Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    0, Vol. Issue () : 2-11    https://doi.org/10.1007/s12200-011-0151-z
REVIEW ARTICLE
Intermediate-band solar cells based on dilute alloys and quantum dots
Weiming WANG1, Jun YANG1,2(), Xin ZHU3, Jamie PHILLIPS1
1. Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2122, USA; 2. Philips Lumileds Lighting Company, San Jose, CA 95131, USA; 3. Haosolar Co., Yixing 214213, China
 Download: PDF(492 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper describes our recent developments of intermediate-band solar cells, with a focus on the use of dilute alloys and nanostructured materials such as quantum dots (QDs). The concept of “full-spectrum” solar cells and their working mechanism with various material structures are first illustrated. A comprehensive review of ZnTe:O-based intermediate-band solar cells, including material growth, structural and chemical analysis, device modeling and testing, are presented. Finally, the progress and challenges of quantum-dot-based solar cells are discussed.

Keywords full-spectrum solar cell      intermediate band      dilute alloy      quantum dot (QD)     
Corresponding Author(s): YANG Jun,Email:junyang@umich.edu   
Issue Date: 05 March 2011
 Cite this article:   
Weiming WANG,Jun YANG,Xin ZHU, et al. Intermediate-band solar cells based on dilute alloys and quantum dots[J]. Front Optoelec Chin, 0, (): 2-11.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0151-z
https://academic.hep.com.cn/foe/EN/Y0/V/I/2
Fig.1  Schematic of optical transitions in intermediate band solar cells
Fig.1  Schematic of optical transitions in intermediate band solar cells
Fig.2  Calculated energy band structure (a) and density of states (b) for zinc telluride alloying with oxygen (Three possible optical transitions are indicated in (a)) []
Fig.2  Calculated energy band structure (a) and density of states (b) for zinc telluride alloying with oxygen (Three possible optical transitions are indicated in (a)) []
Fig.3  Absorption coefficients of ZnTe samples grown by MBE with oxygen plasma extracted from transmission measurement []
Fig.3  Absorption coefficients of ZnTe samples grown by MBE with oxygen plasma extracted from transmission measurement []
Fig.4  (a) Device cross-section schematics; (b) calculated band diagram of p-ZnTe:O/n-GaAs junction versus distance from the semiconductor surface []
Fig.4  (a) Device cross-section schematics; (b) calculated band diagram of p-ZnTe:O/n-GaAs junction versus distance from the semiconductor surface []
Fig.5  Solar cell spectral response for ZnTe and ZnTe:O diodes []
Fig.5  Solar cell spectral response for ZnTe and ZnTe:O diodes []
Fig.6  Process of two photon absorption via IB
Fig.6  Process of two photon absorption via IB
Fig.7  Experimental set-up for two-photon absorption measurement
Fig.7  Experimental set-up for two-photon absorption measurement
Fig.8  Sub-bandgap response of a ZnTe:O solar cell with 0.09 cm device area shown by (a) current-voltage characteristics under 1550, 650, and 650+1550 nm excitation, (b) and for variable 1550 nm laser excitation and constant 650 nm excitation []
Fig.8  Sub-bandgap response of a ZnTe:O solar cell with 0.09 cm device area shown by (a) current-voltage characteristics under 1550, 650, and 650+1550 nm excitation, (b) and for variable 1550 nm laser excitation and constant 650 nm excitation []
Fig.9  Solar cell current-voltage curves under AM1.5 conditions for ZnTe and ZnTeO diodes []
Fig.9  Solar cell current-voltage curves under AM1.5 conditions for ZnTe and ZnTeO diodes []
Isc/(mA·cm-2)Voc/Vefficiency
ZnTe7.41.8112%
ZnTe:O17.11.5921%
Tab.1  Theoretical values for ideal ZnTe and ZnTe:O diodes
Fig.10  Time resolved photoluminescence of ZnTe:O
Fig.10  Time resolved photoluminescence of ZnTe:O
Fig.11  Processes of electron recombination
Fig.11  Processes of electron recombination
Fig.12  Simulated carrier lifetimes in the IB and CB of ZnTe:O
Fig.12  Simulated carrier lifetimes in the IB and CB of ZnTe:O
Fig.13  Illustration of electron transitions from the valence band (VB) to conduction band (CB) via intermediate band (IB)
Fig.13  Illustration of electron transitions from the valence band (VB) to conduction band (CB) via intermediate band (IB)
Fig.14  (a) AFM image of uncapped InAs metamorphic quantum dot layer; (b) room-temperature photoluminescence spectra of self-assembled InAs quantum dots incorporating two different InGaAs capping layers ( I—less indium composition with/or thinner thickness, II—more indium composition with/or thicker thickness)
Fig.14  (a) AFM image of uncapped InAs metamorphic quantum dot layer; (b) room-temperature photoluminescence spectra of self-assembled InAs quantum dots incorporating two different InGaAs capping layers ( I—less indium composition with/or thinner thickness, II—more indium composition with/or thicker thickness)
Fig.15  Room-temperature photoluminescence spectra of self-assembled InGaAs quantum dots (top layer) and InAs quantum dots (bottom layer) on Si substrates
Fig.15  Room-temperature photoluminescence spectra of self-assembled InGaAs quantum dots (top layer) and InAs quantum dots (bottom layer) on Si substrates
Fig.16  Absorption and photoluminescence characterization of PbSe colloidal quantum dots in different sizes (courtesy of Prof. Jian Xu, Pennsylvania State University)
Fig.16  Absorption and photoluminescence characterization of PbSe colloidal quantum dots in different sizes (courtesy of Prof. Jian Xu, Pennsylvania State University)
1 Green M A. Third generation photovoltaics: Ultra-high conversion efficiency at low cost. Progress in Photovoltaics: Research and Applications , 2001, 9(2): 123–135
doi: 10.1002/pip.360
2 Green M A, Emery K, Hishikawa Y, Warta W.Solar cell efficiency tables (version 36). Progress in Photovoltaics: Research and Applications , 2010, 18(5):346–352
doi: 10.1002/pip.1021
3 Shockley W, Queisser H J. Detailed balance limit of efficiency of p–n junction solar cells. Journal of Applied Physics , 1961, 32(3): 510–519
doi: 10.1063/1.1736034
4 Ross R T, Nozik A J. Efficiency of hot-carrier solar energy converters. Journal of Applied Physics , 1982, 53(5): 3813–3818
doi: 10.1063/1.331124
5 Nozik A J. Quantum dot solar cells. Physica E, Low-Dimensional Systems and Nanostructures , 2002, 14(1-2): 115–120
doi: 10.1016/S1386-9477(02)00374-0
6 García I, Rey-Stolle I, Galiana B, Algora C. A 32.6% efficient lattice-matched dual-junction solar cell working at 1000 suns. Applied Physics Letters , 2009, 94(5): 053509
doi: 10.1063/1.3078817
7 Algora C, Rey-Stolle I, Garcia I, Galiana B, Baudrit M, Espinet P, Barrigón E, Gonzalez J R. III–V multijunction solar cells for ultra-high concentration photovoltaics. 2009 IEEE 34th Photovoltaic Specialists Conference (PVSC), Philadelphia, PA , 2009, 1571–1575
8 Geisz J F, Kurtz S, Wanlass M W, Ward J S, Duda A, Friedman D J, Olson J M, McMahon W E, Moriarty T E, Kiehl J T. High-efficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction. Applied Physics Letters , 2007, 91(2): 023502
doi: 10.1063/1.2753729
9 Swanson R M. The promise of concentrators. Progress in Photovoltaics: Research and Applications , 2000, 8(1): 93–111
doi: 10.1002/(SICI)1099-159X(200001/02)8:1<93::AID-PIP303>3.0.CO;2-S
10 Hsu L, Walukiewicz W. Modeling of InGaN/Si tandem solar cells. Journal of Applied Physics , 2008, 104(2): 024507
doi: 10.1063/1.2952031
11 CdTe PV progresses to mass production, http://www.semiconductortoday.com/features/SemiconductorToday%20-%20CdTe%20PV.pdf
12 Yan B, Yue G, Owens J M, Yang J, Guha S. Over 15% efficient hydrogenated amorphous silicon based triple-junction solar cells incorporating nanocrystalline silicon. 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, HI , 2006, 1477–1480
13 Wolf M. Limitations and possibilities for improvement of photovoltaic solar energy converters: part I: considerations for earth’s surface operation. Proceedings of the IRE , 1960, 48(7): 1246–1263
doi: 10.1109/JRPROC.1960.287647
14 Luque A, Marti A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Physical Review Letters , 1997, 78(26): 5014–5017
doi: 10.1103/PhysRevLett.78.5014
15 Thomas D G, Hopfield J J, Frosch C J. Isoelectronic traps due to nitrogen in gallium phosphide. Physical Review Letters , 1965, 15(22): 857–860
doi: 10.1103/PhysRevLett.15.857
16 Cuthbert J D, Thomas D G. Fluorescent decay times of excitons bound to isoelectronic traps in GaP and ZnTe. Physical Review , 1967, 154 (3): 763–771
doi: 10.1103/PhysRev.154.763
17 Wu J, Shan W, Walukiewicz W. Band anticrossing in highly mismatched III–V semiconductor alloys. Semiconductor Science and Technology , 2002, 17(8): 860–869
doi: 10.1088/0268-1242/17/8/315
18 Yu K M, Walukiewicz W, Wu J, Shan W, Beeman J W, Scarpulla M A, Dubon O D, Becla P. Diluted II-VI oxide semiconductors with multiple band gaps. Physical Review Letters , 2003, 91(24): 246403
doi: 10.1103/PhysRevLett.91.246403
19 Burki Y, Czaja W, Capozzi V, Schwendimann P. The temperature dependence of the photoluminescence and lifetime of ZnTe:O. Journal of Physics Condensed Matter , 1993, 5(49): 9235–9252
doi: 10.1088/0953-8984/5/49/025
20 Wang W, Bowen W, Spanninga S, Lin S, Phillips J. Optical characteristics of ZnTeO thin films synthesized by pulsed laser deposition and molecular beam epitaxy. Journal of Electronic Materials , 2009, 38(1): 119–125
doi: 10.1007/s11664-008-0577-2
21 Nabetani Y, Okuno T, Aoki K, Kato T, Matsumoto T, Hirai T.Epitaxial growth and optical investigations of ZnTeO alloys. Physica Status Solidi a-Applications and Materials Science 2006, 203 (11): 2653–2657 .
22 Cuthbert J D. Luminescence and free carrier decay times in semiconductors containing isoelectronic traps. Journal of Applied Physics , 1971, 42(2): 739–746
doi: 10.1063/1.1660089
23 Thomas D G, Hopfield J J. Isoelectronic traps due to nitrogen in gallium phosphide. Physical Review , 1966, 150(2): 680–689
doi: 10.1103/PhysRev.150.680
24 Wang W M, Lin A S, Phillips J D. Intermediate-band photovoltaic solar cell based on ZnTe:O. Applied Physics Letters , 2009, 95(1): 011103
doi: 10.1063/1.3166863
25 Wang W. Intermediate band solar cells based on ZnTeO. Ph.D. dissertation, University of Michigan , 2010
26 Marti A, Cuadra L, Luque A. Quasi-drift diffusion model for the quantum dot intermediate band solar cell. IEEE Transactions on Electron Devices , 2002, 49(9): 1632–1639
doi: 10.1109/TED.2002.802642
27 Luque A, Marti A, Lopez N, Antolin E, Canovas E, Stanley C, Farmer C, Diaz P. Operation of the intermediate band solar cell under nonideal space charge region conditions and half filling of the intermediate band. Journal of Applied Physics , 2006, 99(9): 094503
doi: 10.1063/1.2193063
28 Lin A S, Wang W M, Phillips J D. Model for intermediate band solar cells incorporating carrier transport and recombination. Journal of Applied Physics , 2009, 105(6): 064512
doi: 10.1063/1.3093962
29 Wang W M, Lin A S, Phillips J D, Metzger W K. Generation and recombination rates at ZnTe:O intermediate band states. Applied Physics Letters , 2009, 95(26): 261107
doi: 10.1063/1.3274131
30 Luque A, Marti A, Lopez N, Antolin E, Canovas E, Stanley C, Farmer C, Caballero L J, Cuadra L, Balenzategui J L. Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells. Applied Physics Letters , 2005, 87(8): 083505
doi: 10.1063/1.2034090
31 Lin A S, Phillips J D. Drift-diffusion modeling for impurity photovoltaic devices. IEEE Transactions on Electron Devices , 2009, 56(12): 3168–3174
doi: 10.1109/TED.2009.2032741
32 Tanaka T, Yu K M, Stone P R, Beeman J W, Dubon O D, Reichertz L A, Kao V M, Nishio M, Walukiewicz W. Demonstration of homojunction ZnTe solar cells. Journal of Applied Physics , 2010, 108(2): 024502
doi: 10.1063/1.3463421
33 Wang W, Phillips J. ZnO/ZnSe/ZnTe heterojunction for ZnTe–based solar cells. Journal of Electronic Materials , 2010 (in press)
34 Leonard D, Krishnamurthy M, Reaves C M, Denbaars S P, Petroff P M. Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces. Applied Physics Letters , 1993, 63(23): 3203–3205
doi: 10.1063/1.110199
35 Berger P R, Chang K, Bhattacharya P, Singh J, Bajaj K K. Role of strain and growth-conditions on the growth front profile of InxGa1-xAs on GaAs during the pseudomorphic growth regime. Applied Physics Letters , 1988, 53(8): 684–686
doi: 10.1063/1.99850
36 Bhattacharya P, Mi Z. Quantum-dot optoelectronic devices. Proceedings of the IEEE , 2007, 95(9): 1723–1740
doi: 10.1109/JPROC.2007.900897
37 Yang J, Bhattacharya P, Mi Z. High-performance In0.5Ga0.5As/GaAs quantum dot lasers on silicon with multiple layer quantum dot dislocation filters. IEEE Transactions on Electron Devices , 2007, 54(11): 2849–2855
doi: 10.1109/TED.2007.906928
38 Yang J, Bhattacharya P, Mi Z, Qin G X, Ma Z Q. Quantum dot lasers and integrated optoelectronics on silicon platform. Chinese Optics Letters , 2008, 6(10): 727–731
doi: 10.3788/COL20080610.0727
39 Fafard S, Hinzer K, Raymond S, Dion M, McCaffrey J, Feng Y, Charbonneau S. Red-emitting semiconductor quantum dot lasers. Science , 1996, 274(5291): 1350–1353
doi: 10.1126/science.274.5291.1350
40 Mi Z, Yang J, Bhattacharya P. Molecular beam epitaxial growth and characteristics of ultra-low threshold 1.45 mm metamorphic InAs quantum dot lasers on GaAs. Journal of Crystal Growth , 2007, 301–302: 923–926
doi: 10.1016/j.jcrysgro.2006.11.112
41 Yang J, Heo J, Zhu T, Xu J, Topolancik J, Vollmer F, Ilic R, Bhattacharya P. Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities. Applied Physics Letters , 2008, 92(26): 261110
doi: 10.1063/1.2954007
42 Cui D, Xu J, Zhu T, Paradee G, Ashok S, Gerhold M. Harvest of near infrared light in PbSe nanocrystal–polymer hybrid photovoltaic cells. Applied Physics Letters , 2006, 88(18): 183111
doi: 10.1063/1.2201047
43 Wei G, Forrest S R. Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier. Nano Letters , 2007, 7(1): 218–222
doi: 10.1021/nl062564s
44 Laghumavarapu R B, El-Emawy M, Nuntawong N, Moscho A, Lester L F, Huffaker D L. Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers. Applied Physics Letters , 2007, 91(24): 243115
doi: 10.1063/1.2816904
45 Oshima R, Takata A, Okada Y. Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells. Applied Physics Letters , 2008, 93(8): 083111
doi: 10.1063/1.2973398
[1] Lai WANG,Wenbin LV,Zhibiao HAO,Yi LUO. Recent progresses on InGaN quantum dot light-emitting diodes[J]. Front. Optoelectron., 2014, 7(3): 293-299.
[2] Amin RANJBARAN. Temperature effects on output characteristics of quantum dot white light emitting diode[J]. Front Optoelec, 2012, 5(3): 284-291.
[3] Guangcun SHAN, Xinghai ZHAO, Mingjun HU, Chan-Hung SHEK, Wei HUANG. Vertical-external-cavity surface-emitting lasers and quantum dot lasers[J]. Front Optoelec, 2012, 5(2): 157-170.
[4] Guoliang LIU, Jianghong YAO, Jingjun XU, Zhanguo WANG. Temperature dependence of photoluminescence of QD arrays[J]. Front Optoelec Chin, 2008, 1(3-4): 258-262.
[5] JIA Guozhi, YAO Jianghong, SHU Yongchun, WANG Zhanguo. Optical properties and structure of InAs quantum dots in near-infrared band[J]. Front. Optoelectron., 2008, 1(1-2): 134-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed