Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng Chin    2009, Vol. 4 Issue (3) : 284-288    https://doi.org/10.1007/s11465-009-0067-0
RESEARCH ARTICLE
Numerical modeling of nonlinear deformation of polymer composites based on hyperelastic constitutive law
Qingsheng YANG(), Fang XU
Department of Engineering Mechanics, Beijing University of Technology, Beijing 100124, China
 Download: PDF(196 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fiber reinforced polymer (FRP) composites exhibit nonlinear and hyperelastic characteristics under finite deformation. This paper investigates the macroscopic hyperelastic behavior of fiber reinforced polymer composites using a micromechanical model and finite deformation theory based on the hyperelastic constitutive law. The local stress and deformation of a representative volume element are calculated by the nonlinear finite element method. Then, an averaging procedure is used to find the homogenized stress and strain, and the macroscopic stress-strain curves are obtained. Numerical examples are given to demonstrate hyperelastic behavior and deformation of the composites, and the effects of the distribution pattern of fibers are also investigated to model the mechanical behavior of FRP composites.

Keywords composites      hyperelastic      finite deformation      homogenization      micromechanics     
Corresponding Author(s): YANG Qingsheng,Email:qsyang@bjut.edu.cn   
Issue Date: 05 September 2009
 Cite this article:   
Qingsheng YANG,Fang XU. Numerical modeling of nonlinear deformation of polymer composites based on hyperelastic constitutive law[J]. Front Mech Eng Chin, 2009, 4(3): 284-288.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-009-0067-0
https://academic.hep.com.cn/fme/EN/Y2009/V4/I3/284
Fig.1  Model. (a) Single fiber model; (b) fiber bundle model
Fig.2  Constraint condition. (a ) Single fiber model; (b ) constraint condition
Fig.3  Deformation of single fiber RVE (a) and of fiber bundle RVE (b)
Fig.4  Effective stress-stretch curves for GFRP. (a) Glass fiber composite; (b) carbon fiber composite
Fig.5  Effective strefss-stretch curves for GFBRP. (a) Glass fiber bundle composite; (b) carbon fiber bundle composite
Fig.6  Effective stress-stretch curves for GFRP. (a) Glass fiber; (b) carbon fiber
1 DeBotton G, Hariton I, Socolsky E A. Neo-Hookean fiber-reinforced composites in finite elasticity. Journal of the Mechanics and Physics of Solids , 2006, 54: 533–559
doi: 10.1016/j.jmps.2005.10.001
2 Guiot B, Nadot-Martin C, Dragon A. Towards a non-linear micromechanics-based analysis for particulate composites. Composites Science and Technology , 2006 ( to appear)
doi: 10.1016/j.compscitech.2006.03.006
3 Milani A S, Nemes J A. An intelligent inverse method for characterization of textile reinforced thermoplastic composites using a hyperelastic constitutive model. Composites Science and Technology , 2004, 64: 1565–1576
doi: 10.1016/j.compscitech.2003.11.010
4 Guz I A, Herrmann K P. On the lower bounds for critical loads under large deformations in non-linear hyperelastic composites with imperfect interlaminar adhesion. European Journal of Mechanics A/Solids , 2003, 22: 837–849
doi: 10.1016/j.euromechsol.2003.09.003
5 Casta?eda P P. Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I—Theory. Journal of the Mechanics and Physics of Solids , 2002, 50: 737–757
doi: 10.1016/S0022-5096(01)00099-0
6 Lopez-Pamies O, Casta?eda P P. Second-order estimates for the large-deformation response of particle-reinforced rubbers. Mecanique , 2003, 331: 1–8
doi: 10.1016/S1631-0721(03)00021-4
7 Lahellec N, Mazerolle F, Michel J C. Second-order estimate of the macroscopic behavior of periodic hyperelastic composites: theory and experimental validation. Journal of the Mechanics and Physics of Solids , 2004, 52: 27–49
doi: 10.1016/S0022-5096(03)00104-2
8 Yin H M, Sun L Z, Chen J S. Micromechanics-based hyperelastic constitutive modeling of magnetostrictive particle-filled elastomers. Mechanics of Materials , 2002, 34: 505–516
doi: 10.1016/S0167-6636(02)00178-3
9 Pruchnicki E. Overall properties of thin hyperelastic plate at finite strain with edge effects using asymptotic method. International Journal of Engineering Science , 1998, 36: 973–1000
doi: 10.1016/S0020-7225(97)00125-0
10 Li M, Tucker III C L. Modeling and simulation of two-dimensional consolidation for thermoset matrix composites. Composites: Part A , 2002, 33: 877–892
doi: 10.1016/S1359-835X(02)00017-9
11 Dubouloz-Monnet F, Mele P, Alberola N D. Glass fibre aggregates: consequences on the dynamic mechanical properties of polypropylene matrix composites. Composites Science and Technology , 2005, 65: 437–443
doi: 10.1016/j.compscitech.2004.09.012
12 Yang Q S, Becker W. A comparative investigation of different homogenization methods for prediction of the macroscopic properties of composites. Computer Modeling in Engineering & Science , 2004, 6(4): 319–332
13 Yang Q S, Qin Q H. Modelling the effective elasto-plastic properties of unidirectional composites reinforced by fibre bundles under transverse tension and shear loading. Materials Science and Engineering A , 2003, 344: 140–145
doi: 10.1016/S0921-5093(02)00399-4
[1] Jiadong DENG, Claus B. W. PEDERSEN, Wei CHEN. Connected morphable components-based multiscale topology optimization[J]. Front. Mech. Eng., 2019, 14(2): 129-140.
[2] Zheng-Dong MA. Macro-architectured cellular materials: Properties, characteristic modes, and prediction methods[J]. Front. Mech. Eng., 2018, 13(3): 442-459.
[3] Surinder Kumar GILL, Meenu GUPTA, P. S. SATSANGI. Prediction of cutting forces in machining of unidirectional glass fiber reinforced plastics composite[J]. Front Mech Eng, 2013, 8(2): 187-200.
[4] Rajesh SIRIYALA, Gopala Krishna ALLURU, Rama Murthy Raju PENMETSA, Muthukannan DURAISELVAM. Application of grey-taguchi method for optimization of dry sliding wear properties of aluminum MMCs[J]. Front Mech Eng, 2012, 7(3): 279-287.
[5] Ruijun GE, Bangfeng WANG, Changwei MOU, Yong ZHOU, . Deformation characteristics of corrugated composites for morphing wings[J]. Front. Mech. Eng., 2010, 5(1): 73-78.
[6] Qi CHEN, Ke XIONG, Kan BIAN, Ning JIN, Bangfeng WANG, . Preparation and performance of soft actuator based on IPMC with silver electrodes[J]. Front. Mech. Eng., 2009, 4(4): 436-440.
[7] Ning JIN, Bangfeng WANG, Kan BIAN, Qi CHEN, Ke XIONG, . Performance of ionic polymer-metal composite (IPMC) with different surface roughening methods[J]. Front. Mech. Eng., 2009, 4(4): 430-435.
[8] Hanmin PENG, Qingjun Ding, Huafeng LI. Fabrication of ionic polymer-metal composites (IPMCs) and robot design[J]. Front Mech Eng Chin, 2009, 4(3): 332-338.
[9] Yanming QUAN, Wenwang ZHONG. Investigation on drilling-grinding of CFRP[J]. Front Mech Eng Chin, 2009, 4(1): 60-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed