Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2016, Vol. 10 Issue (1) : 80-89    https://doi.org/10.1007/s11706-016-0324-1
RESEARCH ARTICLE
A new rabbit model of implant-related biofilm infection: development and evaluation
Cheng-Bing CHU1,*(),Hong ZENG1,Ding-Xia SHEN2,Hui WANG3,Ji-Fang WANG4,Fu-Zhai CUI3,*()
1. Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
2. Department of Microbiology, Chinese PLA General Hospital, Beijing 100853, China
3. School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
4. Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
 Download: PDF(775 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study is to establish a rabbit model for human prosthetic joint infection and biofilm formation. Thirty-two healthy adult rabbits were randomly divided into four groups and implanted with stainless steel screws and ultra-high molecular weight polyethylene (UHMWPE) washers in the non-articular surface of the femoral lateral condyle of the right hind knees. The rabbit knee joints were inoculated with 1 mL saline containing 0, 102, 103, 104 CFU of Staphylococcus epidermidis (S. epidermidis) isolated from the patient with total knee arthroplasty (TKA) infection, respectively. On the 14th postoperative day, the UHMWPE washers from the optimal 103 CFU group were further examined. The SEM examination showed a typical biofilm construction that circular S. epidermidis were embedded in a mucous-like matrix. In addition, the LCSM examination showed that the biofilm consisted of the polysaccharide stained bright green fluorescence and S. epidermidis radiating red fluorescence. Thus, we successfully create a rabbit model for prosthetic joint infection and biofilm formation, which should be valuable for biofilm studies.

Keywords implant      infection      biofilm      model      rabbit     
Corresponding Author(s): Cheng-Bing CHU,Fu-Zhai CUI   
Online First Date: 29 December 2015    Issue Date: 15 January 2016
 Cite this article:   
Cheng-Bing CHU,Hong ZENG,Ding-Xia SHEN, et al. A new rabbit model of implant-related biofilm infection: development and evaluation[J]. Front. Mater. Sci., 2016, 10(1): 80-89.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-016-0324-1
https://academic.hep.com.cn/foms/EN/Y2016/V10/I1/80
Fig.1  The patient with left postoperative TKA infection: (a) left knee joint swelling; (b)(c) left knee preoperative X-ray. (d)(e)(f) White substance can be seen on the metal tibial tray and UHMWPE platform during left knee revision operation.
Fig.2  Implants. UHMWPE washer and titanium screw was implanted into the lateral femoral condyle.
Fig.3  G+ staining and identification: (a) G+ staining showed the bacteria was spherical and uniform blue (oil lens); (b) the bacterial strain was the epidermis staphylococcus with high reliability by VITEK 2 Microbial Identification System.
Fig.4  The Isenberg method of identifying biofilm formation: (a) control test tube wall was colorless; (b) test tube wall was blue (positive).
Fig.5  Wound situations: (a) wound swelling and scab on postoperative 14 d; (b) milky discharge presenting in dehiscence wound, and the knee joint structures and implants unexposed on postoperative 11 d; (c) good wound healing; (d) clean, transparent, non-turbid rabbit knee synovial fluid without increasing significantly in volume and the mucus-like substance on synovial membrane surface was visible in the infected rabbit knees.
Group Number Number of postoperative knee infection Knee infection rate /%
Total Dead rabbit Positive blood culture Wound dehiscence Sinus or abscess Poor wound healing Positive synovium culture Implant loosing
Saline 8 0 0 0 0 0 0 0 0 (0/8)
102 CFU Se a) 8 0 0 0 0 1 3 0 37.5 (3/8)
103 CFU Se a) 8 0 0 1 0 2 8 0 100 (8/8)
104 CFU Se a) 8 0 0 2 0 4 8 1 100 (8/8)
Tab.1  Analysis of postoperative knee infection
Fig.6  SEM images of biofilm. There were a large number of biofilms on the UHMWPE surface, and circular S. epidermidis was wrapped in the extracellular matrix.
Fig.7  LCSM images of biofilm: (a) biofilms with irregular shape and uneven distribution emitted strong bright green fluorescence on the surface of UHMWPE stained with fluorescent brighter 28 (magnification: ×100); (b) UHMWPE stained doubly with fluorescent brighter 28 and propidium iodide was shown by LCSM that the biofilm consists of red spherical S. epidermidis embedded in the green extracellular polysaccharide matrix through image processing (magnification: ×200).
CFUcolony-forming unit
DHEdihydroetorphine
eDNAextracellular DNA
EDTAethylene diamine tetraacetic acid
IDinfection dose
LCSMlaser confocal scanning microscopy
MHAMuller–Hinton agar
PBSphosphate buffer saline
PIpropidium iodide
PJIprosthetic joint infection
RNaseribonuclease
S. aureusStaphylococcus aureus
SEMscanning electron microscopy
S. epidermidisStaphylococcus epidermidis
TKAtotal knee arthroplasty
TSBtryptone soya broth
UHMWPEultra-high molecular weight polyethylene
Tab.1  
1 Kurtz  S M, Lau  E, Watson  H, . Economic burden of periprosthetic joint infection in the United States. The Journal of Arthroplasty, 2012, 27(8 Suppl): 61–65
2 Haenle  M, Skripitz  C, Mittelmeier  W, . Economic impact of infected total hip arthroplasty in the German diagnosis-related groups system. Der Orthopade, 2012, 41(6): 467–476
3 Haenle  M, Skripitz  C, Mittelmeier  W, . Economic impact of infected total knee arthroplasty. The Scientific World Journal, 2012, (1): 196515
4 Kurtz  S M, Lau  E, Schmier  J, . Infection burden for hip and knee arthroplasty in the United States. The Journal of Arthroplasty, 2008, 23(7): 984–991
5 Del Pozo  J L, Patel  R. Clinical practice. Infection associated with prosthetic joints. The New England Journal of Medicine, 2009, 361(8): 787–794
6 Phillips  J E, Crane  T P, Noy  M, . The incidence of deep prosthetic infections in a specialist orthopaedic hospital: a 15-year prospective survey. The Journal of Bone and Joint Surgery (British Volume), 2006, 88B(7): 943–948
7 Pulido  L, Ghanem  E, Joshi  A, . Periprosthetic joint infection: the incidence, timing, and predisposing factors. Clinical Orthopaedics and Related Research, 2008, 466(7): 1710–1715
8 Jämsen  E, Varonen  M, Huhtala  H, . Incidence of prosthetic joint infections after primary knee arthroplasty. The Journal of Arthroplasty, 2010, 25(1): 87–92
9 Kurtz  S, Ong  K, Lau  E, . Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. The Journal of Bone and Joint Surgery (American Volume), 2007, 89(4): 780–785
10 Kurtz  S M, Lau  E, Schmier  J, . Infection burden for hip and knee arthroplasty in the United States. The Journal of Arthroplasty, 2008, 23(7): 984–991
11 Vuong  C, Otto  M. Staphylococcus epidermidis infections. Microbes and Infection, 2002, 4(4): 481–489
12 Zimmerli  W, Trampuz  A, Ochsner  P E. Prosthetic-joint infections. The New England Journal of Medicine, 2004, 351(16): 1645–1654
13 Costerton  W, Veeh  R, Shirtliff  M, . The application of biofilm science to the study and control of chronic bacterial infections. Journal of Clinical Investigation, 2003, 112(10): 1466–1477
14 Høiby  N, Ciofu  O, Johansen  H K, . The clinical impact of bacterial biofilms. International Journal of Oral Science, 2011, 3(2): 55–65
15 Percival  S L, Hill  K E, Malic  S, . Antimicrobial tolerance and the significance of persister cells in recalcitrant chronic wound biofilms. Wound Repair and Regeneration, 2011, 19(1): 1–9
16 Srinivasan  A, Uppuluri  P, Lopez-Ribot  J, . Development of a high-throughput Candida albicans biofilm chip. PLoS ONE, 2011, 6(4): e19036
17 Zimmerli  W, Moser  C. Pathogenesis and treatment concepts of orthopaedic biofilm infections. FEMS Immunology and Medical Microbiology, 2012, 65(2): 158–168
18 Geipel  U. Pathogenic organisms in hip joint infections. International Journal of Medical Sciences, 2009, 6(5): 234–240
19 Pandey  R, Berendt  A R, Athanasou  N A. Histological and microbiological findings in non-infected and infected revision arthroplasty tissues. Archives of Orthopaedic and Trauma Surgery, 2000, 120(10): 570–574
20 Talsma  S S. Biofilms on medical devices. Home Healthcare Nurse, 2007, 25(9): 589–594
21 Otto  M. Staphylococcal biofilms. Current Topics in Microbiology and Immunology, 2008, 322: 207–228
22 Otto  M. Staphylococcus epidermidis — the ‘accidental’ pathogen. Nature Reviews: Microbiology, 2009, 7(8): 555–567
23 Pribaz  J R, Bernthal  N M, Billi  F, . Mouse model of chronic post-arthroplasty infection: noninvasive in vivo bioluminescence imaging to monitor bacterial burden for long-term study. Journal of Orthopaedic Research, 2012, 30(3): 335–340
24 Scherr  T D, Lindgren  K E, Schaeffer  C R, . Mouse model of post-arthroplasty Staphylococcus epidermidis joint infection. Methods in Molecular Biology, 2014, 1106: 173–181
25 Søe  N H, Jensen  N V, Nürnberg  B M, . A novel knee prosthesis model of implant-related osteomyelitis in rats. Acta Orthopaedica, 2013, 84(1): 92–97
26 Bernthal  N M, Stavrakis  A I, Billi  F, . A mouse model of post-arthroplasty Staphylococcus aureus joint infection to evaluate in vivo the efficacy of antimicrobial implant coatings. PLoS ONE, 2010, 5(9): e12580
27 Belmatoug  N, Crémieux  A C, Bleton  R, . A new model of experimental prosthetic joint infection due to methicillin-resistant Staphylococcus aureus: a microbiologic, histopathologic, and magnetic resonance imaging characterization. The Journal of Infectious Diseases, 1996, 174(2): 414–417
28 Lucke  M, Schmidmaier  G, Sadoni  S, . A new model of implant-related osteomyelitis in rats. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2003, 67B(1): 593–602
29 Craig  M R, Poelstra  K A, Sherrell  J C, . A novel total knee arthroplasty infection model in rabbits. Journal of Orthopaedic Research, 2005, 23(5): 1100–1104
30 Isenberg  H D. Clinical Microbiology Procedure Handbook. 1st ed. Washington, DC: American Society for Microbiology, 1992
31 Steckelberg  J M, Osmon  D R. Prosthetic joint infection. In: Waldvogel  F A, ed. Infections Associated with Indwelling Medical Devices. 3rd ed. Washington, DC: ASM Press, 2000, 173–205
32 Montanaro  L, Speziale  P, Campoccia  D, . Scenery of Staphylococcus implant infections in orthopedics. Future Microbiology, 2011, 6(11): 1329–1349
33 Hellmark  B, Söderquist  B, Unemo  M, . Comparison of Staphylococcus epidermidis isolated from prosthetic joint infections and commensal isolates in regard to antibiotic susceptibility, agr type, biofilm production, and epidemiology. International Journal of Medical Microbiology, 2013, 303(1): 32–39
34 Chen-Charpentier  B M, Stanescu  D. Biofilm growth on medical implants with randomness. Mathematical and Computer Modelling, 2011, 54(7–8): 1682–1686
35 Sendi  P, Banderet  F, Graber  P, . Clinical comparison between exogenous and haematogenous periprosthetic joint infections caused by Staphylococcus aureus. Clinical Microbiology and Infection, 2011, 17(7): 1098–1100
36 Berbari  E F, Hanssen  A D, Duffy  M C, . Risk factors for prosthetic joint infection: case-control study. Clinical Infectious Diseases, 1998, 27(5): 1247–1254
37 Zimmerli  W, Sendi  P. Pathogenesis of implant-associated infection: the role of the host. Seminars in Immunopathology, 2011, 33(3): 295–306
38 Rodet  A. Physiologie pathologique – étudeexpérimentalesurl’ostéomyeliteinfectieuse. C R Acad Sci, 1885, 99: 569–571
39 Zurexperimentellenerzeugungosteomyelitischerherde  L E. Arch Klin Chir, 1894, 48: 181–200
40 Rissing  J P, Buxton  T B, Weinstein  R S, . Model of experimental chronic osteomyelitis in rats. Infection & Immunity, 1985, 47(3): 581–586
41 Fukushima  N, Yokoyama  K, Sasahara  T, . Establishment of rat model of acute staphylococcal osteomyelitis: relationship between inoculation dose and development of osteomyelitis. Archives of Orthopaedic & Trauma Surgery, 2005, 125(3): 169–176
42 Ofluoglu  E A, Zileli  M, Aydin  D, . Implant-related infection model in rat spine. Archives of Orthopaedic and Trauma Surgery, 2007, 127(5): 391–396
43 Poultsides  L A, Papatheodorou  L K, Karachalios  T S, . Novel model for studying hematogenous infection in an experimental setting of implant-related infection by a community-acquired methicillin-resistant S. aureus strain. Journal of Orthopaedic Research, 2008, 26(10): 1355–1362
44 Vogelyl  H C, Dhertl  W J A, Fleer  A, . The infected orthopaedic implant. An animal model to study the mechanisms of haematogenous infection of cementless implant materials. Euro-pean Journal of Orthopaedic Surgery & Traumatology, 1996, 6(2): 91–95
45 Boles  B R, Horswill  A R. Staphylococcal biofilm disassembly. Trends in Microbiology, 2011, 19(9): 449–455
46 Mack  D, Becker  P, Chatterjee  I, . Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses. International Journal of Medical Microbiology, 2004, 294(2–3): 203–212
47 Stewart  S, Barr  S, Engiles  J, . Vancomycin-modified implant surface inhibits biofilm formation and supports bone-healing in an infected osteotomy model in sheep: a proof-of-concept study. The Journal of Bone and Joint Surgery (American Volume), 2012, 94(15): 1406–1415
48 Alt  V, Lips  K S, Henkenbehrens  C, . A new animal model for implant-related infected non-unions after intramedullary fixation of the tibia in rats with fluorescent in situ hybridization of bacteria in bone infection. Bone, 2011, 48(5): 1146–1153
49 Montanaro  L, Poggi  A, Visai  L, . Extracellular DNA in biofilms. The International Journal of Artificial Organs, 2011, 34(9): 824–831
50 Cue  D, Lei  M G, Lee  C Y. Genetic regulation of the intercellular adhesion locus in staphylococci. Frontiers in Cellular and Infection Microbiology, 2012, 2: 38
51 Foster  T J, Geoghegan  J A, Ganesh  V K, . Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nature Reviews: Microbiology, 2013, 12(1): 49–62
52 Stoodley  P, Kathju  S, Hu  F Z, . Molecular and imaging techniques for bacterial biofilms in joint arthroplasty infections. Clinical Orthopaedics and Related Research, 2005, 437: 31–40
[1] Kun YANG, Jinghuan TIAN, Wei QU, Bo LUAN, Ke LIU, Jun LIU, Likui WANG, Junhui JI, Wei ZHANG. Host-mediated biofilm forming promotes post-graphene pathogen expansion via graphene micron-sheet[J]. Front. Mater. Sci., 2020, 14(2): 221-231.
[2] Lu-Lu ZHANG, Kun HAO, Rui-Kai WANG, Xiu-Qiang MA, Tong LIU, Liang SONG, Qing YU, Zhong-Wei WANG, Jian-Min ZENG, Rong-Chang ZENG. Mo--V--Nb--O-based catalysts for low-temperature selective oxidation of Cα--OH lignin model compounds[J]. Front. Mater. Sci., 2020, 14(1): 52-61.
[3] Ya-Wei DU,Li-Nan ZHANG,Xin YE,He-Min NIE,Zeng-Tao HOU,Teng-Hui ZENG,Guo-Ping YAN,Peng SHANG. In vitro and in vivo evaluation of bone morphogenetic protein-2 (BMP-2) immobilized collagen-coated polyetheretherketone (PEEK)[J]. Front. Mater. Sci., 2015, 9(1): 38-50.
[4] Hong-Man WANG,Fu-Yao LI. Bibliometric analysis of the literature from the mainland of China on animal-derived regenerative implantable medical devices[J]. Front. Mater. Sci., 2014, 8(4): 403-408.
[5] Ya-Wei DU,Li-Nan ZHANG,Zeng-Tao HOU,Xin YE,Hong-Sheng GU,Guo-Ping YAN,Peng SHANG. Physical modification of polyetheretherketone for orthopedic implants[J]. Front. Mater. Sci., 2014, 8(4): 313-324.
[6] Zhen-Tao YU,Ming-Hua ZHANG,Yu-Xing TIAN,Jun CHENG,Xi-Qun MA,Han-Yuan LIU,Chang WANG. Designation and development of biomedical Ti alloys with finer biomechanical compatibility in long-term surgical implants[J]. Front. Mater. Sci., 2014, 8(3): 219-229.
[7] Ying-Jun GAO,Qian-Qian DENG,Si-Long QUAN,Wen-Quan ZHOU,Chuang-Gao HUANG. Phase field crystal simulation of grain boundary movement and dislocation reaction[J]. Front. Mater. Sci., 2014, 8(2): 176-184.
[8] Yi-Xia YIN,Ji-Ling YI,Li-Juan XIE,Qiong-Jiao YAN,Hong-Lian DAI,Shi-Pu LI. Synthesis, characterization and biological evaluation of poly [LA-co-(Glc-alt-Lys)] for nerve regeneration scaffold[J]. Front. Mater. Sci., 2014, 8(1): 95-101.
[9] Lei YANG, Chao ZHONG. Advanced engineering and biomimetic materials for bone repair and regeneration[J]. Front Mater Sci, 2013, 7(4): 313-334.
[10] Jing CAO, Hua-Jie YIN, Rui SONG. Circular dichroism of graphene oxide: the chiral structure model[J]. Front Mater Sci, 2013, 7(1): 83-90.
[11] Chun-Hai YIN, Chao LIU, Dong-Yan TAO, Yi-Ping ZENG. Annealing effect on structural and magnetic properties of Tb and Cr co-implanted AlGaN[J]. Front Mater Sci, 2012, 6(4): 366-370.
[12] San-Bao LIN, Yan-Hua ZHAO, Zi-Qiu HE, Lin WU. Modeling of friction stir welding process for tools design[J]. Front Mater Sci, 2011, 5(2): 236-245.
[13] V. A. KARKHIN, A. PITTNER, C. SCHWENK, M. RETHMEIER. Simulation of inverse heat conduction problems in fusion welding with extended analytical heat source models[J]. Front Mater Sci, 2011, 5(2): 119-125.
[14] Vesselin MICHAILOV, Nikolay DOYNOV, Christoph STAPELFELD, Ralf OSSENBRINK. Hybrid model for prediction of welding distortions in large structures[J]. Front Mater Sci, 2011, 5(2): 209-215.
[15] Bao-Lin WANG, Jie-Cai HAN, . A finite element method for non-Fourier heat conduction in strong thermal shock environments[J]. Front. Mater. Sci., 2010, 4(3): 226-233.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed