Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2022, Vol. 15 Issue (3) : 38    https://doi.org/10.1007/s12200-022-00032-5
REVIEW ARTICLE
Highly stable β-ketoenamine-based covalent organic frameworks (COFs): synthesis and optoelectrical applications
Yaqin Li1,2, Maosong Liu1, Jinjun Wu2, Junbo Li1,2, Xianglin Yu1(), Qichun Zhang3,4()
1. Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430074, China
2. School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China
3. Department of Materials Science and Engineering, City University of Hongkong, Hong Kong SAR 999077, China
4. Center of Super-Diamond and Advanced Films (COSDAF), City University of Hongkong, Hong Kong SAR 999077, China
 Download: PDF(12330 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Covalent organic frameworks (COFs) are one class of porous materials with permanent porosity and regular channels, and have a covalent bond structure. Due to their interesting characteristics, COFs have exhibited diverse potential applications in many fields. However, some applications require the frameworks to possess high structural stability, excellent crystallinity, and suitable pore size. COFs based on β-ketoenamine and imines are prepared through the irreversible enol-to-keto tautomerization. These materials have high crystallinity and exhibit high stability in boiling water, with strong resistance to acids and bases, resulting in various possible applications. In this review, we first summarize the preparation methods for COFs based on β-ketoenamine, in the form of powders, films and foams. Then, the effects of different synthetic methods on the crystallinity and pore structure of COFs based on β-ketoenamine are analyzed and compared. The relationship between structures and different applications including fluorescence sensors, energy storage, photocatalysis, electrocatalysis, batteries and proton conduction are carefully summarized. Finally, the potential applications, large-scale industrial preparation and challenges in the future are presented.

Keywords Covalent organic frameworks      β-ketoenamine      Sensors      Energy storage      Batteries      Photocatalysis     
Corresponding Author(s): Xianglin Yu,Qichun Zhang   
Issue Date: 26 October 2022
 Cite this article:   
Yaqin Li,Maosong Liu,Jinjun Wu, et al. Highly stable β-ketoenamine-based covalent organic frameworks (COFs): synthesis and optoelectrical applications[J]. Front. Optoelectron., 2022, 15(3): 38.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-022-00032-5
https://academic.hep.com.cn/foe/EN/Y2022/V15/I3/38
1 X. Liu,, D. Huang,, C. Lai,, G. Zeng,, L. Qin,, H. Wang,, H. Yi,, B. Li,, S. Liu,, M. Zhang,, R. Deng,, Y. Fu,, L. Li,, W. Xue,, S. Chen,: Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chem. Soc. Rev. 48(20), 5266–5302 (2019)
https://doi.org/10.1039/C9CS00299E
2 Y. Yusran,, Q. Fang,, S.L. Qiu,: Postsynthetic covalent modification in covalent organic frameworks. Isr. J. Chem. 58(9–10), 971–984 (2018)
https://doi.org/10.1002/ijch.201800066
3 B. Gui,, G. Lin,, H. Ding,, C. Gao,, A. Mal,, C. Wang,: Three-dimensional covalent organic frameworks: from topology design to applications. Acc. Chem. Res. 53(10), 2225–2234 (2020)
https://doi.org/10.1021/acs.accounts.0c00357
4 S.B. Alahakoon,, S.D. Diwakara,, C.M. Thompson,, R.A. Smaldone,: Supramolecular design in 2D covalent organic frameworks. Chem. Soc. Rev. 49(5), 1344–1356 (2020)
https://doi.org/10.1039/C9CS00884E
5 X. Wang,, P. She,, Q. Zhang,: Recent advances on electrochemical methods in fabricating two-dimensional organic-ligand-containing frameworks. SmartMat 2(3), 299–325 (2021)
https://doi.org/10.1002/smm2.1057
6 S. Xu,, Q.C. Zhang,: Recent progress in covalent organic frameworks as light-emitting materials. Mater. Today. Energy 20, 100635 (2021)
https://doi.org/10.1016/j.mtener.2020.100635
7 Y. Li,, W. Chen,, G. Xing,, D. Jiang,, L. Chen,: New synthetic strategies toward covalent organic frameworks. Chem. Soc. Rev. 49(10), 2852–2868 (2020)
https://doi.org/10.1039/D0CS00199F
8 Z. Wang,, S. Zhang,, Y. Chen,, Z. Zhang,, S. Ma,: Covalent organic frameworks for separation applications. Chem. Soc. Rev. 49(3), 708–735 (2020)
https://doi.org/10.1039/C9CS00827F
9 E. Dautzenberg,, M. Lam,, G. Li,, L.C.P.M. de Smet,: Enhanced surface area and reduced pore collapse of methylated, iminelinked covalent organic frameworks. Nanoscale 13(46), 19446–19452 (2021)
https://doi.org/10.1039/D1NR05911D
10 P. She,, Y. Qin,, X. Wang,, Q. Zhang,: Recent progress in external-stimulus-responsive 2D covalent organic frameworks. Adv. Mater. 34(22), 2101175 (2021)
https://doi.org/10.1002/adma.202101175
11 J. Yang,, F. Kang,, X. Wang,, Q. Zhang,: Design strategies for improving the crystallinity of covalent organic frameworks and conjugated polymers: a review. Mater. Horiz. 9(1), 121–146 (2022)
https://doi.org/10.1039/D1MH00809A
12 X.J. Zhan,, Z. Chen,, Q.C. Zhang,: Recent progress in two-dimensional COFs for energy-related applications. J. Mater. Chem. A Mater. Energy Sustain. 5(28), 14463–14479 (2017)
https://doi.org/10.1039/C7TA02105D
13 C. Wu,, Y. Liu,, H. Liu,, C. Duan,, Q. Pan,, J. Zhu,, F. Hu,, X. Ma,, T. Jiu,, Z. Li,, Y. Zhao,: Highly conjugated three-dimensional covalent organic frameworks based on spirobifluorene for perovskite solar cell enhancement. J. Am. Chem. Soc. 140(31), 10016–10024 (2018)
https://doi.org/10.1021/jacs.8b06291
14 T. Sun,, J. Xie,, W. Guo,, D.S. Li,, Q.C. Zhang,: Covalent–organic frameworks: advanced organic electrode materials for rechargeable batteries. Adv. Energy Mater. 10(19), 1904199 (2020)
https://doi.org/10.1002/aenm.201904199
15 C.J. Yao,, Z. Wu,, J. Xie,, F. Yu,, W. Guo,, Z.J. Xu,, D.S. Li,, S. Zhang,, Q. Zhang,: Two-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion battery. Chemsuschem 13(9), 2457–2463 (2020)
https://doi.org/10.1002/cssc.201903007
16 A.R. Bagheri,, N. Aramesh,, P.R. Haddad,: Applications of covalent organic frameworks and their composites in the extraction of pesticides from different samples. J. Chromatogr. A 1661, 462612 (2022)
https://doi.org/10.1016/j.chroma.2021.462612
17 H.Y. Zhou,, C.D. Zhou,, S.Y. Tang,, F.M. Zhang,, S. Lei,, Z.J. Li,, J.J. Liu,, M. Chen,: High efficiency solution synthesis of aryl-aryl linked two-dimensional covalent organic frameworks with remarkable adsorption performance for polycyclic aromatic hydrocarbons (PAHs). Mater. Lett. 307, 131002 (2022)
https://doi.org/10.1016/j.matlet.2021.131002
18 M. He,, Q.H. Liang,, L. Tang,, Z.F. Liu,, B.B. Shao,, Q.Y. He,, T. Wu,, S.H. Luo,, Y. Pan,, C.H. Zhao,, C.G. Niu,, Y.M. Hu,: Advances of covalent organic frameworks based on magnetism: classification, synthesis, properties, applications. Coord. Chem. Rev. 449, 214219 (2021)
https://doi.org/10.1016/j.ccr.2021.214219
19 H. Wang,, M.K. Wang,, Y.L. Wang,, J. Wang,, X.H. Men,, Z.Z. Zhang,, V. Singh,: Synergistic effects of COF and GO on high flux oil/water separation performance of superhydrophobic composites. Sep. Purif. Technol. 276, 119268 (2021)
https://doi.org/10.1016/j.seppur.2021.119268
20 F. Yu,, W. Liu,, S.W. Ke,, M. Kurmoo,, J.L. Zuo,, Q. Zhang,: Electrochromic two-dimensional covalent organic framework with a reversible dark-to-transparent switch. Nat. Commun. 11(1), 5534 (2020)
https://doi.org/10.1038/s41467-020-19315-6
21 F. Yu,, W. Liu,, B. Li,, D. Tian,, J.L. Zuo,, Q. Zhang,: Photo-stimulus-responsive large-area two-dimensional covalent organic framework films. Angew. Chem. Int. Ed. 58(45), 16101–16104 (2019)
https://doi.org/10.1002/anie.201909613
22 Y. Xiang,, X.L. Yu,, Y.Q. Li,, J.Y. Chen,, J.J. Wu,, L.X. Wang,, D.G. Chen,, J.B. Li,, Q.C. Zhang,: Covalent organic framework as an efficient fluorescence-enhanced probe to detect aluminum ion. Dyes Pigm. 195, 109710 (2021)
https://doi.org/10.1016/j.dyepig.2021.109710
23 S. Yao,, Z. Liu,, L. Li,: Recent progress in nanoscale covalent organic frameworks for cancer diagnosis and therapy. Nano-Micro Letters 13(1), 176 (2021)
https://doi.org/10.1007/s40820-021-00696-2
24 A. Ghahari,, H. Raissi,, F. Farzad,: Design of a new drug delivery platform based on surface functionalization 2D covalent organic frameworks. J. Taiwan Inst. Chem. Eng. 125, 15–22 (2021)
https://doi.org/10.1016/j.jtice.2021.05.048
25 P. Gao,, X. Shen,, X. Liu,, Y. Chen,, W. Pan,, N. Li,, B. Tang,: Nucleic acid-gated covalent organic frameworks for cancer-specific imaging and drug release. Anal. Chem. 93(34), 11751–11757 (2021)
https://doi.org/10.1021/acs.analchem.1c02105
26 Y. Zhi,, Z. Wang,, H.L. Zhang,, Q. Zhang,: Recent progress in metal-free covalent organic frameworks as heterogeneous catalysts. Small 16(24), e2001070 (2020)
https://doi.org/10.1002/smll.202001070
27 Q.Z. Sun,, C.Y. Wu,, Q.Y. Pan,, B.J. Zhang,, Y.M. Liu,, X.Y. Lu,, J. Sun,, L.S. Sun,, Y.J. Zhao,: Three-dimensional covalent-organic frameworks loaded with highly dispersed ultrafine palladium nanoparticles as efficient heterogeneous catalyst. ChemNanoMat 7(1), 95–99 (2021)
https://doi.org/10.1002/cnma.202000591
28 Y. Chen,, W. Li,, X. Wang,, R. Gao,, A. Tang,, D. Kong,: Green synthesis of covalent organic frameworks based on reaction media. Mater. Chem. Front. 5(3), 1253–1267 (2021)
https://doi.org/10.1039/D0QM00801J
29 R.A. Maia,, F. Lopes Oliveira,, V. Ritleng,, Q. Wang,, B. Louis,, E.P. Mothé,: CO2 capture by hydroxylated azine-based covalent organic frameworks. Chemistry (Weinheim an der Bergstrasse, Germany) 27(30), 8048–8055 (2021)
https://doi.org/10.1002/chem.202100478
30 F. Haase,, B.V. Lotsch,: Solving the COF trilemma: towards crystalline, stable and functional covalent organic frameworks. Chem. Soc. Rev. 49(23), 8469–8500 (2020)
https://doi.org/10.1039/D0CS01027H
31 C. Fan,, H. Wu,, J. Guan,, X. You,, C. Yang,, X. Wang,, L. Cao,, B. Shi,, Q. Peng,, Y. Kong,, Y. Wu,, N.A. Khan,, Z. Jiang,: Scalable fabrication of crystalline COF membrane from amorphous polymeric membrane. Angew. Chem. Int. Ed. 60(33), 18051–18058 (2021)
https://doi.org/10.1002/anie.202102965
32 R. Dawson,, A.I. Cooper,, D.J. Adams,: Nanoporous organic polymer networks. Prog. Polym. Sci. 37(4), 530–563 (2012)
https://doi.org/10.1016/j.progpolymsci.2011.09.002
33 Y.L. Zhu,, H.Y. Zhao,, C.L. Fu,, Z.W. Li,, Z.Y. Sun,, Z. Lu,: Mechanisms of defect correction by reversible chemistries in covalent organic frameworks.. J. Phys. Chem. Lett. 11(22), 9952–9956 (2020)
https://doi.org/10.1021/acs.jpclett.0c02960
34 C.F. Mao,, Y.J. Hu,, C.H. Yang,, C.C. Qin,, G.M. Dong,, Y.M. Zhou,, Y.W. Zhang,: Well-designed spherical covalent organic frameworks with an electron-deficient and conjugate system for efficient photocatalytic hydrogen evolution. ACS Appl. Energy Mater. 4(12), 14111–14120 (2021)
https://doi.org/10.1021/acsaem.1c02874
35 J. Hynek,, J. Zelenka,, J. Rathouský,, P. Kubát,, T. Ruml,, J. Demel,, K. Lang,: Designing porphyrinic covalent organic frameworks for the photodynamic inactivation of bacteria. ACS Appl. Mater. Interfaces. 10(10), 8527–8535 (2018)
https://doi.org/10.1021/acsami.7b19835
36 F. Meng,, S. Bi,, Z. Sun,, B. Jiang,, D. Wu,, J.S. Chen,, F. Zhang,: Synthesis of ionic vinylene-linked covalent organic frameworks through quaternization-activated knoevenagel condensation. Angew. Chem. Int. Ed. 60(24), 13614–13620 (2021)
https://doi.org/10.1002/anie.202104375
37 J.L. Segura,, M.J. Mancheño,, F. Zamora,: Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chem. Soc. Rev. 45(20), 5635–5671 (2016)
https://doi.org/10.1039/C5CS00878F
38 A.P. Cote,, A.I. Benin,, N.W. Ockwig,, M. O’Keeffe,, A.J. Matzger,, O.M. Yaghi,: Porous, crystalline, covalent organic frameworks. Science 310(5751), 1166–1170 (2005)
https://doi.org/10.1126/science.1120411
39 L.M. Lanni,, R.W. Tilford,, M. Bharathy,, J.J. Lavigne,: Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 133(35), 13975–13983 (2011)
https://doi.org/10.1021/ja203807h
40 S. Park,, Z. Liao,, B. Ibarlucea,, H. Qi,, H.H. Lin,, D. Becker,, J. Melidonie,, T. Zhang,, H. Sahabudeen,, L. Baraban,, C.K. Baek,, Z. Zheng,, E. Zschech,, A. Fery,, T. Heine,, U. Kaiser,, G. Cuniberti,, R. Dong,, X. Feng,: Two-dimensional boronate ester covalent organic framework thin films with large single crystalline domains for a neuromorphic memory device. Angew. Chem. Int. Ed. 59(21), 8218–8224 (2020)
https://doi.org/10.1002/anie.201916595
41 Y.J. Li,, Y.N. Han,, M.H. Chen,, Y.Q. Feng,, B. Zhang,: Construction of a flexible covalent organic framework based on triazine units with interesting photoluminescent properties for sensitive and selective detection of picric acid. RSC Adv. 9(53), 30937–30942 (2019)
https://doi.org/10.1039/C9RA06583K
42 X.L. Li,, S.L. Cai,, B. Sun,, C.Q. Yang,, J. Zhang,, Y. Liu,: Chemically robust covalent organic frameworks: progress and perspective. Matter 3(5), 1507–1540 (2020)
https://doi.org/10.1016/j.matt.2020.09.007
43 Y. Lu,, Y. Liang,, Y. Zhao,, M. Xia,, X. Liu,, T. Shen,, L. Feng,, N. Yuan,, Q. Chen,: Fluorescent test paper via the in situ growth of COFs for rapid and convenient detection of Pd(II) ions. ACS Appl. Mater. Interfaces. 13(1), 1644–1650 (2021)
https://doi.org/10.1021/acsami.0c20203
44 M. Shan,, B. Seoane,, E. Rozhko,, A. Dikhtiarenko,, G. Clet,, F. Kapteijn,, J. Gascon,: Azine-linked covalent organic framework (COF)-based mixed-matrix membranes for CO2/CH4 separation. Chemistry (Weinheim an der Bergstrasse, Germany) 22(41), 14467–14470 (2016)
https://doi.org/10.1002/chem.201602999
45 Z. Luo,, L. Liu,, J. Ning,, K. Lei,, Y. Lu,, F. Li,, J. Chen,: A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew. Chem. Int. Ed. 57(30), 9443–9446 (2018)
https://doi.org/10.1002/anie.201805540
46 R. Xue,, H. Gou,, Y.P. Zheng,, L. Zhang,, Y.S. Liu,, H.H. Rao,, G.H. Zhao,: A new squaraine-linked triazinyl-based covalent organic frameworks: preparation, characterization and application for sensitive and selective determination of Fe3+ cations. ChemistrySelect 5(34), 10632–10636 (2020)
https://doi.org/10.1002/slct.202002232
47 S. Wei,, F. Zhang,, W. Zhang,, P. Qiang,, K. Yu,, X. Fu,, D. Wu,, S. Bi,, F. Zhang,: Semiconducting 2D triazine-cored covalent organic frameworks with unsubstituted olefin linkages. J. Am. Chem. Soc. 141(36), 14272–14279 (2019)
https://doi.org/10.1021/jacs.9b06219
48 C. Yuan,, S. Fu,, K. Yang,, B. Hou,, Y. Liu,, J. Jiang,, Y. Cui,: Crystalline C–C and C═C bond-linked chiral covalent organic frameworks. J. Am. Chem. Soc. 143(1), 369–381 (2021)
https://doi.org/10.1021/jacs.0c11050
49 L. Cusin,, H. Peng,, A. Ciesielski,, P. Samorì,: Chemical conversion and locking of the imine linkage: enhancing the functionality of covalent organic frameworks. Angew. Chem. Int. Ed. 60(26), 14236–14250 (2021)
https://doi.org/10.1002/anie.202016667
50 X. Han,, J. Huang,, C. Yuan,, Y. Liu,, Y. Cui,: Chiral 3D covalent organic frameworks for high performance liquid chromatographic enantioseparation. J. Am. Chem. Soc. 140(3), 892–895 (2018)
https://doi.org/10.1021/jacs.7b12110
51 H.Y. Liu,, J. Chu,, Z.L. Yin,, X. Cai,, L. Zhuang,, H.X. Deng,: Covalent organic frameworks linked by amine bonding for concerted electrochemical reduction of CO2. Chem 4(7), 1696–1709 (2018)
https://doi.org/10.1016/j.chempr.2018.05.003
52 Y. Liang,, M. Xia,, Y. Zhao,, D. Wang,, Y. Li,, Z. Sui,, J. Xiao,, Q. Chen,: Functionalized triazine-based covalent organic frameworks containing quinoline via aza-Diels-Alder reaction for enhanced lithium-sulfur batteries performance. J. Colloid Interface Sci. 608(Pt 1), 652–661 (2022)
https://doi.org/10.1016/j.jcis.2021.09.150
53 M.G. Rabbani,, H.M. El-Kaderi,: Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake. Chem. Mater. 24(8), 1511–1517 (2012)
https://doi.org/10.1021/cm300407h
54 M.G. Rabbani,, T. Islamoglu,, H.M. El-Kaderi,: Benzothiazole-and benzoxazole-linked porous polymers for carbon dioxide storage and separation. J. Mater. Chem. A Mater. Energy Sustain. 5(1), 258–265 (2017)
https://doi.org/10.1039/C6TA06342J
55 P.J. Waller,, Y.S. AlFaraj,, C.S. Diercks,, N.N. Jarenwattananon,, O.M. Yaghi,: Conversion of imine to oxazole and thiazole linkages in covalent organic frameworks. J. Am. Chem. Soc. 140(29), 9099–9103 (2018)
https://doi.org/10.1021/jacs.8b05830
56 G.M. Eder,, D.A. Pyles,, E.R. Wolfson,, P.L. McGrier,: A ruthenium porphyrin-based porous organic polymer for the hydrosilylative reduction of CO2 to formate. Chem. Commun. 55(50), 7195–7198 (2019)
https://doi.org/10.1039/C9CC02273B
57 T.F. Machado,, M.E.S. Serra,, D. Murtinho,, A.J.M. Valente,, M. Naushad,: Covalent organic frameworks: synthesis, properties and applications-an overview. Polymers 13(6), 970 (2021)
https://doi.org/10.3390/polym13060970
58 R.K. Sharma,, P. Yadav,, M. Yadav,, R. Gupta,, P. Rana,, A. Srivastava,, R. Zboril,, R.S. Varma,, M. Antonietti,, M.B. Gawande,: Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Mater. Horiz. 7(2), 411–454 (2020)
https://doi.org/10.1039/C9MH00856J
59 Y. Tao,, W.Y. Ji,, X.S. Ding,, B.H. Han,: Exfoliated covalent organic framework nanosheets. J. Mater. Chem. A Mater. Energy Sustain. 9(12), 7336–7365 (2021)
https://doi.org/10.1039/D0TA12122C
60 B. Bai,, D. Wang,, L.J. Wan,: Synthesis of covalent organic framework films at interfaces. Bull. Chem. Soc. Jpn. 94(3), 1090–1098 (2021)
https://doi.org/10.1246/bcsj.20200391
61 A.K. Mohammed,, D. Shetty,: Macroscopic covalent organic framework architectures for water remediation. Environ. Sci.: Water Res. Technol. 7(11), 1895–1927 (2021)
https://doi.org/10.1039/D1EW00408E
62 X. Li,, C. Zhang,, S. Cai,, X. Lei,, V. Altoe,, F. Hong,, J.J. Urban,, J. Ciston,, E.M. Chan,, Y. Liu,: Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks. Nat. Commun. 9(1), 2998 (2018)
https://doi.org/10.1038/s41467-018-05462-4
63 A.M. Evans,, M.R. Ryder,, W. Ji,, M.J. Strauss,, A.R. Corcos,, E. Vitaku,, N.C. Flanders,, R.P. Bisbey,, W.R. Dichtel,: Trends in the thermal stability of two-dimensional covalent organic frameworks. Faraday Discuss. 225, 226–240 (2021)
https://doi.org/10.1039/D0FD00054J
64 M.R. Rao,, Y. Fang,, S. De Feyter,, D.F. Perepichka,: Conjugated covalent organic frameworks via michael addition-elimination. J. Am. Chem. Soc. 139(6), 2421–2427 (2017)
https://doi.org/10.1021/jacs.6b12005
65 H.V. Babu,, M.G.M. Bai,, R.M. Rajeswara,: Functional π-conjugated two-dimensional covalent organic frameworks. ACS Appl. Mater. Interfaces. 11(12), 11029–11060 (2019)
https://doi.org/10.1021/acsami.8b19087
66 A. Esrafili,, A. Wagner,, S. Inamdar,, A.P. Acharya,: Covalent organic frameworks for biomedical applications. Adv. Healthcare Mater. 10(6), e2002090 (2021)
https://doi.org/10.1002/adhm.202002090
67 V. Singh,, S. Jang,, N.K. Vishwakarma,, D. Kim,: Intensified synthesis and post-synthetic modification of covalent organic frameworks using a continuous flow of microdroplets technique. NPG Asia Mater. 10(1), e456 (2018)
https://doi.org/10.1038/am.2017.209
68 J.L. Wang,, S.T. Zhuang,: Covalent organic frameworks (COFs) for environmental applications. Coord. Chem. Rev. 400, 213046 (2019)
https://doi.org/10.1016/j.ccr.2019.213046
69 J.H. Chong,, M. Sauer,, B.O. Patrick,, M.J. MacLachlan,: Highly stable keto-enamine salicylideneanilines. Org. Lett. 5(21), 3823–3826 (2003)
https://doi.org/10.1021/ol0352714
70 S. Kandambeth,, A. Mallick,, B. Lukose,, M.V. Mane,, T. Heine,, R. Banerjee,: Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 134(48), 19524–19527 (2012)
https://doi.org/10.1021/ja308278w
71 X. Li,, C. Yang,, B. Sun,, S. Cai,, Z. Chen,, Y. Lv,, J. Zhang,, Y. Liu,: Expeditious synthesis of covalent organic frameworks: a review. J. Mater. Chem. A Mater. Energy Sustain. 8(32), 16045–16060 (2020)
https://doi.org/10.1039/D0TA05894G
72 W. Ji,, L.S. Hamachi,, A. Natraj,, N.C. Flanders,, R.L. Li,, L.X. Chen,, W.R. Dichtel,: Solvothermal depolymerization and recrystallization of imine-linked two-dimensional covalent organic frameworks. Chem. Sci. (Cambridge) 12(48), 16014–16022 (2021)
https://doi.org/10.1039/D1SC03963F
73 L.F. Zou,, X.Y. Yang,, S. Yuan,, H.C. Zhou,: Flexible monomerbased covalent organic frameworks: design, structure and functions. CrystEngComm 19(33), 4868–4871 (2017)
https://doi.org/10.1039/C7CE00593H
74 C.R. DeBlase,, K.E. Silberstein,, T.T. Truong,, H.D. Abruña,, W.R. Dichtel,: β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 135(45), 16821–16824 (2013)
https://doi.org/10.1021/ja409421d
75 Q. Fang,, S. Gu,, J. Zheng,, Z. Zhuang,, S. Qiu,, Y. Yan,: 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis. Angew. Chem. Int. Ed. 53(11), 2878–2882 (2014)
https://doi.org/10.1002/anie.201310500
76 J.P. Wolfe,, J. Åhman,, J.P. Sadighi,, R.A. Singer,, S.L. Buchwald,: An ammonia equivalent for the palladium-catalyzed amination of aryl halides and triflates. Tetrahedron Lett. 38(36), 6367–6370 (1997)
https://doi.org/10.1016/S0040-4039(97)01465-2
77 E. Vitaku,, W.R. Dichtel,: Synthesis of 2D imine-linked covalent organic frameworks through formal transimination reactions. J. Am. Chem. Soc. 139(37), 12911–12914 (2017)
https://doi.org/10.1021/jacs.7b06913
78 M.C. Daugherty,, E. Vitaku,, R.L. Li,, A.M. Evans,, A.D. Chavez,, W.R. Dichtel,: Improved synthesis of β-ketoenamine-linked covalent organic frameworks via monomer exchange reactions. Chem. Commun. 55(18), 2680–2683 (2019)
https://doi.org/10.1039/C8CC08957D
79 R. Wang,, W. Kong,, T. Zhou,, C. Wang,, J. Guo,: Organobase modulated synthesis of high-quality β-ketoenamine-linked covalent organic frameworks. Chem. Commun. 57(3), 331–334 (2021)
https://doi.org/10.1039/D0CC06519F
80 C. Zhao,, C.S. Diercks,, C. Zhu,, N. Hanikel,, X. Pei,, O.M. Yaghi,: Urea-linked covalent organic frameworks. J. Am. Chem. Soc. 140(48), 16438–16441 (2018)
https://doi.org/10.1021/jacs.8b10612
81 B.P. Biswal,, S. Chandra,, S. Kandambeth,, B. Lukose,, T. Heine,, R. Banerjee,: Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 135(14), 5328–5331 (2013)
https://doi.org/10.1021/ja4017842
82 S. Chandra,, S. Kandambeth,, B.P. Biswal,, B. Lukose,, S.M. Kunjir,, M. Chaudhary,, R. Babarao,, T. Heine,, R. Banerjee,: Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc. 135(47), 17853–17861 (2013)
https://doi.org/10.1021/ja408121p
83 W. Liu,, Y. Cao,, W. Wang,, D. Gong,, T. Cao,, J. Qian,, K. Iqbal,, W. Qin,, H. Guo,: Mechanochromic luminescent covalent organic frameworks for highly selective hydroxyl radical detection. Chem. Commun. 55(2), 167–170 (2019)
https://doi.org/10.1039/C8CC07783E
84 G. Das,, D. Balaji Shinde,, S. Kandambeth,, B.P. Biswal,, R. Banerjee,: Mechanosynthesis of imine, β-ketoenamine, and hydrogen-bonded imine-linked covalent organic frameworks using liquid-assisted grinding. Chem. Commun. 50(84), 12615–12618 (2014)
https://doi.org/10.1039/C4CC03389B
85 S.S. Liu,, Q.Q. Liu,, S.Z. Huang,, C. Zhang,, X.Y. Dong,, S.Q. Zang,: Sulfonic and phosphonic porous solids as proton conductor. Coord. Chem. Rev. 451, 214241 (2022)
https://doi.org/10.1016/j.ccr.2021.214241
86 Y. Peng,, G. Xu,, Z. Hu,, Y. Cheng,, C. Chi,, D. Yuan,, H. Cheng,, D. Zhao,: Mechanoassisted synthesis of sulfonated covalent organic frameworks with high intrinsic proton conductivity. ACS Appl. Mater. Interfaces. 8(28), 18505–18512 (2016)
https://doi.org/10.1021/acsami.6b06189
87 D.B. Shinde,, H.B. Aiyappa,, M. Bhadra,, B.P. Biswal,, P. Wadge,, S. Kandambeth,, B. Garai,, T. Kundu,, S. Kurungot,, R. Banerjee,: A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte. J. Mater. Chem. A Mater. Energy Sustain. 4(7), 2682–2690 (2016)
https://doi.org/10.1039/C5TA10521H
88 S. Karak,, S. Kandambeth,, B.P. Biswal,, H.S. Sasmal,, S. Kumar,, P. Pachfule,, R. Banerjee,: Constructing ultraporous covalent organic frameworks in seconds via an organic terracotta process. J. Am. Chem. Soc. 139(5), 1856–1862 (2017)
https://doi.org/10.1021/jacs.6b08815
89 H. Wei,, S. Chai,, N. Hu,, Z. Yang,, L. Wei,, L. Wang,: The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity. Chem. Commun. 51(61), 12178–12181 (2015)
https://doi.org/10.1039/C5CC04680G
90 L. Xu,, J. Xu,, B.T. Shan,, X.L. Wang,, C.J. Gao,: TpPa-2-incorporated mixed matrix membranes for efficient water purification. J. Membr. Sci. 526, 355–366 (2017)
https://doi.org/10.1016/j.memsci.2016.12.039
91 B. Dong,, W.J. Wang,, W. Pan,, G.J. Kang,: Ionic liquid as a green solvent for ionothermal synthesis of 2D keto-enamine-linked covalent organic frameworks. Mater. Chem. Phys. 226, 244–249 (2019)
https://doi.org/10.1016/j.matchemphys.2019.01.032
92 J.K. Qiu,, H.Y. Wang,, Y.L. Zhao,, P.X. Guan,, Z.Y. Li,, H.C. Zhang,, H.S. Gao,, S.J. Zhang,, J.J. Wang,: Hierarchically porous covalent organic frameworks assembled in ionic liquids for highly effective catalysis of C-C coupling reactions. Green Chem. 22(8), 2605–2612 (2020)
https://doi.org/10.1039/D0GC00223B
93 L.M. Zhao,, H.M. Liu,, Y. Du,, X. Liang,, W.J. Wang,, H. Zhao,, W.Z. Li,: An ionic liquid as a green solvent for high potency synthesis of 2D covalent organic frameworks. New J. Chem. 44(36), 15410–15414 (2020)
https://doi.org/10.1039/D0NJ01478H
94 J. Thote,, H. BarikeAiyappa,, R. Rahul Kumar,, S. Kandambeth,, B.P. Biswal,, D. Balaji Shinde,, N. Chaki Roy,, R. Banerjee,: Constructing covalent organic frameworks in water via dynamic covalent bonding. Int. Union Crystallogr. 3(Pt 6), 402–407 (2016)
https://doi.org/10.1107/S2052252516013762
95 J. Lu,, F. Lin,, Q. Wen,, Q.Y. Qi,, J.Q. Xu,, X. Zhao,: Large-scale synthesis of azine-linked covalent organic frameworks in water and promoted by water. N. J. Chem. 43(16), 6116–6120 (2019)
https://doi.org/10.1039/C9NJ00830F
96 C.R. DeBlase,, K. Hernández-Burgos,, K.E. Silberstein,, G.G. Rodríguez-Calero,, R.P. Bisbey,, H.D. Abruña,, W.R. Dichtel,: Rapid and efficient redox processes within 2D covalent organic framework thin films. ACS Nano 9(3), 3178–3183 (2015)
https://doi.org/10.1021/acsnano.5b00184
97 R. Wang,, M.J. Wei,, Y. Wang,: Secondary growth of covalent organic frameworks (COFs) on porous substrates for fast desalination. J. Membr. Sci. 604, 118090 (2020)
https://doi.org/10.1016/j.memsci.2020.118090
98 G.H. Liu,, Z.Y. Jiang,, H. Yang,, C.D. Li,, H.J. Wang,, M.D. Wang,, Y.M. Song,, H. Wu,, F.S. Pan,: High-efficiency water-selective membranes from the solution-diffusion synergy of calcium alginate layer and covalent organic framework (COF) layer. J. Membr. Sci. 572, 557–566 (2019)
https://doi.org/10.1016/j.memsci.2018.11.040
99 S. Kandambeth,, B.P. Biswal,, H.D. Chaudhari,, K.C. Rout,, H.S. Kunjattu,, S. Mitra,, S. Karak,, A. Das,, R. Mukherjee,, U.K. Kharul,, R. Banerjee,: Selective molecular sieving in self-standing porous covalent-organic-framework membranes. Adv. Mater. 29(2), 1603945 (2017)
https://doi.org/10.1002/adma.201603945
100 K. Dey,, S. Bhunia,, H.S. Sasmal,, C.M. Reddy,, R. Banerjee,: Self-assembly-driven nanomechanics in porous covalent organic framework thin films. J. Am. Chem. Soc. 143(2), 955–963 (2021)
https://doi.org/10.1021/jacs.0c11122
101 K. Dey,, M. Pal,, K.C. Rout,, H.S. Kunjattu,, A. Das,, R. Mukherjee,, U.K. Kharul,, R. Banerjee,: Selective molecular separation by interfacially crystallized covalent organic framework thin films. J. Am. Chem. Soc. 139(37), 13083–13091 (2017)
https://doi.org/10.1021/jacs.7b06640
102 Y. Li,, Q. Wu,, X. Guo,, M. Zhang,, B. Chen,, G. Wei,, X. Li,, X. Li,, S. Li,, L. Ma,: Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving. Nat. Commun. 11(1), 599 (2020)
https://doi.org/10.1038/s41467-019-14056-7
103 Z.X. Kang,, Y.W. Peng,, Y.H. Qian,, D.Q. Yuan,, M.A. Addicoat,, T. Heine,, Z.G. Hu,, Z. Tee,, Z.G. Guo,, D. Zhao,: Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem. Mater. 28(5), 1277–1285 (2016)
https://doi.org/10.1021/acs.chemmater.5b02902
104 R. Shen,, L. Huang,, R. Liu,, Q. Shuai,: Determination of sulfonamides in meat by monolithic covalent organic frameworks based solid phase extraction coupled with high-performance liquid chromatography-mass spectrometric. J. Chromatogr. A 1655, 462518 (2021)
https://doi.org/10.1016/j.chroma.2021.462518
105 S. Karak,, K. Dey,, A. Torris,, A. Halder,, S. Bera,, F. Kanheerampockil,, R. Banerjee,: Inducing disorder in order: hierar-chically porous covalent organic framework nanostructures for rapid removal of persistent organic pollutants. J. Am. Chem. Soc. 141(18), 7572–7581 (2019)
https://doi.org/10.1021/jacs.9b02706
106 R. Liu,, Q. Yan,, Y. Tang,, R. Liu,, L. Huang,, Q. Shuai,: NaCl template-assisted synthesis of self-floating COFs foams for the efficient removal of sulfamerazine. J. Hazard. Mater. 421, 126702 (2022)
https://doi.org/10.1016/j.jhazmat.2021.126702
107 S. Zhang,, X. Wu,, C. Ma,, Y. Li,, J. You,: Cationic surfactant modified 3D COF and its application in the adsorption of UV filters and alkylphenols from food packaging material migrants. J. Agric. Food Chem. 68(11), 3663–3669 (2020)
https://doi.org/10.1021/acs.jafc.9b07542
108 W.R. Cui,, C.R. Zhang,, W. Jiang,, R.P. Liang,, J.D. Qiu,: Covalent organic framework nanosheets for fluorescence sensing via metal coordination. ACS Appl. Nano Mater. 2(8), 5342–5349 (2019)
https://doi.org/10.1021/acsanm.9b01366
109 W.R. Cui,, C.R. Zhang,, W. Jing,, R.P. Liang,, S.H. Wen,, D. Peng,, J.D. Qiu,: Covalent organic framework nanosheet-based ultrasensitive and selective colorimetric sensor for trace Hg2+ detection. ACS Sustain. Chem. Eng. 7(10), 9408–9415 (2019)
https://doi.org/10.1021/acssuschemeng.9b00613
110 A. Manna,, A.K. Maharana,, G. Rambabu,, S. Nayak,, S. Basu,, S. Das,: Dithia-crown-ether integrated self-exfoliated polymeric covalent organic nanosheets for selective sensing and removal of mercury. ACS Appl. Polym. Mater. 3(11), 5527–5535 (2021)
https://doi.org/10.1021/acsapm.1c00846
111 D. Kaleeswaran,, P. Vishnoi,, R. Murugavel,: [3+3] Imine and β-ketoenamine-tethered fluorescent covalent-organic frameworks for CO2 uptake and nitroaromatic sensing. J. Mater. Chem. C Mater. Opt. Electron. Devices 3(27), 7159–7171 (2015)
https://doi.org/10.1039/C5TC00670H
112 A. Mal,, R.K. Mishra,, V.K. Praveen,, M.A. Khayum,, R. Banerjee,, A. Ajayaghosh,: Supramolecular reassembly of self-exfoliated ionic covalent organic nanosheets for label-free detection of double-stranded DNA. Angew. Chem. Int. Ed. 57(28), 8443–8447 (2018)
https://doi.org/10.1002/anie.201801352
113 P. Wang,, F. Zhou,, C. Zhang,, S.Y. Yin,, L. Teng,, L. Chen,, X.X. Hu,, H.W. Liu,, X. Yin,, X.B. Zhang,: Ultrathin two-dimensional covalent organic framework nanoprobe for interference-resistant two-photon fluorescence bioimaging. Chem. Sci. (Cambridge) 9(44), 8402–8408 (2018)
https://doi.org/10.1039/C8SC03393E
114 J.M. Wang,, X. Lian,, B. Yan,: Eu3+-functionalized covalent organic framework hybrid material as a sensitive turn-on fluorescent switch for levofloxacin monitoring in serum and urine. Inorg. Chem. 58(15), 9956–9963 (2019)
https://doi.org/10.1021/acs.inorgchem.9b01106
115 J. Wang,, B. Yan,: Improving covalent organic frameworks fluorescence by triethylamine pinpoint surgery as selective biomarker sensor for diabetes mellitus diagnosis. Anal. Chem. 91(20), 13183–13190 (2019)
https://doi.org/10.1021/acs.analchem.9b03534
116 Y. Zhang,, X. Shen,, X. Feng,, H. Xia,, Y. Mu,, X. Liu,: Covalent organic frameworks as pH responsive signaling scaffolds. Chem. Commun. (Cambridge) 52(74), 11088–11091 (2016)
https://doi.org/10.1039/C6CC05748A
117 H.Q. Yin,, F. Yin,, X.B. Yin,: Strong dual emission in covalent organic frameworks induced by ESIPT. Chem. Sci. (Cambridge) 10(48), 11103–11109 (2019)
https://doi.org/10.1039/C9SC03040A
118 C.R. Mulzer,, L. Shen,, R.P. Bisbey,, J.R. McKone,, N. Zhang,, H.D. Abruña,, W.R. Dichtel,: Superior charge storage and power density of a conducting polymer-modified covalent organic framework. ACS Cent. Sci. 2(9), 667–673 (2016)
https://doi.org/10.1021/acscentsci.6b00220
119 Y. Wu,, D. Yan,, Z. Zhang,, M.M. Matsushita,, K. Awaga,: Electron highways into nanochannels of covalent organic frameworks for high electrical conductivity and energy storage. ACS Appl. Mater. Interfaces. 11(8), 7661–7665 (2019)
https://doi.org/10.1021/acsami.8b21696
120 Y. Xu,, Z. Lin,, X. Huang,, Y. Wang,, Y. Huang,, X. Duan,: Functionalized graphene hydrogel-based high-performance supercapacitors. Adv. Mater. 25(40), 5779–5784 (2013)
https://doi.org/10.1002/adma.201301928
121 S. Chandra,, D.R. Chowdhury,, M. Addicoat,, T. Heine,, A. Paul,, R. Banerjee,: Molecular level control of the capacitance of two-dimensional covalent organic frameworks: role of hydrogen bonding in energy storage materials. Chem. Mater. 29(5), 2074–2080 (2017)
https://doi.org/10.1021/acs.chemmater.6b04178
122 A. Halder,, M. Ghosh,, M.A. Khayum,, S. Bera,, M. Addicoat,, H.S. Sasmal,, S. Karak,, S. Kurungot,, R. Banerjee,: Interlayer hydrogen-bonded covalent organic frameworks as high-performance supercapacitors. J. Am. Chem. Soc. 140(35), 10941–10945 (2018)
https://doi.org/10.1021/jacs.8b06460
123 Y. He,, W. Chen,, X. Li,, Z. Zhang,, J. Fu,, C. Zhao,, E. Xie,: Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7(1), 174–182 (2013)
https://doi.org/10.1021/nn304833s
124 W. Niu,, J. Liu,, Y. Mai,, K. Müllen,, X. Feng,: Synthetic engineering of graphene nanoribbons with excellent liquid-phase processability. Trends Chem. 1(6), 549–558 (2019)
https://doi.org/10.1016/j.trechm.2019.06.008
125 W. Niu,, J. Ma,, P. Soltani,, W. Zheng,, F. Liu,, A.A. Popov,, J.J. Weigand,, H. Komber,, E. Poliani,, C. Casiraghi,, J. Droste,, M.R. Hansen,, S. Osella,, D. Beljonne,, M. Bonn,, H.I. Wang,, X. Feng,, J. Liu,, Y. Mai,: A curved graphene nanoribbon with multi-edge structure and high intrinsic charge carrier mobility. J. Am. Chem. Soc. 142(43), 18293–18298 (2020)
https://doi.org/10.1021/jacs.0c07013
126 M.A. Khayum,, V. Vijayakumar,, S. Karak,, S. Kandambeth,, M. Bhadra,, K. Suresh,, N. Acharambath,, S. Kurungot,, R. Banerjee,: Convergent covalent organic framework thin sheets as flexible supercapacitor electrodes. ACS Appl. Mater. Interfaces. 10(33), 28139–28146 (2018)
https://doi.org/10.1021/acsami.8b10486
127 R.K. Sharma,, P. Yadav,, M. Yadav,, R. Gupta,, P. Rana,, A. Srivastava,, R. Zbořil,, R.S. Varma,, M. Antonietti,, M.B. Gawande,: Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Mater. Horiz. 7(2), 411–454 (2020)
https://doi.org/10.1039/C9MH00856J
128 P. Pachfule,, A. Acharjya,, J. Roeser,, T. Langenhahn,, M. Schwarze,, R. Schomäcker,, A. Thomas,, J. Schmidt,: Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J. Am. Chem. Soc. 140(4), 1423–1427 (2018)
https://doi.org/10.1021/jacs.7b11255
129 J.L. Sheng,, H. Dong,, X.B. Meng,, H.L. Tang,, Y.H. Yao,, D.Q. Liu,, L.L. Bai,, F.M. Zhang,, J.Z. Wei,, X.J. Sun,: Effect of different functional groups on photocatalytic hydrogen evolution in covalent-organic frameworks. ChemCatChem 11(9), 2313–2319 (2019)
https://doi.org/10.1002/cctc.201900058
130 X. Wang,, L. Chen,, S.Y. Chong,, M.A. Little,, Y. Wu,, W.H. Zhu,, R. Clowes,, Y. Yan,, M.A. Zwijnenburg,, R.S. Sprick,, A.I. Cooper,: Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 10(12), 1180–1189 (2018)
https://doi.org/10.1038/s41557-018-0141-5
131 J. Thote,, H.B. Aiyappa,, A. Deshpande,, D. Díaz Díaz,, S. Kurungot,, R. Banerjee,: A covalent organic framework-cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production. Chemistry (Weinheim an der Bergstrasse, Germany) 20(48), 15961–15965 (2014)
https://doi.org/10.1002/chem.201403800
132 F.M. Zhang,, J.L. Sheng,, Z.D. Yang,, X.J. Sun,, H.L. Tang,, M. Lu,, H. Dong,, F.C. Shen,, J. Liu,, Y.Q. Lan,: Rational design MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew. Chem. Commun. 57(37), 12106–12110 (2018)
https://doi.org/10.1002/anie.201806862
133 M.L. Luo,, Q. Yang,, K.W. Liu,, H.M. Cao,, H.J. Yan,: Boosting photocatalytic H2 evolution on g-C3N4 via covalent organic frameworks (COFs) modifying. Chem. Commun. 55(41), 5829–5832 (2019)
https://doi.org/10.1039/C9CC02144B
134 J. Ming,, A. Liu,, J. Zhao,, P. Zhang,, H. Huang,, H. Lin,, Z. Xu,, X. Zhang,, X. Wang,, J. Hofkens,, M.B.J. Roeffaers,, J. Long,: Hot π-electron tunneling of metal insulator-COF nanostructures for efficient hydrogen production. Angew. Chem. Commun. 58(50), 18290–18294 (2019)
https://doi.org/10.1002/anie.201912344
135 W. Zhong,, R. Sa,, L. Li,, Y. He,, L. Li,, J. Bi,, Z. Zhuang,, Y. Yu,, Z. Zou,: A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 141(18), 7615–7621 (2019)
https://doi.org/10.1021/jacs.9b02997
136 Z.L. Liu,, Y.Q. Huang,, S.Q. Chang,, X.L. Zhu,, Y.H. Fu,, R. Ma,, X.Q. Lu,, F.M. Zhang,, W.D. Zhu,, M.H. Fan,: Highly dispersed Ru nanoparticles on a bipyridinelinked covalent organic framework for efficient photocatalytic CO2 reduction. Sustain. Energy Fuels 5(11), 2871–2876 (2021)
https://doi.org/10.1039/D1SE00358E
137 K. Guo,, X.L. Zhu,, L.L. Peng,, Y.H. Fu,, R. Ma,, X.Q. Lu,, F.M. Zhang,, W.D. Zhu,, M.H. Fan,: Boosting photocatalytic CO2 reduction over a covalent organic framework decorated with ruthenium nanoparticles. Chem. Eng. J. 405, 1270–1278 (2021)
https://doi.org/10.1016/j.cej.2020.127011
138 H. Lv,, X. Zhao,, H. Niu,, S. He,, Z. Tang,, F. Wu,, J.P. Giesy,: Ball milling synthesis of covalent organic framework as a highly active photocatalyst for degradation of organic contaminants. J. Hazard. Mater. 369, 494–502 (2019)
https://doi.org/10.1016/j.jhazmat.2019.02.046
139 Y. Cao,, W. Liu,, J. Qian,, T. Cao,, J. Wang,, W. Qin,: Porous organic polymers containing sulfur skeleton for visible light degradation of organic dyes. Chem. Asian J. 14(16), 2883–2888 (2019)
https://doi.org/10.1002/asia.201900477
140 B.C. Patra,, S. Khilari,, R.N. Manna,, S. Mondal,, D. Pradhan,, A. Pradhan,, A. Bhaumik,: A metal-free covalent organic polymer for electrocatalytic hydrogen evolution. ACS Catal. 7(9), 6120–6127 (2017)
https://doi.org/10.1021/acscatal.7b01067
141 X. Zhao,, P. Pachfule,, A. Thomas,: Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev. 50(12), 6871–6913 (2021)
https://doi.org/10.1039/D0CS01569E
142 H.B. Aiyappa,, J. Thote,, D.B. Shinde,, R. Banerjee,, S. Kurungot,: Cobalt-modified covalent organic framework as a robust water oxidation electrocatalyst. Chem. Mater. 28(12), 4375–4379 (2016)
https://doi.org/10.1021/acs.chemmater.6b01370
143 Z. Gao,, Z.W. Yu,, Y.X. Huang,, X.Q. He,, X.M. Su,, L.H. Xiao,, Y. Yu,, X.H. Huang,, F. Luo,: Flexible and robust bimetallic covalent organic frameworks for the reversible switching of electrocatalytic oxygen evolution activity. J. Mater. Chem. A Mater. Energy Sustain. 8(12), 5907–5912 (2020)
https://doi.org/10.1039/C9TA14023A
144 X. Zhao,, P. Pachfule,, S. Li,, T. Langenhahn,, M. Ye,, C. Schlesiger,, S. Praetz,, J. Schmidt,, A. Thomas,: Macro/microporous covalent organic frameworks for efficient electrocatalysis. J. Am. Chem. Soc. 141(16), 6623–6630 (2019)
https://doi.org/10.1021/jacs.9b01226
145 X. Zhao,, P. Pachfule,, S. Li,, T. Langenhahn,, M. Ye,, G. Tian,, J. Schmidt,, A. Thomas,: Silica-templated covalent organic framework-derived Fe-N-doped mesoporous carbon as oxygen reduction electrocatalyst. Chem. Mater. 31(9), 3274–3280 (2019)
https://doi.org/10.1021/acs.chemmater.9b00204
146 S. Gu,, S. Wu,, L. Cao,, M. Li,, N. Qin,, J. Zhu,, Z. Wang,, Y. Li,, Z. Li,, J. Chen,, Z. Lu,: Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries. J. Am. Chem. Soc. 141(24), 9623–9628 (2019)
https://doi.org/10.1021/jacs.9b03467
147 S. Chandra,, T. Kundu,, S. Kandambeth,, R. Babarao,, Y. Marathe,, S.M. Kunjir,, R. Banerjee,: Phosphoric acid loaded azo (–N═N–) based covalent organic framework for proton conduction. J. Am. Chem. Soc. 136(18), 6570–6573 (2014)
https://doi.org/10.1021/ja502212v
148 S. Chandra,, T. Kundu,, K. Dey,, M. Addicoat,, T. Heine,, R. Banerjee,: Interplaying intrinsic and extrinsic proton conductivities in covalent organic frameworks. Chem. Mater. 28(5), 1489–1494 (2016)
https://doi.org/10.1021/acs.chemmater.5b04947
[1] Jing Zhang, Chen Wang, Yunkang Chen, Yudiao Xiang, Tianye Huang, Perry Ping Shum, Zhichao Wu. Fiber structures and material science in optical fiber magnetic field sensors[J]. Front. Optoelectron., 2022, 15(3): 34-.
[2] Muhammad Noaman ZAHID, Jianliang JIANG, Saad RIZVI. Reflectometric and interferometric fiber optic sensor’s principles and applications[J]. Front. Optoelectron., 2019, 12(2): 215-226.
[3] Tieshan YANG, Han LIN, Baohua JIA. Two-dimensional material functional devices enabled by direct laser fabrication[J]. Front. Optoelectron., 2018, 11(1): 2-22.
[4] Yi HE, Zhengwu CHEN, Zha LI, Guangda NIU, Jiang TANG. Non-thermal plasma fixing of nitrogen into nitrate: solution for renewable electricity storage?[J]. Front. Optoelectron., 2018, 11(1): 92-96.
[5] Ayad KAKEI, Jayantha A. EPAARACHCHI. Use of fiber Bragg grating sensors for monitoring delamination damage propagation in glass-fiber reinforced composite structures[J]. Front. Optoelectron., 2018, 11(1): 60-68.
[6] Zhenzhou CHENG,Changyuan QIN,Fengqiu WANG,Hao HE,Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications[J]. Front. Optoelectron., 2016, 9(2): 259-269.
[7] Yue QIAN,Rong LIU,Xiujuan JIN,Bin LIU,Xianfu WANG,Jin XU,Zhuoran WANG,Gui CHEN,Junfeng CHAO. Optimised synthesis of close packed ZnO cloth and its applications in Li-ion batteries and dye-sensitized solar cells[J]. Front. Optoelectron., 2015, 8(2): 220-228.
[8] Kaushik BRAHMACHARI, Mina RAY. Effect of prism material on design of surface plasmon resonance sensor by admittance loci method[J]. Front Optoelec, 2013, 6(2): 185-193.
[9] Wei JIN, Jian JU, Hoi Lut HO, Yeuk Lai HOO, Ailing ZHANG. Photonic crystal fibers, devices, and applications[J]. Front Optoelec, 2013, 6(1): 3-24.
[10] Jinjie CHEN, Bo LIU, Hao ZHANG. Review of fiber Bragg grating sensor technology[J]. Front Optoelec Chin, 2011, 4(2): 204-212.
[11] Changkui HU, Deming LIU. Transmission-type SPR sensor based on coupling of surface plasmons to radiation modes using a dielectric grating[J]. Front Optoelec Chin, 2009, 2(2): 182-186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed