Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (3) : 345-350    https://doi.org/10.1007/s12200-012-0228-3
RESEARCH ARTICLE
An optimized distributed fiber Bragg grating sensing system based on optical frequency domain reflectometry
Yuewen HAN(), Cheng CHENG
Optical Fiber Sensing Technology Research Center, Wuhan University of Technology, Wuhan 430070, China
 Download: PDF(380 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, the waveforms in time domain and frequency domain of two kinds of optical frequency domain reflectometry (OFDR) sensing systems are compared, which use common fiber Bragg grating (FBG) and chirped grating, respectively. The results show that chirped fiber grating with about 3 nm of full width at half maximum (FWHM) is helpful to reduce frequency noise evidently and makes the characteristic frequency distinct. OFDR distributed sensing system with chirped grating also offers longer available time, which makes it convenient to measure slow time-varying signal. Such OFDR distributed sensing system is supposed to be more suitable to be applied in bridge health monitoring, and it will improve the accuracy and reliability of the measurement.

Keywords fiber Bragg grating (FBG) sensor      optical frequency domain reflectometry (OFDR)      strain      chirped grating     
Corresponding Author(s): HAN Yuewen,Email:xiziku@163.com   
Issue Date: 05 September 2012
 Cite this article:   
Yuewen HAN,Cheng CHENG. An optimized distributed fiber Bragg grating sensing system based on optical frequency domain reflectometry[J]. Front Optoelec, 2012, 5(3): 345-350.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0228-3
https://academic.hep.com.cn/foe/EN/Y2012/V5/I3/345
Fig.1  Experimental setup of sensing system based on OFDR
Fig.2  Reflectivity spectrum of common FBG in this experiment
Fig.3  D2 signal using common grating at 1298 nm
Fig.4  Frequency spectrum of D2 signal
Fig.5  Simulation of chirped grating reflective spectrum
Fig.6  Chirped grating spectrum in this experiment
Fig.7  D2 signal using Chirped grating at 1291 nm
Fig.8  Frequency spectrum of D2 signal
1 Childers B A, Froggatt M E, Allison S G, Moore T C, Hare D A, Batten C F, Jegley D C. Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load tests of a composite structure. Proceedings of the Society for Photo-Instrumentation Engineers , 2001, 4332: 133-142
2 Jegley D C, Bush H G. Structural Testing of a Stitched/Resin Film Infused Graphite-Epoxy Wing Box. NASA LaRC Technical Memorandum , 2001
3 Wu M C, Prosser W H. Prosser. Simultaneous temperature and strain sensing for cryogenic applications using dual-wavelength fiber Bragg gratings. Proceedings of the Society for Photo-Instrumentation Engineers , 2003, 5191(1): 208
4 Igawa H, Ohta K, Kasai T, Yamaguchi I, Murayama H, Kageyama K. Distributed measurements with a long gauge FBG sensor using optical frequency domain reflectometry. Journal of Solid Mechanics and Materials Engineering , 2008, 2(9): 1242-1252
doi: 10.1299/jmmp.2.1242
5 Xu M G, Archambault J L, Reekie L, Dakin J P. Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors. Electronics Letters , 1994, 30(13): 1085-1087
doi: 10.1049/el:19940746
6 Patrick H J, Williams G M, Kersey A D, Pedrazzani J R, Vengsarkar A M. Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination. IEEE Photonics Technology Letters , 1996, 8(9): 1223-1225
doi: 10.1109/68.531843
7 Kanellopoulos S E, Handerek V A, Rogers A J. Simultaneous strain and temperature sensing with photogenerated in-fiber gratings. Optics Letters , 1995, 20(3): 333-335
doi: 10.1364/OL.20.000333 pmid:19859178
8 Brady G P, Kalli K, Webb D J, Jackson D A, Reekie L, Archambault J L. Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings. IEE Proceedings of Optoelectronics , 1997, 144(3): 156-161
doi: 10.1049/ip-opt:19971373
9 Kersey A D, Davis M A, Patrick H J, LeBlanc M, Koo K P, Askins C G, Putnam M A, Friebele E J. Fiber grating sensors. Journal of Lightwave Technology , 1997, 15(8): 1442-1463
doi: 10.1109/50.618377
10 Froggatt M, Moore J. Distributed measurement of static strain in an optical fiber with multiple Bragg gratings at nominally equal wavelengths. Applied Optics , 1998, 37(10): 1741-1746
doi: 10.1364/AO.37.001741 pmid:18273082
11 Froggatt M. Distributed measurement of the complex modulation of a photoinduced Bragg grating in an optical fiber. Applied Optics , 1996, 35(25): 5162-5164
doi: 10.1364/AO.35.005162 pmid:21102951
12 Abdi A M, Suzuki S, Schülzgen A, Kost A R. Fiber bragg grating array calibration. Proceedings of the Society for Photo-Instrumentation Engineers , 2005, 5765: 552-563
[1] Ayad KAKEI, Jayantha A. EPAARACHCHI. Use of fiber Bragg grating sensors for monitoring delamination damage propagation in glass-fiber reinforced composite structures[J]. Front. Optoelectron., 2018, 11(1): 60-68.
[2] F. MAKOUEI,S. MAKOUEI. Design of temperature insensitive in vivo strain sensor using multilayer single mode optical fiber[J]. Front. Optoelectron., 2016, 9(4): 621-626.
[3] Kambiz ABEDI. Strain effects on performance of electroabsorption optical modulators[J]. Front Optoelec, 2013, 6(3): 282-289.
[4] Yijie HUO, Hai LIN, Robert CHEN, Yiwen RONG, Theodore I. KAMINS, James S. HARRIS. MBE growth of tensile-strained Ge quantum wells and quantum dots[J]. Front Optoelec, 2012, 5(1): 112-116.
[5] Guodong WANG, Yunjian WANG, Na LI. Axial strain sensitivity analysis of long period fiber grating by new transfer matrix method[J]. Front Optoelec Chin, 2011, 4(4): 430-433.
[6] Jinjie CHEN, Bo LIU, Hao ZHANG. Review of fiber Bragg grating sensor technology[J]. Front Optoelec Chin, 2011, 4(2): 204-212.
[7] Pijus Kanti SAMANTA, Partha Roy CHAUDHURI. Substrate effect on morphology and photoluminescence from ZnO monopods and bipods[J]. Front Optoelec Chin, 2011, 4(2): 130-136.
[8] Zigang DUAN, Wei SHI, Yan LI, Guangyue CHAI. Gain properties and optical-feedback suppression of asymmetrical curved active waveguides[J]. Front Optoelec Chin, 2009, 2(4): 379-383.
[9] Xinlong CHANG, Ming LI, Xuanzi HAN. Recent development and applications of polymer optical fiber sensors for strain measurement[J]. Front Optoelec Chin, 2009, 2(4): 362-367.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed