Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2017, Vol. 10 Issue (3) : 287-291    https://doi.org/10.1007/s12200-017-0723-7
RESEARCH ARTICLE
Influence of pulse waves on the transmission of near-infrared radiation in outer-head tissue layers
Jerzy PLUCIŃSKI1(), Andrzej FRYDRYCHOWSKI2
1. Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, ul. G. Narutowcza 11/12, 80-233 Gdańsk, Poland
2. Department of Human Physiology, Faculty of Health Sciences with Subfaculty of Nursing and Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, ul. Tuwima 15, 80-210 Gdańsk, Poland
 Download: PDF(233 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, we investigate the effect of pulse waves on the transmission of near-infrared radiation in the outer tissue layers of the human head. This effect is important in using optical radiation to monitor brain conditions based on measuring the transmission changes in the near-infrared radiation between the source and the detector, placed on the surface of the scalp. This is because the signal related to the changes in the width of the subarachnoid space (SAS) due to the pulse wave is modified. These latter changes can be used, for instance, in detecting cerebral edema and in evaluating cerebral oxygenation. The research was performed by modeling the propagation of near-infrared radiation in the tissue layers using a Monte-Carlo method. The main objective of this study was to assess the extent to which the changes in the transmission of near-infrared radiation correspond to the changes in the optical parameters of the tissues of the head and in the width of the subarachnoid layer.

Keywords infrared radiation      transmission      human head      tissue      Monte-Carlo method     
Corresponding Author(s): Jerzy PLUCIŃSKI   
Just Accepted Date: 18 July 2017   Online First Date: 23 August 2017    Issue Date: 26 September 2017
 Cite this article:   
Jerzy PLUCIŃSKI,Andrzej FRYDRYCHOWSKI. Influence of pulse waves on the transmission of near-infrared radiation in outer-head tissue layers[J]. Front. Optoelectron., 2017, 10(3): 287-291.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-017-0723-7
https://academic.hep.com.cn/foe/EN/Y2017/V10/I3/287
Fig.1  Simplified diagram illustrating the effects of the pulse wave during particular phases of cardiac cycle on the width of the SAS, cerebral arteries and arterioles (indicated by different radii of the wheels), amount of blood in the skin (indicated by dot density), and the transmission of near-infrared radiation in the outer-head tissue layers, where 1, 2, 3, and 4 represent the skin, skull bone, SAS, and surface of the brain covered with cerebral arteries and arterioles (indicated by circles), respectively. S denotes the near-infrared source, PD denotes the proximal detector (used to compensate for a changes of skin absorption), and DD denotes the distal detector (used to detect near-infrared radiation propagating in the SAS or in the brain) [1]
Fig.2  Model of the outer-head tissue layers used in calculating the near-infrared transmission between the near-infrared radiation source and the detectors placed on the head surface
tissuethickness
/mm
absorption coefficient
/mm−1
reduced scattering coefficient
/mm−1
skin30.0131.7
bone – external compact lamina10.02420.88
bone – spongious layer2.50.016270.59268
bone – internal compact lamina1.50.02420.88
SAS0–3.50.0010.001
brain100.0372.0
Tab.1  Optical parameters of tissues of the head used for numerical modeling [14]
Fig.3  Changes in relative power due to the pulse wave received by the detector as a function of its distance from the near-infrared radiation source for different widths of the SAS (i.e., for (a) 0, (b) 0.3, (c) 1, and (d) 3.5 mm)
1 Frydrychowski A F, Pluciński J. New aspects in assessment of changes in width of subarachnoid space with near-infrared transillumination-backscattering sounding, part 2: clinical verification in the patient. Journal of Biomedical Optics, 2007, 12(4): 044016
https://doi.org/10.1117/1.2753756 pmid: 17867820
2 Frydrychowski A F, Kaczmarek J W, Juzwa W, Rojewski M, Pluciński J, Gumiński W, Kwiatkowski C, Lass P, Bandurski T. Near-InfraRed Transillumination (NIR-TI) a new non-invasive tool for exploration of intracranial homeostasis and monitoring of its impairments. Biocybernetics and Biomedical Engineering, 1999, 19(2): 99–108
3 Tobias J D. Cerebral oxygenation monitoring: near-infrared spectroscopy. Expert Review of Medical Devices, 2006, 3(2): 235–243
https://doi.org/10.1586/17434440.3.2.235 pmid: 16515389
4 Murkin J M, Arango M. Near-infrared spectroscopy as an index of brain and tissue oxygenation. British Journal of Anaesthesia, 2009, 103(suppl_1): i3–i13
5 Milej D, Janusek D, Gerega A, Wojtkiewicz S, Sawosz P, Treszczanowicz J, Weigl W, Liebert A. Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements. Journal of Biomedical Optics, 2015, 20(10): 106013 
https://doi.org/10.1117/1.JBO.20.10.106013 pmid: 26509415
6 Kacprzak M, Liebert A, Staszkiewicz W, Gabrusiewicz A, Sawosz P, Madycki G, Maniewski R. Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery. Journal of Biomedical Optics, 2012, 17(1): 016002
https://doi.org/10.1117/1.JBO.17.1.016002 pmid: 22352652
7 Pluciński J, Frydrychowski A F. Verification with numeric modelling of optical measurement of changes in the width of the subarachnoid space. Biocybernetics and Biomedical Engineering, 1999, 19(4): 111–126
8 Sakai F, Nakazawa K, Tazaki Y, Ishii K, Hino H, Igarashi H, Kanda T. Regional cerebral blood volume and hematocrit measured in normal human volunteers by single-photon emission computed tomography. Journal of Cerebral Blood Flow and Metabolism, 1985, 5(2): 207–213
https://doi.org/10.1038/jcbfm.1985.27 pmid: 3921557
9 Firbank M, Okada E, Delpy D T. A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses. NeuroImage, 1998, 8(1): 69–78
https://doi.org/10.1006/nimg.1998.0348 pmid: 9698577
10 Ruskin K J, Rosenbaum S H, Rampil I J. Fundamentals of Neuroanesthesia – A Physiologic Approach to Clinical Practice. Oxford: Oxford University Press, 2014
11 Alperin N, Mazda M, Lichtor T, Lee S H. From cerebrospinal fluid pulsation to noninvasive intracranial compliance and pressure measured by MRI flow studies. Current Medical Imaging Reviews, 2006, 2(1): 117–129
https://doi.org/10.2174/157340506775541622
12 Greitz D, Wirestam R, Franck A, Nordell B, Thomsen C, Ståhlberg F. Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. Neuroradiology, 1992, 34(5): 370–380
https://doi.org/10.1007/BF00596493 pmid: 1407513
13 Pluciński J, Frydrychowski A F, Kaczmarek J, Juzwa W. Theoretical foundations for noninvasive measurement of variations in the width of the subarachnoid space. Journal of Biomedical Optics, 2000, 5(3): 291–299
https://doi.org/10.1117/1.429999 pmid: 10958615
14 Pluciński J, Frydrychowski A F. New aspects in assessment of changes in width of subarachnoid space with near-infrared transillumination/backscattering sounding, part 1: Monte Carlo numerical modeling. Journal of Biomedical Optics, 2007, 12(4): 044015
https://doi.org/10.1117/1.2757603 pmid: 17867819
[1] John C. CARTLEDGE. Performance of coherent optical fiber transmission systems[J]. Front. Optoelectron., 2018, 11(2): 128-133.
[2] Li LIU,Yunhong DING,Xinlun CAI,Jianji DONG,Xinliang ZHANG. Route-asymmetrical light transmission of a fiber-chip-fiber optomechanical system[J]. Front. Optoelectron., 2016, 9(3): 489-496.
[3] Xiaoping ZHENG,Shangyuan LI,Hanyi ZHANG,Bingkun ZHOU. Researches in microwave photonics based packages for millimeter wave system with wide bandwidth and large dynamic range[J]. Front. Optoelectron., 2016, 9(2): 186-193.
[4] Daojun XUE,Shaohua YU,Qi YANG,Nan CHI,Lan RAO,Xiangjun XIN,Wei LI,Songnian FU,Sheng CUI,Demin LIU,Zhuo LI,Aijun WEN,Chongxiu YU,Xinmei WANG. Frontier research of ultra-high-speed ultra-large-capacity and ultra-long-haul optical transmission[J]. Front. Optoelectron., 2016, 9(2): 123-137.
[5] Andrey V. BELIKOV,Alexei V. SKRYPNIK,Ksenia V. SHATILOVA. Comparison of diode laser in soft tissue surgery using continuous wave and pulsed modes in vitro [J]. Front. Optoelectron., 2015, 8(2): 212-219.
[6] Lubna NADEEM, Rameez ASIF. FSK signal generation with wavelength reuse capability in 8 Gbit/s radio over fiber systems[J]. Front Optoelec, 2013, 6(3): 303-311.
[7] Yun-Qing CAO, Xin XU, Shu-Xin LI, Wei LI, Jun XU, Kunji CHEN. Improved photovoltaic properties of Si quantum dots/SiC multilayers-based heterojunction solar cells by reducing tunneling barrier thickness[J]. Front Optoelec, 2013, 6(2): 228-233.
[8] Tan SHU, Yonglin YU, Hui LV, Dexiu Huang, Kai SHI, Liam BARRY. Influence of facet reflection of SOA on SOA-integrated SGDBR laser[J]. Front Optoelec, 2012, 5(4): 390-394.
[9] Jianguo YUAN, Yuexing JIA, Wenjuan BI, Liang XU. A new construction method of LDPC codes for optical transmission systems[J]. Front Optoelec, 2012, 5(3): 311-316.
[10] Youbo ZHAO, Yanmei LIANG, Xiaonong ZHU. Applications of scanning femtosecond laser-induced ionization microscopy in biological imaging[J]. Front Optoelec Chin, 2008, 1(3-4): 201-204.
[11] LUO Tianshu, CHEN Jianxin, ZHUO Shuangmu, JIANG Xingshan, Chen Huanglin, Luo Teng, ZOU Qilian. Spectral imaging technology of epithelial tissue based on two-photon excited fluorescence and second-harmonic generation[J]. Front. Optoelectron., 2008, 1(1-2): 33-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed