Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2015, Vol. 10 Issue (1) : 64-77    https://doi.org/10.1007/s11465-014-0322-x
RESEARCH ARTICLE
Parameter studies on impact in a lap joint
Amir M. RAHMANI1, Elizabeth K. ERVIN2()
1. Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11790, USA
2. Department of Civil Engineering, University of Mississippi, University, MS 38677, USA
 Download: PDF(1541 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To represent a loose lap joint, a beam impacting four springs with gaps is modeled. Modal analysis with base excitation is solved, and time histories of contact points are closely monitored. Using the impulse during steady state response, six influential parameters are studied: damping ratio, contact stiffness, intermediate contact position, gap, excitation amplitude and beam height. For all parameters, the system response is highly controlled by modes with two contacting springs. Each parameter’s effect on system response is presented including unstable regions, unique trend behaviours result. Recommendations for structural designers are also noted.

Keywords impact mechanics      contact      joint behaviour      modal analysis      parameter study     
Corresponding Author(s): Elizabeth K. ERVIN   
Online First Date: 26 December 2014    Issue Date: 01 April 2015
 Cite this article:   
Amir M. RAHMANI,Elizabeth K. ERVIN. Parameter studies on impact in a lap joint[J]. Front. Mech. Eng., 2015, 10(1): 64-77.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-014-0322-x
https://academic.hep.com.cn/fme/EN/Y2015/V10/I1/64
Fig.1  Cantilever beam and four contact springs
Parameter Value
Fixed Length, L/m 2.5
Breadth, b/mm 300
Density, ρ/( kg?m 3) 7890
Modulus of elasticity, E/( N?m2) 2.05e+11
Varied Damping ratio, ζ 0.08, 0.04, 0.02
Dimensionless stiffness, k* 1200, 3000, 6000
Intermediate spring position, a/m 1.2500, 1.5625, 1.8750
All gaps G/mm 0.5, 1.0, 2.0
Excitation amplitude, A/m 0.03, 0.06, 0.12
Height, h/mm 50, 60, 70
Tab.1  Studied numerical parameters with basis parameters shown in boldface
Fig.2  Relative response at point P2. (a) Damping ratio of 8%; (b) damping ratio of 4%; (c) damping ratio of 2%; (d) Table displacement at excitation frequency of 650?rad/s
Fig.3  Impulses at point P4 versus frequency for damping ratio of 2% (red color), 4% (blue color) and 8% (black color)
Fig.4  Region from Fig. 3 for damping ratios of 2% (red color), 4% (blue color) and 8% (black color). (a) Region one; (b) Region two
Fig.5  Relative response at excitation frequency of 604?rad/s for damping ratio of 8% (blue color) and 4% (red color) at point P4
Fig.6  Impulses at point P4 versus frequency for nondimensional stiffness of 6000 (red color), 3000 (blue color) and 1200 (black color)
Mode No. Natural frequencies/(rad·s–1)
1/2 5/8 3/4
1 518.76 523.49 389.03
2 814.14 865.16 1056.16
3 1533.58 1421.69 1418.18
4 2085.04 2190.37 2043.65
5 2970.66 2924.21 3054.79
Tab.2  First five natural frequencies of State 6 for different nondimensional longitudinal position of intermediate springs
Fig.7  Impulses at point P4 versus frequency for intermediate springs at 3/4 L (red color), 5/8 L (blue color) and 1 /2 L (black color)
State Time percentage/%
0.5?mm 1?mm 2?mm
8 25.48 24.72 23.12
4 0.38 0.77 1.56
9 22.41 21.28 19.03
5 1.70 3.20 6.27
7 25.51 24.75 23.13
2 0.38 0.77 1.56
6 22.43 21.30 19.07
3 1.71 3.21 6.28
Tab.3  Time percentage of one full cycle for three different gaps at excitation frequency of 650?rad/s
Fig.8  Impulses at point P4 versus frequency for gaps equal to 2?mm (red color), 1?mm (black color) and 0.5?mm (blue color)
Fig.9  Region one from Fig. 8
Fig.10  Impulses at point P4 versus frequency for excitation amplitude of 0.12?m (red color), 0.06?m (black color) and 0.03?m (blue color)
Fig.11  Region one from Fig. 10
State Time percentage/%
0.07?m 0.06?m 0.05?m
8 26.09 8.02 0.21
4 0.96 0.32 47.65
9 20.36 39.23 1.35
5 2.56 2.40 0.78
7 26.11 8.05 0.21
2 0.96 0.32 47.55
6 20.39 39.26 1.35
3 2.56 2.40 0.89
Tab.4  Time percentage of one full cycle for system with three different heights at excitation frequency of 880?rad/s
Fig.12  Impulses at point P4 versus frequency for heights of 0.07?m (red color), 0.06?m (black color) and 0.05?m (blue color)
State Time percentage/%
524?rad/s 544?rad/s
6 45.78 46.65
3 2.01 1.13
1 1.24 1.95
4 0.69 0.52
9 46.61 45.81
5 1.14 2.04
1 1.98 1.14
3 0.54 0.76
Tab.5  Time percentage of one full cycle surrounding the unstable region for system with h=0.07?m
1 G Gilardi, I Sharf. Literature survey of contact dynamics modelling. Mechanism and Machine Theory, 2002, 37(10): 1213–1239
https://doi.org/10.1016/S0094-114X(02)00045-9
2 H G Davies. Random vibration of a beam impacting stops. Journal of Sound and Vibration, 1980, 68(4): 479–487
https://doi.org/10.1016/0022-460X(80)90531-3
3 D Pun, S L Lau, Y B Liu. Internal resonance of an L-shaped beam with a limit stop: Part I, Free vibration. Journal of Sound and Vibration, 1996, 193(5): 1023–1035
https://doi.org/10.1006/jsvi.1996.0329
4 D Pun, S L Lau, Y B Liu. Internal resonance of an L-shaped beam with a limit stop: Part II, Forced vibration. Journal of Sound and Vibration, 1996, 193(5): 1037–1047
https://doi.org/10.1006/jsvi.1996.0330
5 P Metallidis, S Natsiavas. Vibration of a continuous system with clearance and motion constraints. International Journal of Non-linear Mechanics, 2000, 35(4): 675–690
https://doi.org/10.1016/S0020-7462(99)00049-9
6 S Chattopadhyay. Dynamics of vibrating beams impacting around a clearance gap. In: Proceedings of IMAC-XIX: A Conference on Structural Dynamics. Kissimmee, 2001
7 Y Dumont, K L Kuttler, M Shillor. Analysis and simulations of vibrations of a beam with a slider. Journal of Engineering Mathematics, 2003, 47(1): 61–82
https://doi.org/10.1023/A:1025599332143
8 E K Ervin, J A Wickert. Repetitive impact response of a beam structure subjected to harmonic base excitation. Journal of Sound and Vibration, 2007, 307(1–2): 2–19
https://doi.org/10.1016/j.jsv.2007.06.038
9 E K Ervin. Vibro-impact behavior of two orthogonal beams. Journal of Engineering Mechanics, 2009, 135(6): 529–537
https://doi.org/10.1061/(ASCE)0733-9399(2009)135:6(529)
10 R I K Moorthy, A Kakodkar, H R Srirangarajan, et al. Finite element simulation of chaotic vibrations of a beam with non-linear boundary conditions. Computers & Structures, 1993, 49(4): 589–596
https://doi.org/10.1016/0045-7949(93)90063-J
11 E L B van de Vorst, M F Heertjes, D H van Campen, et al. Experimental and numerical analysis of the steady state behaviour of a beam system with impact. Journal of Sound and Vibration, 1998, 212(2): 321–336
https://doi.org/10.1006/jsvi.1997.1447
12 D J Wagg, S R Bishop. Application of non-smooth modelling techniques to the dynamic of a flexible impacting beam. Journal of Sound and Vibration, 2002, 256(5): 803–820
https://doi.org/10.1006/jsvi.2002.5020
13 C P Vyasarayani, S S Sandhu, J McPhee. Nonsmooth modeling of vibro-impacting Euler-Bernoulli beam. Advances in Acoustics and Vibration, 2012, 2012: 1–9
https://doi.org/10.1155/2012/268595
14 J Mackerle. Finite element analysis of fastening and joining: A bibliography (1990–2002). International Journal of Pressure Vessels and Piping, 2003, 80(4): 253–271
https://doi.org/10.1016/S0308-0161(03)00030-9
15 J Kim, J C Yoon, B S Kang. Finite element analysis and modeling of structure with bolted joints. Applied Mathematical Modelling, 2007, 31(5): 895–911
https://doi.org/10.1016/j.apm.2006.03.020
16 E L Salih, L Gardner, D A Nethercot. Numerical study of stainless steel gusset plate connections. Engineering Structures, 2013, 49(0): 448–464
https://doi.org/10.1016/j.engstruct.2012.11.032
17 M Zang, W Gao, Z Lei. A contact algorithm for 3d discrete and finite element contact problems based on penalty function method. Computational Mechanics, 2011, 48(5): 541–550
https://doi.org/10.1007/s00466-011-0606-5
18 T Yang, S H Fan, C S Lin. Joint stiffness identification using FRF measurements. Computers & Structures, 2003, 81(28–29): 2549–2556
https://doi.org/10.1016/S0045-7949(03)00328-6
19 A A Barhorst. Modeling loose joints in elastic structures-variable structure motion model development. Journal of Vibration and Control, 2008, 14(11): 1767–1797
https://doi.org/10.1177/1077546307082917
20 A A Barhorst. Modeling loose joints in elastic structures simulation algorithm and results. Journal of Vibration and Control, 2009, 15(1): 3–24
https://doi.org/10.1177/1077546307082918
21 H Jalali, H Ahmadian, J E Mottershead. Identification of nonlinear bolted lap-joint parameters by force-state mapping. International Journal of Solids and Structures, 2007, 44(25–26): 8087–8105
https://doi.org/10.1016/j.ijsolstr.2007.06.003
22 H Ahmadian, H Jalali. Identification of bolted lap joints parameters in assembled structures. Mechanical Systems and Signal Processing, 2007, 21(2): 1041–1050
https://doi.org/10.1016/j.ymssp.2005.08.015
23 M Iranzad, H Ahmadian. Identification of nonlinear bolted lap joint models. Computers & Structures, 2012, 96–97: 1–8
https://doi.org/10.1016/j.compstruc.2012.01.011
24 A A Barhorst. Modeling loose joints in elastic structures momentum transfer model development. Journal of Vibration and Control, 2008, 14(12): 1803–1841
https://doi.org/10.1177/1077546307082920
25 J T Foster, A A Barhorst, C N S Wong, et al. Modeling loose joints in elastic structures experimental results and validation. Journal of Vibration and Control, 2009, 15(4): 549–565
https://doi.org/10.1177/1077546307082908
26 A M Rahmani, E K Ervin. Frequency response of an impacting lap joint. Journal of Nonlinear Dynamics, 2014, 2014: 1–10
https://doi.org/10.1155/2014/310834
27 HIS, Inc. Engineering Sciences Data Unit, IHS ESDU 91001: Structural parameters used in response calculations. Estimation of numerical values. 2012
[1] Xiaoxia CHEN, Yunpeng YAO, Jingzhong XING. Meshing stiffness property and meshing status simulation of harmonic drive under transmission loading[J]. Front. Mech. Eng., 2022, 17(2): 18-.
[2] Boxing WANG, Chunlin ZHOU, Ziheng DUAN, Qichao ZHU, Jun WU, Rong XIONG. Untethered quadrupedal hopping and bounding on a trampoline[J]. Front. Mech. Eng., 2020, 15(2): 181-192.
[3] Shulei YAO, Xian CAO, Shuang LIU, Congyang GONG, Kaiming ZHANG, Chengcheng ZHANG, Xiancheng ZHANG. Two-sided ultrasonic surface rolling process of aeroengine blades based on on-machine noncontact measurement[J]. Front. Mech. Eng., 2020, 15(2): 240-255.
[4] Pan JIA, Huaiju LIU, Caichao ZHU, Wei WU, Guocheng LU. Contact fatigue life prediction of a bevel gear under spectrum loading[J]. Front. Mech. Eng., 2020, 15(1): 123-132.
[5] Houxin SHE, Chaofeng LI, Qiansheng TANG, Hui MA, Bangchun WEN. Computation and investigation of mode characteristics in nonlinear system with tuned/mistuned contact interface[J]. Front. Mech. Eng., 2020, 15(1): 133-150.
[6] Weihua ZHANG, Dong ZOU, Mengying TAN, Ning ZHOU, Ruiping LI, Guiming MEI. Review of pantograph and catenary interaction[J]. Front. Mech. Eng., 2018, 13(2): 311-322.
[7] Pengxing YI,Peng HUANG,Tielin SHI. Numerical analysis and experimental investigation of modal properties for the gearbox in wind turbine[J]. Front. Mech. Eng., 2016, 11(4): 388-402.
[8] Jia XU,Zhen-yu ZHOU,Zhong-yu PIAO. Accumulated damage process of thermal sprayed coating under rolling contact by acoustic emission technique[J]. Front. Mech. Eng., 2016, 11(3): 227-232.
[9] Shaodan ZHI,Jianyong LI,A. M. ZAREMBSKI. Modelling of dynamic contact length in rail grinding process[J]. Front. Mech. Eng., 2014, 9(3): 242-248.
[10] Jian LIU,Yuxue CHEN,Zhenzhi HE,Shunian YANG. A fast compound direct iterative algorithm for solving transient line contact elastohydrodynamic lubrication problems[J]. Front. Mech. Eng., 2014, 9(2): 156-167.
[11] Zhaoxu QI,Bin LI,Liangshan XIONG. An improved algorithm for McDowell’s analytical model of residual stress[J]. Front. Mech. Eng., 2014, 9(2): 150-155.
[12] Ali BELHOCINE, Mostefa BOUCHETARA. Transient analysis of thermoelastic contact problem of disk brakes[J]. Front Mech Eng, 2013, 8(2): 150-159.
[13] Jianxun LIANG, Ou MA, Caishan LIU. Model reduction of contact dynamics simulation using a modified Lyapunov balancing method[J]. Front Mech Eng, 2011, 6(4): 383-391.
[14] Wenbin LI, Hiromasa SAKAI, Shota HARADA, Yasushi TAKASE, Nao-Aki NODA. Separation mechanism for double cylinder with shrink fitting system used for ceramics conveying rollers[J]. Front Mech Eng, 2011, 6(3): 277-286.
[15] Xiancheng ZHANG, Fuzhen XUAN, Shantung TU, Binshi XU, Yixiong WU. Durability of plasma-sprayed Cr3C2-NiCr coatings under rolling contact conditions[J]. Front Mech Eng, 2011, 6(1): 118-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed