Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2017, Vol. 11 Issue (3) : 262-270    https://doi.org/10.1007/s11706-017-0385-9
RESEARCH ARTICLE
Electroless deposition of Au nanoparticles on reduced graphene oxide/polyimide film for electrochemical detection of hydroquinone and catechol
Xuan SHEN, Xiaohong XIA, Yongling DU, Chunming WANG()
College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
 Download: PDF(360 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An electrochemical sensor for determination of hydroquinone (HQ) and catechol (CC) was developed using Au nanoparticles (AuNPs) fabricated on reduced graphene oxide/polyimide (PI/RGO) film by electroless deposition. The electrochemical behaviors of HQ and CC at PI/RGO-AuNPs electrode were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under the optimized condition, the current responses at PI/RGO-AuNPs electrode were linear over ranges from 1 to 654 mol/L for HQ and from 2 to 1289 mol/L for CC, with the detection limits of 0.09 and 0.2 mol/L, respectively. The proposed electrode exhibited good reproducibility, stability and selectivity. In addition, the proposed electrode was successfully applied in the determination of HQ and CC in tap water and the Yellow River samples.

Keywords electroless      Au nanoparticles      hydroquinone      catechol      sensor     
Corresponding Author(s): Chunming WANG   
Online First Date: 16 June 2017    Issue Date: 24 August 2017
 Cite this article:   
Xuan SHEN,Xiaohong XIA,Yongling DU, et al. Electroless deposition of Au nanoparticles on reduced graphene oxide/polyimide film for electrochemical detection of hydroquinone and catechol[J]. Front. Mater. Sci., 2017, 11(3): 262-270.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-017-0385-9
https://academic.hep.com.cn/foms/EN/Y2017/V11/I3/262
Fig.1  (a) The SEM image of AuNPs on PI/RGO film. (b) The HRTEM image of AuNPs on PI/RGO film.
Fig.2  XRD patterns of ITO, PI/RGO and PI/RGO-AuNPs.
Fig.3  XPS spectra of (a) C 1s and (b) Au 4f.
Fig.4  (a) Cyclic voltammograms of the PI/RGO-AuNPs electrode with different concentrations of HAuCl4 in 0.1 mol/L PBS (pH= 7.0) containing 500 μmol/L HQ and CC. (b) Cyclic voltammograms of PI/RGO-AuNPs electrode with different deposition times of HAuCl4 in 0.1 mol/L PBS (pH= 7.0) containing 500 μmol/L HQ and CC.
Fig.5  Cyclic voltammograms of ITO, PI/RGO and PI/RGO-AuNPs electrodes in 0.1 mol/L PBS (pH= 7.0) containing 500 μmol/L HQ and CC.
Fig.6  Scheme 1 Probable reactions of CC and HQ on PI/RGO-AuNPs electrode.
Fig.7  The effect of pH on (a) the oxidation current and (b) the oxidation potential of HQ and CC at the PI/RGO-AuNPs electrode in 0.1 mol/L PBS (pH= 7.0) containing 500 μmol/L HQ and CC.
Fig.8  (a) Cyclic voltammograms of PI/RGO-AuNPs electrode in 0.1 mol/L PBS (pH= 7.0) containing 500 μmol/L HQ and CC at different scan rate from 20 to 200 mV?s−1. (b) Plots of peak current vs. the square scan rate.
Fig.9  Differential pulse cyclic voltammograms of PI/RGO-AuNPs electrode in 0.1 mol/L PBS (pH= 7.0) (a) containing 20 μmol/L CC and different concentrations of HQ from 1 to 654 μmol/L, and (b) containing 20 μmol/L HQ and different concentrations of CC from 2 to 1289 μmol/L. Inset: the peaks current vs. concentration.
Substance in solutiona)AdditionLinear range /(μmol·L−1)Linear regression equationRegressionLODb) /(μmol·L−1)
20 μmol·L−1 CCHQ1–83Ipa/μA= 2.214+ 0.7064c/(μmol·L−1)0.9970.09
83–654Ipa/μA= 54.69+ 0.1174c/(μmol·L−1)0.994
20 μmol·L−1 HQCC2–60Ipa/μA= 2.126+ 0.6962c/(μmol·L−1)0.9920.2
60–1289Ipa/μA= 43.13+ 0.01904c/(μmol·L−1)0.991
Tab.1  Simultaneous determination of HQ and CC at PI/RGO-AuNPs electrode in 0.1 mol/L PBS (pH= 7.0)
ElectrodepHAnalystLinear range /(μmol·L−1)LOD /(μmol·L−1)Ref.
AuNPs-CNFa)/Au7.0HQ
CC
9–500
5–350
0.36
0.86
[29]
PDA-RGOb) nanocomposite/GCE4.5HQ
CC
1–230
1–250
0.82
0.72
[30]
SPEc)/MWCNTs/AuNPs7.0HQ
CC
2–730
2–730
0.26
0.39
[31]
Au/pAMTd)-MWNTs7.0HQ
CC
7.2–391.2
3.6–183.6
0.24
0.30
[32]
Pt/ZrO2–RGO/GCE7.0HQ
CC
1–1000
1–400
0.4
0.4
[1]
CNCse)–RGO/GCE4.0HQ
CC
1–300
1–400
0.4
0.87
[33]
PI/RGO-AuNPs7.0HQ
CC
1–654
2–1289
0.09
0.2
this work
Tab.2  Comparison of analytical performances at various electrodes reported earlier for the simultaneous electrochemical determination of HQ and CC
SampleAnalystSolutionAdded concentration /(μmol·L−1)Founded concentration /(μmol·L−1)Recovery /%
Tap waterHQ20 μmol·L−1 CC54.8697.2
2019.698.0
100101.9101.9
CC20 μmol·L−1 HQ55.04100.8
2020.3101.5
100100.5100.5
The Yellow RiverHQ20 μmol·L−1 CC54.9298.4
2019.798.5
10098.898.8
CC20 μmol·L−1 HQ55.13102.6
2019.899.0
100103.2103.2
Tab.3  Simultaneous determination of HQ and CC in water samples
1 Vilian A T E, Chen S M, Huang L H, et al.. Simultaneous determination of catechol and hydroquinone using a Pt/ZrO2–RGO/GCE composite modified glassy carbon electrode. Electrochimica Acta, 2014, 125(12): 503–509
https://doi.org/10.1016/j.electacta.2014.01.092
2 Lai T, Cai W H, Dai W L, et al.. Easy processing laser reduced graphene: a green and fast sensing platform for hydroquinone and catechol simultaneous determination. Electrochimica Acta, 2014, 138: 48–55
https://doi.org/10.1016/j.electacta.2014.06.070
3 Goulart L A, Mascaro L H. GC electrode modified with carbon nanotubes and NiO for the simultaneous determination of bisphenol A, hydroquinone and catechol. Electrochimica Acta, 2016, 196: 48–55
https://doi.org/10.1016/j.electacta.2016.02.174
4 Kerzic P J, Liu W S, Pan M T, et al.. Analysis of hydroquinone and catechol in peripheral blood of benzene-exposed workers. Chemico-Biological Interactions, 2010, 184(1–2): 182–188
https://doi.org/10.1016/j.cbi.2009.12.010 pmid: 20026093
5 Xie T, Liu Q, Shi Y, et al.. Simultaneous determination of positional isomers of benzenediols by capillary zone electrophoresis with square wave amperometric detection. Journal of Chromatography A, 2006, 1109(2): 317–321
https://doi.org/10.1016/j.chroma.2006.01.135 pmid: 16494888
6 Si W M, Lei W, Han Z, et al.. Selective sensing of catechol and hydroquinone based on poly(3,4-ethylenedioxythiophene)/nitrogen-doped graphene composites. Sensors and Actuators B: Chemical, 2014, 199(4): 154–160
https://doi.org/10.1016/j.snb.2014.03.096
7 Marrubini G, Calleri E, Coccini T, et al.. Direct analysis of phenol, catechol and hydroquinone in human urine by coupled-column HPLC with fluorimetric detection. Chromatographia, 2005, 62(1–2): 25–31
https://doi.org/10.1365/s10337-005-0570-3
8 Cui H, Zhang Q, Myint A, et al.. Chemiluminescence of cerium(IV)–rhodamine 6G–phenolic compound system. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181(2–3): 238–245
https://doi.org/10.1016/j.jphotochem.2005.12.003
9 Nagaraja P, Vasantha R A, Sunitha K R. A sensitive and selective spectrophotometric estimation of catechol derivatives in pharmaceutical preparations. Talanta, 2001, 55(6): 1039–1046
https://doi.org/10.1016/S0039-9140(01)00438-6 pmid: 18968454
10 Garcia-Mesa J A, Mateos R. Direct automatic determination of bitterness and total phenolic compounds in virgin olive oil using a pH-based flow-injection analysis system. Journal of Agricultural and Food Chemistry, 2007, 55(10): 3863–3868
https://doi.org/10.1021/jf070235v pmid: 17447793
11 Pistonesi M F, Di Nezio M S, Centurión M E, et al.. Determination of phenol, resorcinol and hydroquinone in air samples by synchronous fluorescence using partial least-squares (PLS). Talanta, 2006, 69(5): 1265–1268
https://doi.org/10.1016/j.talanta.2005.12.050 pmid: 18970713
12 Zhang Y L, Xiao S X, Xie J L, et al.. Simultaneous electrochemical determination of catechol and hydroquinone based on graphene–TiO2 nanocomposite modified glassy carbon electrode. Sensors and Actuators B: Chemical, 2014, 204(1): 102–108
https://doi.org/10.1016/j.snb.2014.07.078
13 Song D M, Xia J F, Zhang F F, et al.. Multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-graphene hybrid composite film for simultaneous determination of catechol and hydroquinone. Sensors and Actuators B: Chemical, 2015, 206: 111–118
https://doi.org/10.1016/j.snb.2014.08.084
14 Wang L, Zhang Y, Du Y, et al.. Simultaneous determination of catechol and hydroquinone based on poly (diallyldimethylammonium chloride) functionalized graphene-modified glassy carbon electrode. Journal of Solid State Electrochemistry, 2012, 16(4): 1323–1331
https://doi.org/10.1007/s10008-011-1526-1
15 Wang X, Wu M, Li H, et al.. Simultaneous electrochemical determination of hydroquinone and catechol based on three-dimensional graphene/MWCNTs/BMIMPF6 nanocomposite modified electrode. Sensors and Actuators B: Chemical, 2014, 192: 452–458
https://doi.org/10.1016/j.snb.2013.11.020
16 Wang Y, Xiong Y Y, Qu J Y, et al.. Selective sensing of hydroquinone and catechol based on multiwalled carbon nanotubes/polydopamine/gold nanoparticles composites. Sensors and Actuators B: Chemical, 2016, 223: 501–508
https://doi.org/10.1016/j.snb.2015.09.117
17 Ghanem M A. Electrocatalytic activity and simultaneous determination of catechol and hydroquinone at mesoporous platinum electrode. Electrochemistry Communications, 2007, 9(10): 2501–2506
https://doi.org/10.1016/j.elecom.2007.07.023
18 Yu S, Jiang Y, Wang C. A polymer composite consists of electrochemical reduced grapheme oxide/polyimide/chemical reduced graphene oxide for effective preparation of SnSe by electrochemical atomic layer deposition method with enhanced electrochemical performance and surface area. Electrochimica Acta, 2013, 114: 430–438
https://doi.org/10.1016/j.electacta.2013.10.123
19 Wang L, Zheng Y, Lu X, et al.. Dendritic copper–cobalt nanostructures/reduced grapheme oxide–chitosan modified glassy carbon electrode for glucose sensing. Sensors and Actuators B: Chemical, 2014, 195: 1–7
https://doi.org/10.1016/j.snb.2014.01.007
20 Huang K J, Liu Y J, Zhang J Z, et al.. A sequence-specific DNA electrochemical sensor based on acetylene black incorporated two-dimensional CuS nanosheets and gold nanoparticles. Sensors and Actuators B: Chemical, 2015, 209: 570–578
https://doi.org/10.1016/j.snb.2014.12.023
21 Li M, Kong Q, Bian Z, et al.. Ultrasensitive detection of lead ion sensor based on gold nanodendrites modified electrode and electrochemiluminescent quenching of quantum dots by electrocatalytic silver/zinc oxide coupled structures. Biosensors & Bioelectronics, 2015, 65: 176–182
https://doi.org/10.1016/j.bios.2014.10.022 pmid: 25461155
22 Rezaei B, Boroujeni M K, Ensafi A A. Fabrication of DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer electrochemical sensor for the determination of dopamine. Biosensors & Bioelectronics, 2015, 66: 490–496
https://doi.org/10.1016/j.bios.2014.12.009 pmid: 25499662
23 Oskam G, Long J G, Natarajan A, et al.. Electrochemical deposition of metals onto silicon. Journal of Physics D: Applied Physics, 1998, 31(16): 1927–1949
https://doi.org/10.1088/0022-3727/31/16/001
24 Hummers W S, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80(6): 1339
https://doi.org/10.1021/ja01539a017
25 Yu S J, Jiang Y M, Wang C M. A polymer composite consists of electrochemical reduced grapheme oxide/polyimide/chemical reduced graphene oxide for effective preparation of SnSe by electrochemical atomic layer deposition method with enhanced electrochemical performance and surface area. Electrochimica Acta, 2013, 114: 430–438
https://doi.org/10.1016/j.electacta.2013.10.123
26 Xiang Q J, Yu J G, Jaroniec M J. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. The Journal of Physical Chemistry C, 2011, 115(15): 7355–7363
https://doi.org/10.1021/jp200953k
27 Rak M J, Friščić T, Moores A. Mechanochemical synthesis of Au, Pd, Ru and Re nanoparticles with lignin as a bio-based reducing agent and stabilizing matrix. Faraday Discussions, 2014, 170: 155–167
https://doi.org/10.1039/C4FD00053F pmid: 25408257
28 Yuan D H, Chen S H, Hu F X, et al.. Non-enzymatic amperometric sensor of catechol and hydroquinone using Pt–Au–organosilica@chitosan composites modified electrode. Sensors and Actuators B: Chemical, 2012, 168: 193–199
https://doi.org/10.1016/j.snb.2012.03.085
29 Huo Z H, Zhou Y L, Liu Q, et al.. Sensitive simultaneous determination of catechol and hydroquinone using a gold electrode modified with carbon nanofibers and gold nanoparticles. Microchimica Acta, 2011, 173(1–2): 119–125
https://doi.org/10.1007/s00604-010-0530-y
30 Zheng L Z, Xiong L Y, Li Y D, et al.. Facile preparation of polydopamine-reduced graphene oxide nanocomposite and its electrochemical application in simultaneous determination of hydroquinone and catechol. Sensors and Actuators B: Chemical, 2013, 177: 344–349
https://doi.org/10.1016/j.snb.2012.11.006
31 Zhao D M, Zhang X H, Feng L J, et al.. Simultaneous determination of hydroquinone and catechol at PASA/MWNTs composite film modified glassy carbon electrode. Colloids and Surfaces B: Biointerfaces, 2009, 74(1): 317–321
https://doi.org/10.1016/j.colsurfb.2009.07.044 pmid: 19733467
32 Wang C, Yuan R, Chai Y Q, et al.. Simultaneous determination of hydroquinone, catechol, resorcinol and nitrite using gold nanoparticles loaded on poly-3-amino-5-mercapto-1,2,4-triazole-MWNTs film modified electrode. Analytical Methods, 2012, 4(6): 1626–1628
https://doi.org/10.1039/c2ay25097g
33 Huang Y H, Chen J H, Sun X, et al.. One-pot hydrothermal synthesis carbon nanocages-reduced grapheme oxide composites for simultaneous electrochemical detection of catechol and hydroquinone. Sensors and Actuators B: Chemical, 2015, 212: 165–173
https://doi.org/10.1016/j.snb.2015.02.013
[1] Xia HE, Qingchun LIU, Jiajun WANG, Huiling CHEN. Wearable gas/strain sensors based on reduced graphene oxide/linen fabrics[J]. Front. Mater. Sci., 2019, 13(3): 305-313.
[2] Chao WANG, Wu WANG, Ke HE, Shantang LIU. Pr-doped In2O3 nanocubes induce oxygen vacancies for enhancing triethylamine gas-sensing performance[J]. Front. Mater. Sci., 2019, 13(2): 174-185.
[3] Shaoming SHU, Chao WANG, Shantang LIU. Facile synthesis of perfect ZnSn(OH)6 octahedral microcrystallines with controlled size and high sensing performance towards ethanol[J]. Front. Mater. Sci., 2018, 12(2): 176-183.
[4] Jagpreet SINGH, Aditi RATHI, Mohit RAWAT, Manoj GUPTA. Graphene: from synthesis to engineering to biosensor applications[J]. Front. Mater. Sci., 2018, 12(1): 1-20.
[5] Qinglin SHENG, Dan ZHANG, Yu SHEN, Jianbin ZHENG. Synthesis of hollow Prussian blue cubes as an electrocatalyst for the reduction of hydrogen peroxide[J]. Front. Mater. Sci., 2017, 11(2): 147-154.
[6] Sunil Jagannath PATIL,Arun Vithal PATIL,Chandrakant Govindrao DIGHAVKAR,Kashinath Shravan THAKARE,Ratan Yadav BORASE,Sachin Jayaram NANDRE,Nishad Gopal DESHPANDE,Rajendra Ramdas AHIRE. Semiconductor metal oxide compounds based gas sensors: A literature review[J]. Front. Mater. Sci., 2015, 9(1): 14-37.
[7] Zhi-Qin YAN,Wei ZHANG. The development of graphene-based devices for cell biology research[J]. Front. Mater. Sci., 2014, 8(2): 107-122.
[8] Xiao-Na WANG, Ping-An HU. Carbon nanomaterials: controlled growth and field-effect transistor biosensors[J]. Front Mater Sci, 2012, 6(1): 26-46.
[9] ZHANG Yinhong, HE Yunqiu. Micro-structure of graphite-intercalated tin oxide and its influence on SnO2-based gas sensors[J]. Front. Mater. Sci., 2007, 1(3): 297-303.
[10] REN Xin, HUANG Xinmin, ZHANG Huhai, HE Meiqing. Fabrication of Cu nano-arrays by template method and their characterizations[J]. Front. Mater. Sci., 2007, 1(3): 312-315.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed