K, Shie  J R, Liao  H T, et al.A study of Taguchi and design of experiments method in injection molding process for polypropylene components. Journal of Reinforced Plastics and Composites, 2008, 27(8): 819–834 
https://doi.org/10.1177/0731684407084988
50 Huang M S, Lin  T Y. An innovative regression model-based searching method for setting the robust injection molding parameters. Journal of Materials Processing Technology, 2008, 198(1–3): 436–444 
https://doi.org/10.1016/j.jmatprotec.2007.07.022
51 Shie J R. Optimization of injection molding process for contour distortions of polypropylene composite components by a radial basis neural network. International Journal of Advanced Manufacturing Technology, 2008, 36(11–12): 1091–1103 
https://doi.org/10.1007/s00170-007-0940-0
52 Chen W C, Fu  G L, Tai  P H, et al.ANN and GA-based process parameter optimization for MIMO plastic injection molding. In: Proceedings of International Conference on Machine Learning and Cybernetics. Hong Kong: IEEE, 2007, 1909–1917 
https://doi.org/10.1109/ICMLC.2007.4370460
53 Wang L, Li  Q, Shen C, et al.Effects of process parameters and two-way interactions on sink mark depth of injection molded parts by using the design of experiment method. Polymer-Plastics Technology and Engineering, 2007, 47(1): 30–35 
https://doi.org/10.1080/03602550701575987
54 Song M C, Liu  Z, Wang M J, et al.Research on effects of injection process parameters on the molding process for ultra-thin wall plastic parts. Journal of Materials Processing Technology, 2007, 187–188: 668–671 
https://doi.org/10.1016/j.jmatprotec.2006.11.103
55 Oktem H, Erzurumlu  T, Uzman I. Application of Taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part. Materials & Design, 2007, 28(4): 1271–1278 
https://doi.org/10.1016/j.matdes.2005.12.013
56 Kuo C F, Su  T L. Optimization of injection molding processing parameters for LCD light-guide plates. Journal of Materials Engineering and Performance, 2007, 16(5): 539–548 
https://doi.org/10.1007/s11665-007-9088-1
57 Kemal Karasu M,  Cakmakci M,  Cakiroglu M B, et al.Improvement of changeover times via Taguchi empowered SMED/case study on injection molding production. Measurement, 2014, 47: 741–748 
https://doi.org/10.1016/j.measurement.2013.09.035
58 Liu F, Zeng  S Q, Zhou  H M, et al.A study on the distinguishing responses of shrinkage and warpage to processing conditions in injection molding. Journal of Applied Polymer Science, 2012, 125(1): 731–744 
https://doi.org/10.1002/app.35564
59 AlKaabneh F A,  Barghash M,  Mishael I. A combined analytical hierarchical process (AHP) and Taguchi experimental design (TED) for plastic injection molding process settings. International Journal of Advanced Manufacturing Technology, 2012, 66(5): 679–694
60 Kitayama S, Natsume  S. Multi-objective optimization of volume shrinkage and clamping force for plastic injection molding via sequential approximate optimization. Simulation Modelling Practice and Theory, 2014, 48: 35–44 
https://doi.org/10.1016/j.simpat.2014.07.004
61 Shi H Z, Xie  S M, Wang  X C. A warpage optimization method for injection molding using artificial neural network with parametric sampling evaluation strategy. International Journal of Advanced Manufacturing Technology, 2013, 65(1–4): 343–353 
https://doi.org/10.1007/s00170-012-4173-5
62 Xia W, Luo  B, Liao X. An enhanced optimization approach based on Gaussian process surrogate model for process control in injection molding. International Journal of Advanced Manufacturing Technology, 2011, 56(9–12): 929–942
https://doi.org/10.1007/s00170-011-3227-4
63 Shi H Z, Gao  Y H, Wang  X C. Optimization of injection molding process parameters using integrated artificial neural network model and expected improvement function method. International Journal of Advanced Manufacturing Technology, 2010, 48(9–12): 955–962
https://doi.org/10.1007/s00170-009-2346-7
64 Chen W, Zhou  X, Wang H, et al.Multi-objective optimal approach for injection molding based on surrogate model and particle swarm optimization algorithm. Journal of Shanghai Jiaotong University (Science), 2010, 15(1): 88–93 
https://doi.org/10.1007/s12204-010-9517-4
65 Liao X, Long  F. Gaussian process modeling of process optimization and parameter correlation for injection molding. Journal of Marine Science and Engineering, 2010, 4(10): 90–97
66 Li C, Wang  F L, Chang  Y Q, et al.A modified global optimization method based on surrogate model and its application in packing profile optimization of injection molding process. International Journal of Advanced Manufacturing Technology, 2010, 48(5–8): 505–511 
https://doi.org/10.1007/s00170-009-2302-6
67 Gao Y, Turng  L S, Wang  X. Adaptive geometry and process optimization for injection molding using the kriging surrogate model trained by numerical simulation. Advances in Polymer Technology, 2008, 27(1): 1–16 
https://doi.org/10.1002/adv.20116
68 Zhou J, Turng  L S. Process optimization of injection molding using an adaptive surrogate model with Gaussian process approach. Polymer Engineering and Science, 2007, 47(5): 684–694 
https://doi.org/10.1002/pen.20741
69 Sun B S, Chen  Z, Gu B Q, et al.Injection molding process parameter optimization for warpage minimization based on uniform design of experiment. Applied Mechanics and Materials, 2011, 37–38: 570–575
70 Deng Y M, Wang  L Z. Applying a uniform design of experiment approach for reducing injection moulding warpage deflection. Key Engineering Materials, 2010, 443: 57–62
71 Guo W, Hua  L, Mao H J. Minimization of sink mark depth in injection-molded thermoplastic through design of experiments and genetic algorithm. International Journal of Advanced Manufacturing Technology, 2014, 72(1–4): 365–375 
https://doi.org/10.1007/s00170-013-5603-8
72 Chen C C, Su  P L, Chiou  C B, et al.Experimental investigation of designed parameters on dimension shrinkage of injection molded thin-wall part by integrated response surface methodology and genetic algorithm: A case study. Materials and Manufacturing Processes, 2011, 26(3): 534–540 
https://doi.org/10.1080/10426914.2010.530331
73 Chen C C, Su  P L, Lin  Y C. Analysis and modeling of effective parameters for dimension shrinkage variation of injection molded part with thin shell feature using response surface methodology. International Journal of Advanced Manufacturing Technology, 2009, 45(11–12): 1087–1095 
https://doi.org/10.1007/s00170-009-2045-4
74 Spina R. Optimisation of injection moulded parts by using ANN-PSO approach. Journal of Achievements in Materials and Manufacturing Engineering, 2006, 15(1–2): 146–152
75 Kurtaran H, Erzurumlu  T. Efficient warpage optimization of thin shell plastic parts using response surface methodology and genetic algorithm. International Journal of Advanced Manufacturing Technology, 2006, 27(5–6): 468–472 
https://doi.org/10.1007/s00170-004-2321-2
76 Deng Y M, Zhang  Y, Lam Y C. A hybrid of mode-pursuing sampling method and genetic algorithm for minimization of injection molding warpage. Materials & Design, 2010, 31(4): 2118–2123 
https://doi.org/10.1016/j.matdes.2009.10.026
77 Cheng J, Liu  Z, Tan J. Multiobjective optimization of injection molding parameters based on soft computing and variable complexity method. International Journal of Advanced Manufacturing Technology, 2013, 66(5–8): 907–916 
https://doi.org/10.1007/s00170-012-4376-9
78 Iniesta A A, Alcaraz  J L G, Borbon  M I R. Optimization of injection molding process parameters by a hybrid of artificial neural network and artificial bee colony algorithm. Revista Facultad De Ingenieria-Universidad De Antioquia, 2013, (67): 43–51
79 Wang R J, Feng  X X, Xia Y J, et al.A back propagation artificial neural network prediction model of the gate freeze time for injection molded polypropylenes. Journal of Macromolecular Science, Part B: Physics, 2013, 52(10): 1414–1426 
https://doi.org/10.1080/00222348.2013.768876
80 Taghizadeh S, Ozdemir  A, Uluer O. Warpage prediction in plastic injection molded part using artificial neural network. Iranian Journal of Science and Technology. Transaction of Mechanical Engineering, 2013, 37(M2): 149–160
81 Wang H S, Wang  Y N, Wang  Y C. Cost estimation of plastic injection molding parts through integration of PSO and BP neural network. Expert Systems with Applications, 2013, 40(2): 418–428 
https://doi.org/10.1016/j.eswa.2012.01.166
82 Shi H, Wang  X, Xie S. A warpage optimization method for injection molding using artificial neural network combined weighted expected improvement. International Polymer Processing, 2012, 27(3): 341–347
https://doi.org/10.3139/217.2542
83 Patel G C M,  Krishna P. Prediction and optimization of dimensional shrinkage variations in injection molded parts using forward and reverse mapping of artificial neural networks. Advanced Materials Research, 2012, 463–464: 674–678
84 Chen W J, Lin  J R. Application and design of artificial neural network for multi-cavity injection molding process conditions. In: Jin D, Lin S, eds. Advances in Future Computer and Control Systems: Volume 2. Berlin: Springer, 2012, 33–38
85 Yin F, Mao  H J, Hua  L, et al.Back propagation neural network modeling for warpage prediction and optimization of plastic products during injection molding. Materials & Design, 2011, 32(4): 1844–1850 
https://doi.org/10.1016/j.matdes.2010.12.022
86 Sun X F, Zhu  P F, Lu  Y J, et al.Prediction of quality index of injection-molded parts by using artificial neural networks. Advanced Materials Research, 2011, 291–294: 432–439
87 Li X, Hu  B, Du R. Predicting the parts weight in plastic injection molding using least squares support vector regression. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2008, 38(6): 827–833 
https://doi.org/10.1109/TSMCC.2008.2001707
88 Yang J L, Yin  Z Q, Guan  C L, et al.Process parameter optimization of micro-injection molding based on support vector machine. China Plastics Industry, 2009, 37(5): 27–30 (in Chinese)
89 Wang G G, Shan  S. Review of metamodeling techniques in support of engineering design optimization. Journal of Mechanical Design, 2007, 129(4): 370–380 
https://doi.org/10.1115/1.2429697
90 Simpson T W, Poplinski  J D, Koch  N P, et al.Metamodels for computer-based engineering design: Survey and recommendations. Engineering with Computers, 2001, 17(2): 129–150 
https://doi.org/10.1007/PL00007198
91 Oberkampf W L,  Trucano T G. Validation methodology in computational fluid dynamics. In: Proceedings of Fluids 2000 Conference and Exhibit, Fluid Dynamics and Co-Located Conferences. AIAA, 2000, 2549: 19–22 
https://doi.org/10.2514/6.2000-2549
92 Goldberg D E. Genetic Algorithm in Search, Optimization, and Machine Learning. Reading: Addison-Wesley, 1989, 2104–2116
93 Norman B A, Bean  J C. A genetic algorithm methodology for complex scheduling problems. Naval Research Logistics, 1999, 46(2): 199–211 
https://doi.org/10.1002/(SICI)1520-6750(199903)46:2<199::AID-NAV5>3.0.CO;2-L
94 Lin M H, Tsai  J F, Yu  C S. A review of deterministic optimization methods in engineering and management. Mathematical Problems in Engineering, 2012, 756023
https://doi.org/10.1155/2012/756023
95 Dang X P. General frameworks for optimization of plastic injection molding process parameters. Simulation Modelling Practice and Theory, 2014, 41: 15–27 
https://doi.org/10.1016/j.simpat.2013.11.003
96 Lam Y C, Deng  Y M, Au  C K. A GA/gradient hybrid approach for injection moulding conditions optimisation. Engineering with Computers, 2006, 21(3): 193–202 
https://doi.org/10.1007/s00366-005-0004-8
97 Zhang J, Wang  J, Lin J, et al.Multiobjective optimization of injection molding process parameters based on Opt LHD, EBFNN, and MOPSO. International Journal of Advanced Manufacturing Technology, 2016, 85(9–12): 2857–2872 
https://doi.org/10.1007/s00170-015-8100-4
98 Kashyap S, Datta  D. Process parameter optimization of plastic injection molding: A review. International Journal of Plastics Technology, 2015, 19(1): 1–18 
https://doi.org/10.1007/s12588-015-9115-2
[1] Yongliang YUAN, Liye LV, Shuo WANG, Xueguan SONG. Multidisciplinary co-design optimization of structural and control parameters for bucket wheel reclaimer[J]. Front. Mech. Eng., 2020, 15(3): 406-416.
[2] Peng WEI, Wenwen WANG, Yang YANG, Michael Yu WANG. Level set band method: A combination of density-based and level set methods for the topology optimization of continuums[J]. Front. Mech. Eng., 2020, 15(3): 390-405.
[3] Shuo ZHU, Hua ZHANG, Zhigang JIANG, Bernard HON. A carbon efficiency upgrading method for mechanical machining based on scheduling optimization strategy[J]. Front. Mech. Eng., 2020, 15(2): 338-350.
[4] Zhen-Pei WANG, Zhifeng XIE, Leong Hien POH. An isogeometric numerical study of partially and fully implicit schemes for transient adjoint shape sensitivity analysis[J]. Front. Mech. Eng., 2020, 15(2): 279-293.
[5] Song ZHANG, Lelun WANG, Anze YI, Honggang GU, Xiuguo CHEN, Hao JIANG, Shiyuan LIU. Dynamic modulation performance of ferroelectric liquid crystal polarization rotators and Mueller matrix polarimeter optimization[J]. Front. Mech. Eng., 2020, 15(2): 256-264.
[6] Emmanuel TROMME, Atsushi KAWAMOTO, James K. GUEST. Topology optimization based on reduction methods with applications to multiscale design and additive manufacturing[J]. Front. Mech. Eng., 2020, 15(1): 151-165.
[7] Xianda XIE, Shuting WANG, Ming YE, Zhaohui XIA, Wei ZHAO, Ning JIANG, Manman XU. Isogeometric topology optimization based on energy penalization for symmetric structure[J]. Front. Mech. Eng., 2020, 15(1): 100-122.
[8] Hong PENG, Han WANG, Daojia CHEN. Optimization of remanufacturing process routes oriented toward eco-efficiency[J]. Front. Mech. Eng., 2019, 14(4): 422-433.
[9] Weichang KONG, Fei QIAO, Qidi WU. A naive optimization method for multi-line systems with alternative machines[J]. Front. Mech. Eng., 2019, 14(4): 377-392.
[10] Arun KRISHNAN, Fengzhou FANG. Review on mechanism and process of surface polishing using lasers[J]. Front. Mech. Eng., 2019, 14(3): 299-319.
[11] Manman XU, Shuting WANG, Xianda XIE. Level set-based isogeometric topology optimization for maximizing fundamental eigenfrequency[J]. Front. Mech. Eng., 2019, 14(2): 222-234.
[12] Jikai LIU, Qian CHEN, Xuan LIANG, Albert C. TO. Manufacturing cost constrained topology optimization for additive manufacturing[J]. Front. Mech. Eng., 2019, 14(2): 213-221.
[13] Mariana MORETTI, Emílio C. N. SILVA. Topology optimization of piezoelectric bi-material actuators with velocity feedback control[J]. Front. Mech. Eng., 2019, 14(2): 190-200.
[14] Junjie ZHAN, Yangjun LUO. Robust topology optimization of hinge-free compliant mechanisms with material uncertainties based on a non-probabilistic field model[J]. Front. Mech. Eng., 2019, 14(2): 201-212.
[15] Long JIANG, Yang GUO, Shikui CHEN, Peng WEI, Na LEI, Xianfeng David GU. Concurrent optimization of structural topology and infill properties with a CBF-based level set method[J]. Front. Mech. Eng., 2019, 14(2): 171-189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed