Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2022, Vol. 15 Issue (1) : 8    https://doi.org/10.1007/s12200-022-00014-7
RESEARCH ARTICLE
Hydrothermal synthesized delafossite CuGaO2 as an electrocatalyst for water oxidation
Han Gao1,2, Miao Yang1, Xing Liu1, Xianglong Dai1, Xiao-Qing Bao3, Dehua Xiong1,2()
1. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
3. State Key Laboratory of Optical Technologies on Nanofabrication and Microengineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
 Download: PDF(2230 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hydrogen production from water splitting provides an effective method to alleviate the ever-growing global energy crisis. In this work, delafossite CuGaO2 (CGO) crystal was synthesized through hydrothermal routes with Cu(NO3)2·3H2O and Ga(NO3)3·xH2O used as reactants. The addition of cetyltrimethylammonium bromide (CTAB) was found to play an important role in modifying the morphology of CuGaO2 (CGO-CTAB). With the addition of CTAB, the morphology of CGO-CTAB samples changed from irregular flake to typical hexagonal sheet microstructure, with an average size of 1–2 µm and a thickness of around 100 nm. Furthermore, the electrocatalytic activity of CGO-CTAB crystals for oxygen evolution reaction (OER) was also studied and compared with that of CGO crystals. CGO-CTAB samples exhibited better activity than CGO. An overpotential of 391.5 mV was shown to be able to generate a current density of 10 mA/cm2. The as-prepared samples also demonstrate good stability for water oxidation and relatively fast OER kinetics with a Tafel slope of 56.4 mV/dec. This work highlights the significant role of modification of CTAB surfactants in preparing CGO related crystals, and the introduction of CTAB was found to help to improve their electrocatalytic activity for OER.

Keywords Hydrothermal      Water splitting      Delafossite      CuGaO2 (CGO)      Electrocatalyst     
Corresponding Author(s): Dehua Xiong   
Issue Date: 06 May 2022
 Cite this article:   
Han Gao,Miao Yang,Xing Liu, et al. Hydrothermal synthesized delafossite CuGaO2 as an electrocatalyst for water oxidation[J]. Front. Optoelectron., 2022, 15(1): 8.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-022-00014-7
https://academic.hep.com.cn/foe/EN/Y2022/V15/I1/8
1 L. Zhong,, H. Zhou,, R. Li,, T. Bian,, S. Wang,, A. Yuan,: In situ confinement pyrolysis of ZIF-67 nanocrystals on hollow carbon spheres towards efficient electrocatalysts for oxygen reduction. J. Colloid Interface Sci. 584, 439–448 (2021)
https://doi.org/10.1016/j.jcis.2020.10.020
2 Y. Qi,, J. Wu,, J. Xu,, H. Gao,, Z. Du,, B. Liu,, L. Liu,, D. Xiong,: One-step fabrication of a self-supported Co@CoTe2 electrocatalyst for efficient and durable oxygen evolution reactions. Inorg. Chem. Front. 7(13), 2523–2532 (2020)
https://doi.org/10.1039/D0QI00372G
3 Y.S. Li,, J.W. Yi,, J.H. Wei,, Y.P. Wu,, B. Li,, S. Liu,, C. Jiang,, H.G. Yu,, D.S. Li,: Three 2D polyhalogenated Co(II)-based MOFs: syntheses, crystal structure and electrocatalytic hydrogen evolution reaction. J. Solid State Chem. 281, 121052 (2020)
https://doi.org/10.1016/j.jssc.2019.121052
4 A. Harriman,: Electrochemical catalysts to meet the challenge for sustainable fuel production from renewable energy. Curr. Opin. Green Sustain. Chem. 30, 100492 (2021)
https://doi.org/10.1016/j.cogsc.2021.100492
5 Z. Chen,, W. Wei,, B.J. Ni,: Cost-effective catalysts for renewable hydrogen production via electrochemical water splitting: recent advances. Curr. Opin. Green Sustain. Chem. 27, 100398 (2021)
https://doi.org/10.1016/j.cogsc.2020.100398
6 S.H. Talib,, Z. Lu,, X. Yu,, K. Ahmad,, B. Bashir,, Z. Yang,, J. Li,: Theoretical inspection of M1/PMA single-atom electrocatalyst: ultra-high performance for water splitting (HER/OER) and oxygen reduction reactions (OER). ACS Catal. 11(14), 8929–8941 (2021)
https://doi.org/10.1021/acscatal.1c01294
7 C. Wang,, L. Jin,, H. Shang,, H. Xu,, Y. Shiraishi,, Y. Du,: Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction. Chin. Chem. Lett. 32(7), 2108–2116 (2021)
https://doi.org/10.1016/j.cclet.2020.11.051
8 C. Ye,, L. Zhang,, L. Yue,, B. Deng,, Y. Cao,, Q. Liu,, Y. Luo,, S. Lu,, B. Zheng,, X. Sun,: A NiCo LDH nanosheet array on graphite felt: an efficient 3D electrocatalyst for the oxygen evolution reaction in alkaline media. Inorg. Chem. Front. 8(12), 3162–3166 (2021)
https://doi.org/10.1039/D1QI00428J
9 T. Weber,, V. Vonk,, L.D. Escalera,, G. Abbondanza,, A. Larsson,, V. Koller,, M. Abb,, Z. Hegedus,, T. Backer,, U. Lienert,, G.S. Harlow,, A. Stierle,, S. Cherevko,, E. Lundgren,, H. Over,: Operando stability studies of ultrathin single-crystalline IrO2(110) films under acidic oxygen evolution reaction conditions. ACS Catal. 11(20), 12651–12660 (2021)
https://doi.org/10.1021/acscatal.1c03599
10 Y. Wang,, S. Hou,, R. Ma,, J. Jiang,, Z. Shi,, C. Liu,, J. Ge,, W. Xing,: Modulating crystallinity and surface electronic structure of IrO2 via gadolinium doping to promote acidic oxygen evolution. ACS Sustain. Chem. Eng. 9(32), 10710–10716 (2021)
https://doi.org/10.1021/acssuschemeng.0c08887
11 Y. Qiu,, J.A. Lopez-Ruiz,, U. Sanyal,, E. Andrews,, O.Y. Gutiérrez,, J.D. Holladay,: Anodic electrocatalytic conversion of carboxylic acids on thin films of RuO2, IrO2, and Pt. Appl. Catal. B 277, 119277 (2020)
https://doi.org/10.1016/j.apcatb.2020.119277
12 F. Song,, L. Bai,, A. Moysiadou,, S. Lee,, C. Hu,, L. Liardet,, X. Hu,: Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J. Am. Chem. Soc. 140(25), 7748–7759 (2018)
https://doi.org/10.1021/jacs.8b04546
13 D. Wang,, D. Luo,, Y. Zhang,, Y. Zhao,, G. Zhou,, L. Shui,, Z. Chen,, X. Wang,: Deciphering interpenetrated interface of transition metal oxides/phosphates from atomic level for reliable Li/S electrocatalytic behavior. Nano Energy 81, 105602 (2021)
https://doi.org/10.1016/j.nanoen.2020.105602
14 Z. Cai,, X. Bu,, P. Wang,, J.C. Ho,, J. Yang,, X. Wang,: Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A Mater. Energy Sustain. 7(10), 5069–5089 (2019)
https://doi.org/10.1039/C8TA11273H
15 M. Yu,, S. Zhou,, Z. Wang,, J. Zhao,, J. Qiu,: Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy 44, 181–190 (2018)
https://doi.org/10.1016/j.nanoen.2017.12.003
16 W. Feng,, W. Pang,, Y. Xu,, A. Guo,, X. Gao,, X. Qiu,, W. Chen,: Transition metal selenides for electrocatalytic hydrogen evolution reaction. ChemElectroChem 7(1), 31–54 (2019)
https://doi.org/10.1002/celc.201901623
17 X. Peng,, Y. Yan,, X. Jin,, C. Huang,, W. Jin,, B. Gao,, P.K. Chu,: Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 78, 105234 (2020)
https://doi.org/10.1016/j.nanoen.2020.105234
18 J. Qi,, Y.P. Lin,, D. Chen,, T. Zhou,, W. Zhang,, R. Cao,: Autologous cobalt phosphates with modulated coordination sites for electrocatalytic water oxidation. Angew Chem. Int. Ed. 59(23), 8917–8921 (2020)
https://doi.org/10.1002/anie.202001737
19 Y. Xu,, R. Wang,, Y. Zheng,, L. Zhang,, T. Jiao,, Q. Peng,, Z. Liu,: Facile preparation of self-assembled Ni/Co phosphates composite spheres with highly efficient HER electrocatalytic performances. Appl Surf Sci 509, 145383 (2020)
https://doi.org/10.1016/j.apsusc.2020.145383
20 S.Y. Zhao,, B. Zhang,, H. Su,, J.J. Zhang,, X.H. Li,, K.X. Wang,, J.S. Chen,, X. Wei,, P. Feng,: Enhanced oxygen electroreduction over nitrogen-free carbon nanotube-supported CuFeO2 nanoparticles. J. Mater. Chem. A Mater. Energy Sustain. 6(10), 4331–4336 (2018)
https://doi.org/10.1039/C7TA10094A
21 Z. Du,, J. Qian,, J. Bai,, H. Li,, M. Wang,, X. Zhao,, D. Xiong,: Surfactant-modified hydrothermal synthesis of Ca-doped CuCoO2 nanosheets with abundant active sites for enhanced electrocatalytic oxygen evolution. Inorg. Chem. 59(14), 9889–9899 (2020)
https://doi.org/10.1021/acs.inorgchem.0c01082
22 Z. Du,, D. Xiong,, S.K. Verma,, B. Liu,, X. Zhao,, L. Liu,, H. Li,: A low temperature hydrothermal synthesis of delafossite CuCoO2 as an efficient electrocatalyst for the oxygen evolution reaction in alkaline solutions. Inorg. Chem. Front. 5(1), 183–188 (2018)
https://doi.org/10.1039/C7QI00621G
23 D. Xiong,, Z. Du,, H. Li,, J. Xu,, J. Li,, X. Zhao,, L. Liu,: Polyvinylpyrrolidone-assisted hydrothermal synthesis of CuCoO2 nanoplates with enhanced oxygen evolution reaction performance. ACS Sustain. Chem. Eng. 7(1), 1493–1501 (2019)
https://doi.org/10.1021/acssuschemeng.8b05236
24 L. Mao,, S. Mohan,, Y. Mao,: Delafossite CuMnO2 as an efficient bifunctional oxygen and hydrogen evolution reaction electrocatalyst for water splitting. J. Electrochem. Soc. 166(6), H233–H242 (2019)
https://doi.org/10.1149/2.1181906jes
25 R. Zhang,, Z. Sun,, C. Zong,, Z. Lin,, H. Huang,, K. Yang,, J. Chen,, S. Liu,, M. Huang,, Y. Yang,, W. Zhang,, Q. Chen,: Increase of Co 3D projected electronic density of states in AgCoO2 enabled an efficient electrocatalyst toward oxygen evolution reaction. Nano Energy 57, 753–760 (2019)
https://doi.org/10.1016/j.nanoen.2018.12.099
26 M. Choi,, S. Yagi,, Y. Ohta,, K. Kido,, T. Hayakawa,: Estimation of delafossite P-type CuGaO2/ZnO hybrids as semiconductor photocatalyst by controlling particle size. J. Phys. Chem. Solids 150, 109845 (2021)
https://doi.org/10.1016/j.jpcs.2020.109845
27 A.B. Muñoz-García,, L. Caputo,, E. Schiavo,, C. Baiano,, P. Maddalena,, M. Pavone,: Ab initio study of anchoring groups for CuGaO2 delafossite-based p-type dye sensitized solar cells. Front. Chem. 7, 158 (2019)
https://doi.org/10.3389/fchem.2019.00158
28 Q.M. Zhao,, Z.Y. Zhao,, Q.L. Liu,, G.Y. Yao,, X.D. Dong,: Delafossite CuGaO2 as promising visible-light-driven photocatalyst: synthesize, properties, and performances. J. Phys. D Appl. Phys. 53(13), 135102 (2020)
https://doi.org/10.1088/1361-6463/ab6791
29 J. Ahmed,, Y. Mao,: Synthesis, characterization and electrocatalytic properties of delafossite CuGaO2. J. Solid State Chem. 242, 77–85 (2016)
https://doi.org/10.1016/j.jssc.2016.07.006
30 J. Ahmed,, V.V. Poltavets,, J. Prakash,, S.M. Alshehri,, T. Ahamad,: Sol-gel synthesis, structural characterization and bifunctional catalytic activity of nanocrystalline delafossite CuGaO2 particles. J. Alloy. Compd. 688, 1157–1161 (2016)
https://doi.org/10.1016/j.jallcom.2016.07.017
31 D. Xiong,, X. Zeng,, W. Zhang,, H. Wang,, X. Zhao,, W. Chen,, Y.B. Cheng,: Synthesis and characterization of CuAlO2 and AgAlO2 delafossite oxides through low-temperature hydrothermal methods. Inorg. Chem. 53(8), 4106–4116 (2014)
https://doi.org/10.1021/ic500090g
32 D. Xiong,, W. Zhang,, X. Zeng,, Z. Xu,, W. Chen,, J. Cui,, M. Wang,, L. Sun,, Y.B. Cheng,: Enhanced performance of p-type dyesensitized solar cells based on ultrasmall Mg-doped CuCrO2 nanocrystals. Chemsuschem 6(8), 1432–1437 (2013)
https://doi.org/10.1002/cssc.201300265
33 D. Xiong,, Z. Xu,, X. Zeng,, W. Zhang,, W. Chen,, X. Xu,, M. Wang,, Y.B. Cheng,: Hydrothermal synthesis of ultrasmall CuCrO2 nanocrystal alternatives to NiO nanoparticles in efficient p-type dye-sensitized solar cells. J. Mater. Chem. 22(47), 24760–24768 (2012)
https://doi.org/10.1039/c2jm35101c
34 D. Xiong,, Y. Qi,, X. Li,, X. Liu,, H. Tao,, W. Chen,, X. Zhao,: Hydrothermal synthesis of delafossite CuFeO2 crystals at 100°C. RSC Adv. 5(61), 49280–49286 (2015)
https://doi.org/10.1039/C5RA08227G
35 D. Xiong,, Q. Zhang,, S.K. Verma,, X.Q. Bao,, H. Li,, X. Zhao,: Crystal structural, optical properties and Mott-Schottky plots of p-type Ca doped CuFeO2 nanoplates. Mater. Res. Bull. 83, 141– 147 (2016)
https://doi.org/10.1016/j.materresbull.2016.05.031
36 D. Xiong,, Q. Zhang,, Z. Du,, S.K. Verma,, H. Li,, X. Zhao,: Low temperature hydrothermal synthesis mechanism and thermal stability of p-type CuMnO2 nanocrystals. New J. Chem. 40(7), 6498–6504 (2016)
https://doi.org/10.1039/C6NJ00253F
37 D. Xiong,, H. Gao,, Y. Deng,, Y. Qi,, Z. Du,, X. Zeng,, H. Li,: Impact of Mg doping on the optical and electrical properties of p-type CuMnO2 ultrathin nanosheets. J. Mater. Sci.: Mater. Electron. 31(7), 5416–5452 (2020)
https://doi.org/10.1007/s10854-020-03108-0
38 Y. Deng,, D. Xiong,, H. Gao,, J. Wu,, S.K. Verma,, B. Liu,, X. Zhao,: Hydrothermal synthesis of delafossite CuScO2 hexagonal plates as an electrocatalyst for the alkaline oxygen evolution reaction. Dalton Trans. (Cambridge, England) 49(11), 3519–3524 (2020)
https://doi.org/10.1039/C9DT04791C
39 Z. Du,, D. Xiong,, J. Qian,, T. Zhang,, J. Bai,, D. Fang,, H. Li,: Investigation of the structural, optical and electrical properties of Ca2+ doped CuCoO2 nanosheets. Dalton Trans. (Cambridge, England) 48(36), 13753–13759 (2019)
https://doi.org/10.1039/C9DT02619C
40 Z. Du,, J. Qian,, T. Zhang,, C. Ji,, J. Wu,, H. Li,, D. Xiong,: Solvothermal synthesis of CuCoO2 nanoplates using zeolitic imidazolate framework-67 (ZIF-67) as a Co-derived precursor. New J. Chem. 43(38), 15233–15239 (2019)
https://doi.org/10.1039/C9NJ03936H
41 H. Gao,, X. Zeng,, Q. Guo,, Z. Yang,, Y. Deng,, H. Li,, D. Xiong,: P-type transparent conducting characteristics of delafossite Ca doped CuScO2 prepared by hydrothermal synthesis. Dalton Trans. (Cambridge, England) 50(15), 5262–5268 (2021)
https://doi.org/10.1039/D1DT00362C
42 J.H. Li,, Y.S. Wang,, Y.C. Chen,, C.W. Kung,: Metal-organic frameworks toward electrocatalytic applications. Appl. Sci. (Basel, Switzerland) 9(12), 2427 (2019)
https://doi.org/10.3390/app9122427
43 M. Yu,, G. Natu,, Z. Ji,, Y. Wu,: p-Type dye-sensitized solar cells based on delafossite CuGaO2 nanoplates with saturation photovoltages exceeding 460 mV. J. Phys. Chem. Lett. 3(9), 1074–1078 (2012)
https://doi.org/10.1021/jz3003603
44 M. Yu,, T.I. Draskovic,, Y. Wu,: Understanding the crystallization mechanism of delafossite CuGaO2 for controlled hydrothermal synthesis of nanoparticles and nanoplates. Inorg. Chem. 53(11), 5845–5851 (2014)
https://doi.org/10.1021/ic500747x
45 X. Qiao,, J. Jin,, J. Luo,, H. Fan,, L. Cui,, W. Wang,, D. Liu,, S. Liao,: In-situ formation of N doped hollow graphene nanospheres/CNTs architecture with encapsulated Fe3C@C nanoparticles as efficient bifunctional oxygen electrocatalysts. J. Alloy. Compd. 828, 154238 (2020)
https://doi.org/10.1016/j.jallcom.2020.154238
46 S. Xu,, M. Wang,, G. Saranya,, N. Chen,, L. Zhang,, Y. He,, L. Wu,, Y. Gong,, Z. Yao,, G. Wang,, Z. Wang,, S. Zhao,, H. Tang,, M. Chen,, H. Gou,: Pressure-driven catalyst synthesis of Codoped Fe3C@ carbon nano-onions for efficient oxygen evolution reaction. Appl. Catal. B 268, 118385 (2020)
https://doi.org/10.1016/j.apcatb.2019.118385
47 T.W. Chiu,, P.S. Huang,: Preparation of delafossite CuFeO2 coral-like powder using a self-combustion glycine nitrate process. Ceram. Int. 39, S575–S578 (2013)
https://doi.org/10.1016/j.ceramint.2012.10.138
48 L. Zou,, M. Kitta,, J. Hong,, K. Suenaga,, N. Tsumori,, Z. Liu,, Q. Xu,: Fabrication of a spherical superstructure of carbon nanorods. Adv. Mater. 31(24), e1900440 (2019)
https://doi.org/10.1002/adma.201900440
49 R.D. Zhao,, Y.M. Zhang,, Q.L. Liu,, Z.Y. Zhao,: Effects of the preparation process on the photocatalytic performance of delafossite CuCrO2. Inorg. Chem. 59(22), 16679–16689 (2020)
https://doi.org/10.1021/acs.inorgchem.0c02678
50 S. Xin,, G. Liu,, X. Ma,, J. Gong,, B. Ma,, Q. Yan,, Q. Chen,, D. Ma,, G. Zhang,, M. Gao,, Y. Xin,: High efficiency heterogeneous fenton-like catalyst biochar modified CuFeO2 for the degradation of tetracycline: economical synthesis, catalytic performance and mechanism. Appl. Catal. B 280, 119386 (2021)
https://doi.org/10.1016/j.apcatb.2020.119386
51 T. Li,, M. Xu,, K. Peng,, Y. Sun,, M. Wang,, H. Dai,, D. Liu,, R. Xue,, Z. Chen,: Evolution of microstructure, defect, optoelectronic and magnetic properties of Cu1-xCaxFeO2 ceramics. J. Phys. Chem. Solids 151, 109910 (2021)
https://doi.org/10.1016/j.jpcs.2020.109910
52 J.L. Bourque,, M.C. Biesinger,, K.M. Baines,: Chemical state determination of molecular gallium compounds using XPS. Dalton Trans. (Cambridge, England) 45(18), 7678–7696 (2016)
https://doi.org/10.1039/C6DT00771F
53 S. Sarpaki,, F. Cortezon-Tamarit,, S.R.M.M. de Aguiar,, R.M. Exner,, D. Divall,, R.L. Arrowsmith,, H. Ge,, F.J. Palomares,, L. Carroll,, D.G. Calatayud,, S.J. Paisey,, E.O. Aboagye,, S.I. Pascu,: Radio- and nano-chemistry of aqueous Ga(iii) ions anchored onto graphene oxide-modified complexes. Nanoscale 12(12), 6603–6608 (2020)
https://doi.org/10.1039/C9NR10145D
54 R. Huang,, T. Liu,, Y. Zhao,, Y. Zhu,, Z. Huang,, F. Li,, J. Liu,, L. Zhang,, S. Zhang,, A. Ding,, H. Yang,: Angular dependent XPS study of surface band bending on Ga-polar N-GaN. Appl. Surf. Sci. 440, 637–642 (2018)
https://doi.org/10.1016/j.apsusc.2018.01.196
55 M. Grodzicki,, J.G. Rousset,, P. Ciechanowicz,, E. Piskorska-Hommel,, D. Hommel,: XPS studies on the role of arsenic incorporated into GaN. Vacuum 167, 73–76 (2019)
https://doi.org/10.1016/j.vacuum.2019.05.043
56 Z. Wang,, J. Xu,, J. Yang,, Y. Xue,, L. Dai,: Ultraviolet/ozone treatment for boosting OER activity of MOF nanoneedle arrays. Chem. Eng. J. 427, 131498 (2022)
https://doi.org/10.1016/j.cej.2021.131498
57 A. Saad,, D. Liu,, Y. Wu,, Z. Song,, Y. Li,, T. Najam,, K. Zong,, P. Tsiakaras,, X. Cai,: Ag nanoparticles modified crumpled borophene supported Co3O4 catalyst showing superior oxygen evolution reaction (OER) performance. Appl. Catal. B 298, 120529 (2021)
https://doi.org/10.1016/j.apcatb.2021.120529
58 H. Li,, M. Tan,, C. Huang,, W. Luo,, S.F. Yin,, W. Yang,: Co2(OH)3Cl and MOF mediated synthesis of porous Co3O4/ NC nanosheets for efficient OER catalysis. Appl. Surf. Sci. 542, 148739 (2021)
https://doi.org/10.1016/j.apsusc.2020.148739
59 T. Kang,, J. Kim,: Optimal cobalt-based catalyst containing high-ratio of oxygen vacancy synthesized from metal-organic-framework (MOF) for oxygen evolution reaction (OER) enhancement. Appl. Surf. Sci. 560, 150035 (2021)
https://doi.org/10.1016/j.apsusc.2021.150035
60 X. Li,, S. You,, J. Du,, Y. Dai,, H. Chen,, Z. Cai,, N. Ren,, J. Zou,: ZIF-67-derived Co3O4@ carbon protected by oxygen-buffering CeO2 as an efficient catalyst for boosting oxygen reduction/evolution reactions. J. Mater. Chem. A Mater. Energy Sustain. 7(45), 25853–25864 (2019)
https://doi.org/10.1039/C9TA08926H
61 A. Bhatti,, A. Tahira,, A. Gradone,, R. Mazzaro,, V. Morandi,, U. Aftab,, M.I. Abro,, A. Nafady,, K. Qi,, A. Infantes-Molina,, A. Vomiero,, Z.H. Lbupoto,: Nanostructured Co3O4 electrocatalyst for OER: the role of organic polyelectrolytes as soft templates. Electrochim. Acta 398, 139338 (2021)
https://doi.org/10.1016/j.electacta.2021.139338
62 J. Bian,, R. Su,, Y. Yao,, J. Wang,, J. Zhou,, F. Li,, Z.L. Wang,, C. Sun,: Mg doped perovskite LaNiO3 nanofibers as an efficient bifunctional catalyst for rechargeable zinc–air batteries. ACS Appl. Energy Mater. 2(1), 923–931 (2019)
https://doi.org/10.1021/acsaem.8b02183
63 J. Dai,, Y. Zhu,, Y. Zhong,, J. Miao,, B. Lin,, W. Zhou,, Z. Shao,: Enabling high and stable electrocatalytic activity of iron-based perovskite oxides for water splitting by combined bulk doping and morphology designing. Adv. Mater. Interfaces 6(1), 1801317 (2019)
https://doi.org/10.1002/admi.201801317
64 X. Zhang,, Y. Chen,, W. Zhang,, D. Yang,: Coral-like hierarchical architecture self-assembled by cobalt hexacyanoferrate nanocrystals and N-doped carbon nanoplatelets as efficient electrocatalyst for oxygen evolution reaction. J. Colloid Interface Sci. 558, 190–199 (2020)
https://doi.org/10.1016/j.jcis.2019.09.108
[1] Yuchao LI, Fengyu KONG, Bin WANG, Yanhua ZHAO, Zuankai WANG. Preparation of shape-controlling VO2(M/R) nanoparticles via one-step hydrothermal synthesis[J]. Front. Optoelectron., 2021, 14(3): 311-320.
[2] Xiaofan ZHANG, Man LIU, Weiqian KONG, Hongbo FAN. Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy[J]. Front. Optoelectron., 2018, 11(4): 333-347.
[3] Weina SHI, Xiaowei LV, Yan SHEN. BiOI/WO3 photoanode with enhanced photoelectrochemical water splitting activity[J]. Front. Optoelectron., 2018, 11(4): 367-374.
[4] Yue QIAN,Rong LIU,Xiujuan JIN,Bin LIU,Xianfu WANG,Jin XU,Zhuoran WANG,Gui CHEN,Junfeng CHAO. Optimised synthesis of close packed ZnO cloth and its applications in Li-ion batteries and dye-sensitized solar cells[J]. Front. Optoelectron., 2015, 8(2): 220-228.
[5] Xiaoyan LI,Pei LIANG,Le WANG,Feihong YU. Preparation and characterization of high uniformity zinc oxide nanosheets[J]. Front. Optoelectron., 2014, 7(4): 509-512.
[6] Yu TIAN, Huiquan CHEN, Xiaolong ZHU, Guang ZHENG, Jiangnan DAI. Selective growth and characterization of ZnO nanorods assembled a hexagonal pattern on H2-decomposed GaN epilayer[J]. Front Optoelec, 2013, 6(4): 440-447.
[7] Zhiyong BAO, Li ZHANG, Yucheng WU. Silver nanoparticles and silver molybdate nanowires complex for surface-enhanced Raman scattering substrate[J]. Front Optoelec Chin, 2011, 4(2): 166-170.
[8] Ronghui QUE. High-yield synthesized silver orthophosphate nanowires and their application in photoswitch[J]. Front Optoelec Chin, 2011, 4(2): 176-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed