|
|
Intermediate-band solar cells based on dilute alloys and quantum dots |
Weiming WANG1, Jun YANG1,2( ), Xin ZHU3, Jamie PHILLIPS1 |
1. Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2122, USA; 2. Philips Lumileds Lighting Company, San Jose, CA 95131, USA; 3. Haosolar Co., Yixing 214213, China |
|
|
Abstract This paper describes our recent developments of intermediate-band solar cells, with a focus on the use of dilute alloys and nanostructured materials such as quantum dots (QDs). The concept of “full-spectrum” solar cells and their working mechanism with various material structures are first illustrated. A comprehensive review of ZnTe:O-based intermediate-band solar cells, including material growth, structural and chemical analysis, device modeling and testing, are presented. Finally, the progress and challenges of quantum-dot-based solar cells are discussed.
|
Keywords
full-spectrum solar cell
intermediate band
dilute alloy
quantum dot (QD)
|
Corresponding Author(s):
YANG Jun,Email:junyang@umich.edu
|
Issue Date: 05 March 2011
|
|
1 |
Green M A. Third generation photovoltaics: Ultra-high conversion efficiency at low cost. Progress in Photovoltaics: Research and Applications , 2001, 9(2): 123–135 doi: 10.1002/pip.360
|
2 |
Green M A, Emery K, Hishikawa Y, Warta W.Solar cell efficiency tables (version 36). Progress in Photovoltaics: Research and Applications , 2010, 18(5):346–352 doi: 10.1002/pip.1021
|
3 |
Shockley W, Queisser H J. Detailed balance limit of efficiency of p–n junction solar cells. Journal of Applied Physics , 1961, 32(3): 510–519 doi: 10.1063/1.1736034
|
4 |
Ross R T, Nozik A J. Efficiency of hot-carrier solar energy converters. Journal of Applied Physics , 1982, 53(5): 3813–3818 doi: 10.1063/1.331124
|
5 |
Nozik A J. Quantum dot solar cells. Physica E, Low-Dimensional Systems and Nanostructures , 2002, 14(1-2): 115–120 doi: 10.1016/S1386-9477(02)00374-0
|
6 |
García I, Rey-Stolle I, Galiana B, Algora C. A 32.6% efficient lattice-matched dual-junction solar cell working at 1000 suns. Applied Physics Letters , 2009, 94(5): 053509 doi: 10.1063/1.3078817
|
7 |
Algora C, Rey-Stolle I, Garcia I, Galiana B, Baudrit M, Espinet P, Barrigón E, Gonzalez J R. III–V multijunction solar cells for ultra-high concentration photovoltaics. 2009 IEEE 34th Photovoltaic Specialists Conference (PVSC), Philadelphia, PA , 2009, 1571–1575
|
8 |
Geisz J F, Kurtz S, Wanlass M W, Ward J S, Duda A, Friedman D J, Olson J M, McMahon W E, Moriarty T E, Kiehl J T. High-efficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction. Applied Physics Letters , 2007, 91(2): 023502 doi: 10.1063/1.2753729
|
9 |
Swanson R M. The promise of concentrators. Progress in Photovoltaics: Research and Applications , 2000, 8(1): 93–111 doi: 10.1002/(SICI)1099-159X(200001/02)8:1<93::AID-PIP303>3.0.CO;2-S
|
10 |
Hsu L, Walukiewicz W. Modeling of InGaN/Si tandem solar cells. Journal of Applied Physics , 2008, 104(2): 024507 doi: 10.1063/1.2952031
|
11 |
CdTe PV progresses to mass production, http://www.semiconductortoday.com/features/SemiconductorToday%20-%20CdTe%20PV.pdf
|
12 |
Yan B, Yue G, Owens J M, Yang J, Guha S. Over 15% efficient hydrogenated amorphous silicon based triple-junction solar cells incorporating nanocrystalline silicon. 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, HI , 2006, 1477–1480
|
13 |
Wolf M. Limitations and possibilities for improvement of photovoltaic solar energy converters: part I: considerations for earth’s surface operation. Proceedings of the IRE , 1960, 48(7): 1246–1263 doi: 10.1109/JRPROC.1960.287647
|
14 |
Luque A, Marti A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Physical Review Letters , 1997, 78(26): 5014–5017 doi: 10.1103/PhysRevLett.78.5014
|
15 |
Thomas D G, Hopfield J J, Frosch C J. Isoelectronic traps due to nitrogen in gallium phosphide. Physical Review Letters , 1965, 15(22): 857–860 doi: 10.1103/PhysRevLett.15.857
|
16 |
Cuthbert J D, Thomas D G. Fluorescent decay times of excitons bound to isoelectronic traps in GaP and ZnTe. Physical Review , 1967, 154 (3): 763–771 doi: 10.1103/PhysRev.154.763
|
17 |
Wu J, Shan W, Walukiewicz W. Band anticrossing in highly mismatched III–V semiconductor alloys. Semiconductor Science and Technology , 2002, 17(8): 860–869 doi: 10.1088/0268-1242/17/8/315
|
18 |
Yu K M, Walukiewicz W, Wu J, Shan W, Beeman J W, Scarpulla M A, Dubon O D, Becla P. Diluted II-VI oxide semiconductors with multiple band gaps. Physical Review Letters , 2003, 91(24): 246403 doi: 10.1103/PhysRevLett.91.246403
|
19 |
Burki Y, Czaja W, Capozzi V, Schwendimann P. The temperature dependence of the photoluminescence and lifetime of ZnTe:O. Journal of Physics Condensed Matter , 1993, 5(49): 9235–9252 doi: 10.1088/0953-8984/5/49/025
|
20 |
Wang W, Bowen W, Spanninga S, Lin S, Phillips J. Optical characteristics of ZnTeO thin films synthesized by pulsed laser deposition and molecular beam epitaxy. Journal of Electronic Materials , 2009, 38(1): 119–125 doi: 10.1007/s11664-008-0577-2
|
21 |
Nabetani Y, Okuno T, Aoki K, Kato T, Matsumoto T, Hirai T.Epitaxial growth and optical investigations of ZnTeO alloys. Physica Status Solidi a-Applications and Materials Science 2006, 203 (11): 2653–2657 .
|
22 |
Cuthbert J D. Luminescence and free carrier decay times in semiconductors containing isoelectronic traps. Journal of Applied Physics , 1971, 42(2): 739–746 doi: 10.1063/1.1660089
|
23 |
Thomas D G, Hopfield J J. Isoelectronic traps due to nitrogen in gallium phosphide. Physical Review , 1966, 150(2): 680–689 doi: 10.1103/PhysRev.150.680
|
24 |
Wang W M, Lin A S, Phillips J D. Intermediate-band photovoltaic solar cell based on ZnTe:O. Applied Physics Letters , 2009, 95(1): 011103 doi: 10.1063/1.3166863
|
25 |
Wang W. Intermediate band solar cells based on ZnTeO. Ph.D. dissertation, University of Michigan , 2010
|
26 |
Marti A, Cuadra L, Luque A. Quasi-drift diffusion model for the quantum dot intermediate band solar cell. IEEE Transactions on Electron Devices , 2002, 49(9): 1632–1639 doi: 10.1109/TED.2002.802642
|
27 |
Luque A, Marti A, Lopez N, Antolin E, Canovas E, Stanley C, Farmer C, Diaz P. Operation of the intermediate band solar cell under nonideal space charge region conditions and half filling of the intermediate band. Journal of Applied Physics , 2006, 99(9): 094503 doi: 10.1063/1.2193063
|
28 |
Lin A S, Wang W M, Phillips J D. Model for intermediate band solar cells incorporating carrier transport and recombination. Journal of Applied Physics , 2009, 105(6): 064512 doi: 10.1063/1.3093962
|
29 |
Wang W M, Lin A S, Phillips J D, Metzger W K. Generation and recombination rates at ZnTe:O intermediate band states. Applied Physics Letters , 2009, 95(26): 261107 doi: 10.1063/1.3274131
|
30 |
Luque A, Marti A, Lopez N, Antolin E, Canovas E, Stanley C, Farmer C, Caballero L J, Cuadra L, Balenzategui J L. Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells. Applied Physics Letters , 2005, 87(8): 083505 doi: 10.1063/1.2034090
|
31 |
Lin A S, Phillips J D. Drift-diffusion modeling for impurity photovoltaic devices. IEEE Transactions on Electron Devices , 2009, 56(12): 3168–3174 doi: 10.1109/TED.2009.2032741
|
32 |
Tanaka T, Yu K M, Stone P R, Beeman J W, Dubon O D, Reichertz L A, Kao V M, Nishio M, Walukiewicz W. Demonstration of homojunction ZnTe solar cells. Journal of Applied Physics , 2010, 108(2): 024502 doi: 10.1063/1.3463421
|
33 |
Wang W, Phillips J. ZnO/ZnSe/ZnTe heterojunction for ZnTe–based solar cells. Journal of Electronic Materials , 2010 (in press)
|
34 |
Leonard D, Krishnamurthy M, Reaves C M, Denbaars S P, Petroff P M. Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces. Applied Physics Letters , 1993, 63(23): 3203–3205 doi: 10.1063/1.110199
|
35 |
Berger P R, Chang K, Bhattacharya P, Singh J, Bajaj K K. Role of strain and growth-conditions on the growth front profile of InxGa1-xAs on GaAs during the pseudomorphic growth regime. Applied Physics Letters , 1988, 53(8): 684–686 doi: 10.1063/1.99850
|
36 |
Bhattacharya P, Mi Z. Quantum-dot optoelectronic devices. Proceedings of the IEEE , 2007, 95(9): 1723–1740 doi: 10.1109/JPROC.2007.900897
|
37 |
Yang J, Bhattacharya P, Mi Z. High-performance In0.5Ga0.5As/GaAs quantum dot lasers on silicon with multiple layer quantum dot dislocation filters. IEEE Transactions on Electron Devices , 2007, 54(11): 2849–2855 doi: 10.1109/TED.2007.906928
|
38 |
Yang J, Bhattacharya P, Mi Z, Qin G X, Ma Z Q. Quantum dot lasers and integrated optoelectronics on silicon platform. Chinese Optics Letters , 2008, 6(10): 727–731 doi: 10.3788/COL20080610.0727
|
39 |
Fafard S, Hinzer K, Raymond S, Dion M, McCaffrey J, Feng Y, Charbonneau S. Red-emitting semiconductor quantum dot lasers. Science , 1996, 274(5291): 1350–1353 doi: 10.1126/science.274.5291.1350
|
40 |
Mi Z, Yang J, Bhattacharya P. Molecular beam epitaxial growth and characteristics of ultra-low threshold 1.45 mm metamorphic InAs quantum dot lasers on GaAs. Journal of Crystal Growth , 2007, 301–302: 923–926 doi: 10.1016/j.jcrysgro.2006.11.112
|
41 |
Yang J, Heo J, Zhu T, Xu J, Topolancik J, Vollmer F, Ilic R, Bhattacharya P. Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities. Applied Physics Letters , 2008, 92(26): 261110 doi: 10.1063/1.2954007
|
42 |
Cui D, Xu J, Zhu T, Paradee G, Ashok S, Gerhold M. Harvest of near infrared light in PbSe nanocrystal–polymer hybrid photovoltaic cells. Applied Physics Letters , 2006, 88(18): 183111 doi: 10.1063/1.2201047
|
43 |
Wei G, Forrest S R. Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier. Nano Letters , 2007, 7(1): 218–222 doi: 10.1021/nl062564s
|
44 |
Laghumavarapu R B, El-Emawy M, Nuntawong N, Moscho A, Lester L F, Huffaker D L. Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers. Applied Physics Letters , 2007, 91(24): 243115 doi: 10.1063/1.2816904
|
45 |
Oshima R, Takata A, Okada Y. Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells. Applied Physics Letters , 2008, 93(8): 083111 doi: 10.1063/1.2973398
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|