Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2013, Vol. 6 Issue (2) : 185-193    https://doi.org/10.1007/s12200-013-0313-2
RESEARCH ARTICLE
Effect of prism material on design of surface plasmon resonance sensor by admittance loci method
Kaushik BRAHMACHARI, Mina RAY()
Department of Applied Optics and Photonics, University of Calcutta, Kolkata 700 009, India
 Download: PDF(470 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A theoretical study on the design of surface plasmon resonance (SPR) based sensor by admittance loci method has been reported in this paper with the main emphasis being given to the effect of the prism material in a conventional Kretschmann structure in attenuated total internal reflection (ATIR) mode. Several sensing media such as water, acetone, methanol etc have been investigated using different types of prism materials to study their effect on SPR sensing and validated by corresponding admittance loci plots as well as respective SPR curves. The performance of the sensor based on choice of the prism material has been discussed with the help of sensitivity plots giving due to the importance of dynamic range of the designed sensor. Simulations have been carried out in MATLAB 7.1 environment.

Keywords admittance loci method      surface plasmon resonance (SPR)      thin film      sensors      multilayer structure     
Corresponding Author(s): RAY Mina,Email:mraphy@caluniv.ac.in   
Issue Date: 05 June 2013
 Cite this article:   
Kaushik BRAHMACHARI,Mina RAY. Effect of prism material on design of surface plasmon resonance sensor by admittance loci method[J]. Front Optoelec, 2013, 6(2): 185-193.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-013-0313-2
https://academic.hep.com.cn/foe/EN/Y2013/V6/I2/185
Fig.1  Multilayer structure consisting of incident medium (glass prism), thin film and sample
Fig.2  Admittance loci plot of 3-layer structure with isoreflectance contours for glass prisms (a) BK7; (b) SF10; and (c) BK7 (without isoreflectance contours) for gold film thicknesses of 45, 50and 55 nm, respectively
Fig.3  Admittance loci plot of 3-layer structure for BK7, SF5 and SF11 glass prisms with (a) water; (b) methanol and (c) acetone as samples
glass prismsamples
wateracetonemethanol
ηsiηerθiηsiηerθiηsiηerθi
BK70.832i1.492,-0.03742i73.960.5855i1.249,-0.2538i78.910.8749i1.525,-0.008716i73.09
BAK11.092i1.528,0.09669i68.380.9277i1.492,0.002443i71.851.123i1.544,0.1094i67.72
BAF101.407i1.663,0.1348i61.321.296i1.67,0.09242i63.811.425i1.606,0.1358i60.87
SF51.409i1.64,0.1331i61.251.297i1.624,0.09427i63.751.429i1.617,0.137i60.78
SF101.536i1.643,0.1264i58.181.442i1.662,0.1012i60.371.555i1.64,0.1303i57.75
SF111.649i1.705,0.1243i55.441.563i1.695,0.09822i57.431.67i1.762,0.1402i55.02
Tab.1  Values of admittance and angle of incidence for different samples and prism materials
materialsrefractive index
BK7 glass1.51508
BAK1 glass1.5704
BAF10 glass1.66707
SF5 glass1.66846
SF10 glass1.72312
SF11 glass1.77858
Gold (Au)0.16172+ 3.21182i
water1.33168
methanol1.32634
acetone1.35781
Tab.2  Refractive indices of different materials
Fig.4  SPR curves for (a) BK7, SF5 and SF11, each with three samples indicated in the legend and (b) all prism materials with water as the reference sample
glass prismsamples
wateracetonemethanol
SPR angle/ (o)angular shift/ (o) w.r.t waterFWHM/ (o)SPR angle/ (o)angular shift/ (o) w.r.t waterFWHM / (o)SPR angle/ (o)angular shift/ (o) w.r.t waterFWHM/ (o)
BK773.9906.9178.914.927.9273.110.886.72
BAK168.3405.9571.783.446.7167.690.655.8
BAF1061.3204.8363.812.495.3360.840.484.72
SF561.2404.8363.722.485.3460.760.484.73
SF1058.1404.3760.342.24.8157.710.434.32
SF1155.4204.0257.391.974.4355.020.43.94
Tab.3  Values of SPR angle, angular shift and FWHM for different glass materials for three samples
Fig.5  Plot of (a) FWHM; (b) SPR angle; (c) angular shift vs. glass prism refractive indices for three samples and (d) SPR angle; (e) Sensitivity vs. sample refractive index for three prism materials
sample refractive indexglass prisms
BK7SF5SF11
SPR angle/ (o)angular shift/ (o)sensitivity/( o ?RIU-1)SPR angle/ (o)angular shift/ (o)sensitivity /( o?RIU-1)SPR angle/ (o)angular shift/ (o)sensitivity/( o?RIU-1)
1.3373.680061.090055.300
1.3475.41.7217262.010.929256.040.7474
1.3577.253.5735762.961.8718756.781.48148
1.3679.435.7557563.942.8528557.572.27227
1.3781.958.2782764.973.8838858.373.07307
1.3884.6811110066.014.9249259.193.89389
Tab.4  Values of SPR angle, angular shift and sensitivity for three glass materials for different samples
1 Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift fur Physik , 1968, 216(4): 398–410
doi: 10.1007/BF01391532
2 Kretschmann E, Raether H. Radiative decay of non-radiative surface plasmons excited by light. Zeitschrift fur Naturforschung. Teil B. Anorganische Chemie, Organische Chemie, Biochemie, Biophysik, Biologie , 1968, 23A: 2135–2136
3 Liedberg B, Nylander C, Lunstr?m I. Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators , 1983, 4: 299–304
doi: 10.1016/0250-6874(83)85036-7
4 Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensor: review. Sensors and Actuators B, Chemical , 1994, 54(1-2): 3–15
doi: 10.1016/S0925-4005(98)00321-9
5 Homola J, Koudela I, Yee S S. Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sensors and Actuators B, Chemical , 1999, 54(1-2): 16–24
doi: 10.1016/S0925-4005(98)00322-0
6 Brahmachari K, Ghosh S, Ray M. Experimental observation of surface plasmon resonance using various geometrical configurations of metal-dielectric interface. In: Proceedings of the International symposium on Advances in Nanomaterials, CSIR-Central Glass & Ceramic Research Institute, Kolkata , 2010
7 Ghosh S, Brahmachari K, Ray M. Experimental investigation of surface plasmon resonance using a chemically deposited silver film on a tapered cylindrical glass rod. In: Proceedings of the International Conference on Specialty Glass & Optical Fiber: Materials, Technology & Devices, CSIR-Central Glass & Ceramic Research Institute , 2011
8 Ghosh S, Brahmachari K, Ray M. Experimental investigation of surface plasmon resonance using tapered cylindrical light guides with metal-dielectric interface. Journal of Sensor Technology , 2012, 2(1): 48–54
doi: 10.4236/jst.2012.21007
9 Macleod A H. Thin-Film Optical Filters. 4th ed. New York: CRC Press, 2010
10 Lin W C, Chen P K, Su C M, Lee K C, Yang C C. Bio-plasmonics: nano/micro structure of surface plasmon resonance devices for biomedicine. Optical and Quantum Electronics , 2005, 37(13-15): 1423–1437
doi: 10.1007/s11082-005-4222-5
11 Lin W C, Chen P K, Su C M, Hsiao C T, Lee S S, Lin S, Shi J X, Lee K C. Admittance loci design method for multilayer surface plasmon resonance devices. Sensors and Actuators B, Chemical , 2006, 117(1): 219–229
doi: 10.1016/j.snb.2005.11.030
12 Lin W C, Chen P K, Hsiao N C, Lin S, Lee K C. Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor. Sensors and Actuators B, Chemical , 2006, 113(1): 169–176
doi: 10.1016/j.snb.2005.02.044
13 Jen Y J, Lakhtakia A, Yu C W, Chan T Y. Multilayered structures for p- and s-polarized long-range surface-plasmon-polariton propagation. Journal of the Optical Society of America A, Optics, Image Science, and Vision , 2009, 26(12): 2600–2606
doi: 10.1364/JOSAA.26.002600 pmid:19956330
14 Brahmachari K, Ghosh S, Ray M. Application of admittance loci method in surface plasmon resonance technology for sensing of different chemical and biological samples. In: Proceedings of the International Conference on Specialty Glass & Optical Fiber: Materials, Technology & Devices , 2011
15 Brahmachari K, Ghosh S, Ray M. Substrate dependence of surface plasmon resonance sensor with a multilayer structure using admittance loci method. In: Proceedings of 2nd International Conference on Trends in Optics and Photonics , 2011, 402–407
16 Brahmachari K, Ghosh S, Ray M. Surface plasmon resonance based sensing of different chemical and biological samples using admittance loci method. Photonic Sensors , 2012 pmid:10.1007/s13320-012-0062-7" target="blank">
doi: 10.1007/s13320-012-0062-7
pmid:10.1007/s13320-012-0062-7" target="blank">
doi: 10.1007/s13320-012-0062-7
17 Chen Y, Ming H. Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sensors , 2012, 2(1): 37–49
doi: 10.1007/s13320-011-0051-2
18 Micheletto R, Hamamoto K, Fuji T, Kawakami Y. Tenfold improved sensitivity using high refractive-index substrates for surface plasmon sensing. Applied Physics Letters , 2008, 93(17): 1741041–1741043
doi: 10.1063/1.3005584
19 Gupta G, Kondoh J. Tuning and sensitivity enhancement of surface plasmon resonance sensor. Sensors and Actuators B, Chemical , 2007, 122(2): 381–388
doi: 10.1016/j.snb.2006.06.005
[1] Briliant Adhi PRABOWO, I Dewa Putu HERMIDA, Robeth Viktoria MANURUNG, Agnes PURWIDYANTRI, Kou-Chen LIU. Nano-film aluminum-gold for ultra-high dynamic-range surface plasmon resonance chemical sensor[J]. Front. Optoelectron., 2019, 12(3): 286-295.
[2] Md. Nazmul HOSSEN, Md. FERDOUS, Kawsar AHMED, Md. Abdul KHALEK, Sujan CHAKMA, Bikash Kumar PAUL. Single polarization photonic crystal fiber filter based on surface plasmon resonance[J]. Front. Optoelectron., 2019, 12(2): 157-164.
[3] Muhammad Noaman ZAHID, Jianliang JIANG, Saad RIZVI. Reflectometric and interferometric fiber optic sensor’s principles and applications[J]. Front. Optoelectron., 2019, 12(2): 215-226.
[4] Ayad KAKEI, Jayantha A. EPAARACHCHI. Use of fiber Bragg grating sensors for monitoring delamination damage propagation in glass-fiber reinforced composite structures[J]. Front. Optoelectron., 2018, 11(1): 60-68.
[5] Yan DENG, Jian OU, Jiangying YU, Min ZHANG, Li ZHANG. Coupled two aluminum nanorod antennas for near-field enhancement[J]. Front. Optoelectron., 2017, 10(2): 138-143.
[6] Zhenzhou CHENG,Changyuan QIN,Fengqiu WANG,Hao HE,Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications[J]. Front. Optoelectron., 2016, 9(2): 259-269.
[7] Yajuan ZHENG, Xiangbin ZENG, Xiaohu SUN, Diqiu HUANG. Influence of substrate temperature on in situ-textured ZnO thin films grown by MOCVD[J]. Front Optoelec, 2013, 6(3): 270-274.
[8] Kan YU, Juanjuan YIN, Jiaqi BAO. Reflected-intensity distribution of angle-tuned thin film filter based on frequency recursive algorithm[J]. Front Optoelec, 2013, 6(2): 175-179.
[9] Sijun WENG, Li PEI, Ruifeng ZHAO, Junjie YANG, Yiqun WANG. Optical devices based on multilayer optical waveguide[J]. Front Optoelec, 2013, 6(2): 146-152.
[10] Wei JIN, Jian JU, Hoi Lut HO, Yeuk Lai HOO, Ailing ZHANG. Photonic crystal fibers, devices, and applications[J]. Front Optoelec, 2013, 6(1): 3-24.
[11] Diqiu HUANG, Xiangbin ZENG, Yajuan ZHENG, Xiaojin WANG, Yanyan YANG. Influence of process parameters on band gap of Al-doped ZnO film[J]. Front Optoelec, 2013, 6(1): 114-121.
[12] Davinder RATHEE, Sandeep K ARYA, Mukesh KUMAR. Analysis of TiO2 for microelectronic applications: effect of deposition methods on their electrical properties[J]. Front Optoelec Chin, 2011, 4(4): 349-358.
[13] Jinjie CHEN, Bo LIU, Hao ZHANG. Review of fiber Bragg grating sensor technology[J]. Front Optoelec Chin, 2011, 4(2): 204-212.
[14] Changkui HU, Deming LIU. Transmission-type SPR sensor based on coupling of surface plasmons to radiation modes using a dielectric grating[J]. Front Optoelec Chin, 2009, 2(2): 182-186.
[15] Jingtao ZHU, Da XU, Shumin ZHANG, Wenjuan WU, Zhong ZHANG, Fengli WANG, Bei WANG, Cunxia LI, Yao XU, Zhanshan WANG, Lingyan CHEN, Hongjun ZHOU, Tonglin HUO. SiC/Mg multilayer reflective mirror for He-II radiation at 30.4 nm and its thermal stability[J]. Front Optoelec Chin, 2008, 1(3-4): 305-308.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed