Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2022, Vol. 15 Issue (3) : 31    https://doi.org/10.1007/s12200-022-00036-1
RESEARCH ARTICLE
Ghost edge detection based on HED network
Shengmei Zhao1,2(), Yifang Cui1, Xing He1, Le Wang1()
1. Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210003, China
2. Key Lab of Broadband Wireless Communication and Sensor Network Technology (NUPT), Ministry of Education, Nanjing 210003, China
 Download: PDF(2601 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we present an edge detection scheme based on ghost imaging (GI) with a holistically-nested neural network. The so-called holistically-nested edge detection (HED) network is adopted to combine the fully convolutional neural network (CNN) with deep supervision to learn image edges effectively. Simulated data are used to train the HED network, and the unknown object’s edge information is reconstructed from the experimental data. The experiment results show that, when the compression ratio (CR) is 12.5%, this scheme can obtain a high-quality edge information with a sub-Nyquist sampling ratio and has a better performance than those using speckle-shifting GI (SSGI), compressed ghost edge imaging (CGEI) and subpixel-shifted GI (SPSGI). Indeed, the proposed scheme can have a good signal-to-noise ratio performance even if the sub-Nyquist sampling ratio is greater than 5.45%. Since the HED network is trained by numerical simulations before the experiment, this proposed method provides a promising way for achieving edge detection with small measurement times and low time cost.

Keywords Edge detection      Ghost imaging (GI)      Holistically-nested neural network      Compression ratio (CR)      Signal-to-noise ratio (SNR)     
Corresponding Author(s): Shengmei Zhao,Le Wang   
About author: Tongcan Cui and Yizhe Hou contributed equally to this work.
Issue Date: 23 August 2022
 Cite this article:   
Shengmei Zhao,Yifang Cui,Xing He, et al. Ghost edge detection based on HED network[J]. Front. Optoelectron., 2022, 15(3): 31.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-022-00036-1
https://academic.hep.com.cn/foe/EN/Y2022/V15/I3/31
1 M.J. Padgett,, R.W. Boyd,: An introduction to ghost imaging: quantum and classical. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 375(2099), 20160233 (2017)
https://doi.org/10.1098/rsta.2016.0233
2 J.H. Shapiro,, R.W. Boyd,: The physics of ghost imaging. Quant. Inform. Process. 11(4), 949–993 (2012)
https://doi.org/10.1007/s11128-011-0356-5
3 T.B. Pittman,, Y.H. Shih,, D.V. Strekalov,, A.V. Sergienko,: Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52(5), R3429–R3432 (1995)
https://doi.org/10.1103/PhysRevA.52.R3429
4 R.S. Bennink,, S.J. Bentley,, R.W. Boyd,: „Two-Photon” coincidence imaging with a classical source. Phys. Rev. Lett. 89(11), 113601 (2002)
https://doi.org/10.1103/PhysRevLett.89.113601
5 A. Valencia,, G. Scarcelli,, M. D’Angelo,, Y. Shih,: Two-photon imaging with thermal light. Phys Rev Lett. 94(6), 063601 (2005)
https://doi.org/10.1103/PhysRevLett.94.063601
6 X.F. Liu,, X.H. Chen,, X.R. Yao,, W.K. Yu,, G.J. Zhai,, L.A. Wu,: Lensless ghost imaging with sunlight. Opt. Lett. 39(8), 2314–2317 (2014)
https://doi.org/10.1364/OL.39.002314
7 J.H. Shapiro,: Computational ghost imaging. Phys. Rev. A 78(6), 061802 (2008)
https://doi.org/10.1103/PhysRevA.78.061802
8 C. Deng,, W. Gong,, S. Han,: Pulse-compression ghost imaging lidar via coherent detection. Opt. Express 24(23), 25983–25994 (2016)
https://doi.org/10.1364/OE.24.025983
9 N. Radwell,, K.J. Mitchell,, G.M. Gibson,, M.P. Edgar,, R. Bowman,, M.J. Padgett,: Single-pixel infrared and visible microscope. Optica 1(5), 285–289 (2014)
https://doi.org/10.1364/OPTICA.1.000285
10 L. Wang,, S. Zhao,, W. Cheng,, L. Gong,, H. Chen,: Optical image hiding based on computational ghost imaging. Opt. Commun. 366, 314–320 (2016)
https://doi.org/10.1016/j.optcom.2016.01.026
11 P. Clemente,, V. Durán,, V. Torres-Company,, E. Tajahuerce,, J. Lancis,: Optical encryption based on computational ghost imaging. Opt. Lett. 35(14), 2391–2393 (2010)
https://doi.org/10.1364/OL.35.002391
12 S. Zhao,, L. Wang,, W. Liang,, W. Cheng,, L. Gong,: High performance optical encryption based on computational ghost imaging with qr code and compressive sensing technique. Opt. Commun. 353, 90–95 (2015)
https://doi.org/10.1016/j.optcom.2015.04.063
13 W. Gong,: High-resolution pseudo-inverse ghost imaging. Photon. Res. 3(5), 234–237 (2015)
https://doi.org/10.1364/PRJ.3.000234
14 L. Wang,, S. Zhao,: Fast reconstructed and high-quality ghost imaging with fast walsh–hadamard transform. Photon. Res. 4(6), 240–244 (2016)
https://doi.org/10.1364/PRJ.4.000240
15 M.Q. Yin,, L. Wang,, S.M. Zhao,: Experimental demonstration of influence of underwater turbulence on ghost imaging. Chin. Phys. B 28(9), 094201 (2019)
https://doi.org/10.1088/1674-1056/ab33ee
16 L. Wang,, S. Zhao,: Multiple-input single-output ghost imaging. IEE. Photon. J. 12(3), 1–13 (2020)
https://doi.org/10.1109/JPHOT.2020.2984550
17 X.F. Liu,, X.R. Yao,, R.M. Lan,, C. Wang,, G.J. Zhai,: Edge detection based on gradient ghost imaging. Opt. Express 23(26), 33802–33811 (2015)
https://doi.org/10.1364/OE.23.033802
18 T. Mao,, Q. Chen,, W. He,, Y. Zou,, H. Dai,, G. Gu,: Speckle-shifting ghost imaging. IEE. Photon. J. 8(4), 1–10 (2016)
https://doi.org/10.1109/JPHOT.2016.2578934
19 L. Wang,, L. Zou,, S. Zhao,: Edge detection based on subpixel-speckle shifting ghost imaging. Opt. Commun. 407, 181–185 (2018)
https://doi.org/10.1016/j.optcom.2017.09.002
20 S. Yuan,, D. Xiang,, X. Liu,, X. Zhou,, P. Bing,: Edge detection based on computational ghost imaging with structured illuminations. Opt. Commun. 410, 350–355 (2018)
https://doi.org/10.1016/j.optcom.2017.10.016
21 H. Ren,, S. Zhao,, J. Gruska,: Edge detection based on single-pixel imaging. Opt. Express 26(5), 5501–5511 (2018)
https://doi.org/10.1364/OE.26.005501
22 H.D. Ren,, L. Wang,, S.M. Zhao,: Efficient edge detection based on ghost imaging. OSA Continuum 2(1), 64–73 (2019)
https://doi.org/10.1364/OSAC.2.000064
23 H. Guo,, R. He,, C. Wei,, Z. Lin,, L. Wang,, S. Zhao,: Compressed ghost edge imaging. Chin. Opt. Lett. 17(7), 071101 (2019)
https://doi.org/10.3788/COL201917.071101
24 Y. Chen,, X. Li,, Z. Cheng,, Y. Cheng,, X. Zhai,: Multidirectional edge detection based on gradient ghost imaging. Optik (Stuttg.) 207, 163768 (2020)
https://doi.org/10.1016/j.ijleo.2019.163768
25 M. Lyu,, W. Wang,, H. Wang,, H. Wang,, G. Li,, N. Chen,, G. Situ,: Deep-learning-based ghost imaging. Sci. Rep. 7(1), 17865 (2017)
https://doi.org/10.1038/s41598-017-18171-7
26 S. Jiao,, Y. Gao,, J. Feng,, T. Lei,, X. Yuan,: Does deep learning always outperform simple linear regression in optical imaging? Opt. Express 28(3), 3717–3731 (2020)
https://doi.org/10.1364/OE.382319
27 F. Wang,, H. Wang,, H. Wang,, G. Li,, G. Situ,: Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging. Opt. Express 27(18), 25560–25572 (2019)
https://doi.org/10.1364/OE.27.025560
28 Y. Ni,, D. Zhou,, S. Yuan,, X. Bai,, Z. Xu,, J. Chen,, C. Li,, X. Zhou,: Color computational ghost imaging based on a generative adversarial network. Opt. Lett. 46(8), 1840–1843 (2021)
https://doi.org/10.1364/OL.418628
29 H. Zhang,, D. Duan,: Computational ghost imaging with compressed sensing based on a convolutional neural network. Chin. Opt. Lett. 19(10), 101101 (2021)
https://doi.org/10.3788/COL202119.101101
30 D.L. Donoho,: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
https://doi.org/10.1109/TIT.2006.871582
31 C. Li,, W. Yin,, Y. Zhang,: User’s guide for tval3: Tv minimization by augmented lagrangian and alternating direction algorithms. CAAM Rep 20(46–47), 4 (2009)
32 C. Li,, W. Yin,, H. Jiang,, Y. Zhang,: An efficient augmented lagrangian method with applications to total variation minimization. Comput. Optim. Appl. 56(3), 507–530 (2013)
https://doi.org/10.1007/s10589-013-9576-1
33 S. Xie,, Z. Tu,: Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision. pp. 1395–1403 (2015)
https://doi.org/10.1109/ICCV.2015.164
34 Z. Xu,, H. Luo,, B. Hui,, Z. Chang,: Contour detection using an improved holistically-nested edge detection network. In: Global Intelligence Industry Conference (GIIC 2018), vol. 10835. International Society for Optics and Photonics, p. 1083503 (2018)
35 L. Lou,, S. Zang,: Research on edge detection method based on improved HED network. J. Phys. Conf. Ser. 1607(1), 012068 (2020)
https://doi.org/10.1088/1742-6596/1607/1/012068
[1] Xianfeng Qiao, Shu Xiao, Peisen Yuan, Dezhi Yang, Dongge Ma. Improved transient electroluminescence technique based on time-correlated single-photon counting technology to evaluate organic mobility[J]. Front. Optoelectron., 2022, 15(1): 11-.
[2] Lei WAN, Danping PAN, Tianhua FENG, Weiping LIU, Alexander A. POTAPOV. A review of dielectric optical metasurfaces for spatial differentiation and edge detection[J]. Front. Optoelectron., 2021, 14(2): 187-200.
[3] Jiayu LI, Yijun XIE, Ping SUN. Edge detection on terahertz pulse imaging of dehydrated cutaneous malignant melanoma embedded in paraffin[J]. Front. Optoelectron., 2019, 12(3): 317-323.
[4] Jun LIU, Jianguo XIN, Ye LANG, Jiabin CHEN. Slab Yb:YAG pulse amplifier with high amplification gain and signal-to-noise ratio[J]. Front. Optoelectron., 2017, 10(1): 51-56.
[5] Xiaonong ZHU, Yanmei LIANG, Youxin MAO, Yaqing JIA, Yiheng LIU, Guoguang MU. Analyses and calculations of noise in optical coherence tomography systems[J]. Front Optoelec Chin, 2008, 1(3-4): 247-257.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed