Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2022, Vol. 16 Issue (3) : 220609    https://doi.org/10.1007/s11706-022-0609-5
RESEARCH ARTICLE
SnO/SnO2 heterojunction: an alternative candidate for sensing NO2 with fast response at room temperature
Pengtao WANG1, Wanyin GE1(), Xiaohua JIA1, Jingtao HUANG2, Xinmeng ZHANG1, Jing LU1
1. School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi’an 710021, China
2. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
 Download: PDF(2964 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The SnO2-based family is a traditional but important gas-sensitive material. However, the requirement for high working temperature limits its practical application. Much work has been done to explore ways to improve its gas-sensing performance at room temperature (RT). For this report, SnO2, SnO, and SnO/SnO2 heterojunction was successfully synthesized by a facile hydrothermal combined with subsequent calcination. Pure SnO2 requires a high operating temperature (145 °C), while SnO/SnO2 heterojunction exhibits an excellent performance for sensing NO2 at RT. Moreover, SnO/SnO2 exhibits a fast response, of 32 s, to 50 ppm NO2 at RT (27 °C), which is much faster than that of SnO (139 s). The superior sensing properties of SnO/SnO2 heterojunction are attributed to the unique hierarchical structures, large number of adsorption sites, and enhanced electron transport. Our results show that SnO/SnO2 heterojunction can be used as a promising high-performance NO2 sensitive material at RT.

Keywords SnO      SnO2      heterostructure      NO2      room temperature     
Corresponding Author(s): Wanyin GE   
Issue Date: 28 July 2022
 Cite this article:   
Pengtao WANG,Wanyin GE,Xiaohua JIA, et al. SnO/SnO2 heterojunction: an alternative candidate for sensing NO2 with fast response at room temperature[J]. Front. Mater. Sci., 2022, 16(3): 220609.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-022-0609-5
https://academic.hep.com.cn/foms/EN/Y2022/V16/I3/220609
Fig.1  (a) Schematic illustration of the evolution process of precursors. (b) XRD patterns of synthesized SnO2 (i), Sn6O4(OH)4 (ii), SnO (iii), and SnO/SnO2 (iv).
Fig.2  SEM images of (a) SnO2, (b) Sn6O4(OH)4, (c) SnO, and (d) SnO/SnO2. (e) TEM and (f) HRTEM images of SnO/SnO2.
Fig.3  High-resolution XPS spectrum of SnO/SnO2 heterojunction. Insets: Sn 3d5/2 (left); O 1s (right).
Fig.4  N2 adsorption?desorption isotherms of (a) pure SnO2, (b) pure SnO, and (c) SnO/SnO2 heterojunction (insets show pore size distribution curves).
Fig.5  (a) Temperature-dependent responses of pure SnO2 to 500 ppm NO2 at different operating temperatures. (b) Transient resistance changes of pure SnO2 to 50 ppm NO2 at 145 and 230 °C. Dynamic response/recovery curves of pure SnO2 at (c) 145 °C and (d) 230 °C to different concentrations of NO2.
Material system Temperature/°C c(NO2)/ppm Response tres/s and trec/s Ref.
WOx 200 10 511 354/480 [9]
Cu2O/rGO RT 2 0.67 300/300 [26]
SnO2 nanowire 150 2 14.24 292/228 [27]
N-SnO2 80 5 155 184/125 [12]
Ni-SnO2 250 20 90.3 40/18 [17]
SnO2/ZnO 300 10 52.3 16/10 [28]
SnO2/SnS2 80 8 5.3 159/297 [29]
Graphene/SnO2 150 5 24.7 129/107 [30]
SnO/SnO2 RT 0.2 2.5 57/300 [21]
SnO/SnO2 RT 50 38 32/58 this work
Tab.1  NO2 sensing comparison of metal oxide-based sensors [9,12,17,21,2630]
Fig.6  Dynamic response/recovery curves of (a) the SnO sensor and (c) the SnO/SnO2 heterojunction sensor to NO2 at RT (insets show responses to low concentrations of NO2). Response/recovery curves of (b) the SnO sensor and (d) the SnO/SnO2 heterojunction sensor to 50 ppm NO2 at RT.
Fig.7  (a) The selectivity of SnO/SnO2 heterojunction to various gases at 1000 ppm at RT. (b) The response curves of SnO/SnO2 to 50 ppm NO2 under different RH values from 41.3% to 91.3%. (c) Repeatability and (d) long-term stability tests of the SnO/SnO2 sensor to 50 ppm NO2 at RT.
Fig.8  (a)(b) Depletion layer responses to different gas environment (in air and in NO2, respectively). (c) Schematic diagram of the band structure of SnO/SnO2 heterostructure.
1 Y, Yan S, Krishnakumar H, Yu , et al.. Nickel(II) dithiocarbamate complexes containing sulforhodamine B as fluorescent probes for selective detection of nitrogen dioxide. Journal of the American Chemical Society, 2013, 135( 14): 5312– 5315
https://doi.org/10.1021/ja401555y pmid: 23530626
2 C, Yan H, Lu J, Gao , et al.. Improved NO2 sensing properties at low temperature using reduced graphene oxide nanosheet–In2O3 heterojunction nanofibers. Journal of Alloys and Compounds, 2018, 741 : 908– 917
https://doi.org/10.1016/j.jallcom.2018.01.209
3 G, Martinelli M C, Carotta M, Ferroni , et al.. Screen-printed perovskite-type thick films as gas sensors for environmental monitoring. Sensors and Actuators B: Chemical, 1999, 55( 2–3): 99– 110
https://doi.org/10.1016/S0925-4005(99)00054-4
4 H S, Jeong M J, Park S H, Kwon , et al.. Low temperature NO2 sensing properties of RF-sputtered SnO–SnO2 heterojunction thin-film with p-type semiconducting behavior. Ceramics International, 2018, 44( 14): 17283– 17289
https://doi.org/10.1016/j.ceramint.2018.06.189
5 J Z, Ou W, Ge B, Carey , et al.. Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano, 2015, 9( 10): 10313– 10323
https://doi.org/10.1021/acsnano.5b04343 pmid: 26447741
6 M S, Choi A, Mirzaei H G, Na , et al.. Facile and fast decoration of SnO2 nanowires with Pd embedded SnO2−x nanoparticles for selective NO2 gas sensing. Sensors and Actuators B: Chemical, 2021, 340 : 129984
https://doi.org/10.1016/j.snb.2021.129984
7 Z, Yang L, Jiang J, Wang , et al.. Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2Tx/ZnO spheres for room temperature application. Sensors and Actuators B: Chemical, 2021, 326 : 128828
https://doi.org/10.1016/j.snb.2020.128828
8 A, Umar H Y, Ammar R, Kumar , et al.. Square disks-based crossed architectures of SnO2 for ethanol gas sensing applications ― an experimental and theoretical investigation. Sensors and Actuators B: Chemical, 2020, 304 : 127352
https://doi.org/10.1016/j.snb.2019.127352
9 N A, Isaac M, Valenti A, Schmidt-Ott , et al.. Characterization of tungsten oxide thin films produced by spark ablation for NO2 gas sensing. ACS Applied Materials & Interfaces, 2016, 8( 6): 3933– 3939
https://doi.org/10.1021/acsami.5b11078 pmid: 26796099
10 V X, Hien Y W Heo . Effects of violet-, green-, and red-laser illumination on gas-sensing properties of SnO thin film. Sensors and Actuators B: Chemical, 2016, 228 : 185– 191
https://doi.org/10.1016/j.snb.2015.12.105
11 M, Hübner C E, Simion A, Tomescu-Stănoiu , et al.. Influence of humidity on CO sensing with p-type CuO thick film gas sensors. Sensors and Actuators B: Chemical, 2011, 153( 2): 347– 353
https://doi.org/10.1016/j.snb.2010.10.046
12 W, Du W, Si W, Du , et al.. Unraveling the promoted nitrogen dioxide detection performance of N-doped SnO2 microspheres at low temperature. Journal of Alloys and Compounds, 2020, 834 : 155209
https://doi.org/10.1016/j.jallcom.2020.155209
13 J Y, Liu C, Wang Q Y, Yang , et al.. Hydrothermal synthesis and gas-sensing properties of flower-like Sn3O4. Sensors and Actuators B: Chemical, 2016, 224 : 128– 133
https://doi.org/10.1016/j.snb.2015.09.089
14 P H, Suman A A, Felix H L, Tuller , et al.. Giant chemo-resistance of SnO disk-like structures. Sensors and Actuators B: Chemical, 2013, 186 : 103– 108
https://doi.org/10.1016/j.snb.2013.05.087
15 Q Q, Ren X P, Zhang Y N, Wang , et al.. Shape-controlled and stable hollow frame structures of SnO and their highly sensitive NO2 gas sensing. Sensors and Actuators B: Chemical, 2021, 340 : 129940
https://doi.org/10.1016/j.snb.2021.129940
16 S T, Rezalou T, Oznuluer U Demir . One-pot electrochemical fabrication of single-crystalline SnO nanostructures on Si and ITO substrates for catalytic, sensor and energy storage applications. Applied Surface Science, 2018, 448 : 510– 521
https://doi.org/10.1016/j.apsusc.2018.04.034
17 W T, Li X D, Zhang X Guo . Electrospun Ni-doped SnO2 nanofiber array for selective sensing of NO2. Sensors and Actuators B: Chemical, 2017, 244 : 509– 521
https://doi.org/10.1016/j.snb.2017.01.022
18 X F, Chu X H, Zhu Y P, Dong , et al.. Formaldehyde sensing properties of SnO–graphene composites prepared via hydrothermal method. Journal of Materials Science and Technology, 2015, 31( 9): 913– 917
https://doi.org/10.1016/j.jmst.2015.05.001
19 L L, Meng W Y, Bu Y, Li , et al.. Highly selective triethylamine sensing based on SnO/SnO2 nanocomposite synthesized by one-step solvothermal process and sintering. Sensors and Actuators B: Chemical, 2021, 342 : 130018
https://doi.org/10.1016/j.snb.2021.130018
20 L, Li C, Zhang W Chen . Fabrication of SnO2–SnO nanocomposites with p–n heterojunctions for the low-temperature sensing of NO2 gas. Nanoscale, 2015, 7( 28): 12133– 12142
https://doi.org/10.1039/C5NR02334C pmid: 26123121
21 H, Yu T Y, Yang Z Y, Wang , et al.. p-N heterostructural sensor with SnO–SnO2 for fast NO2 sensing response properties at room temperature. Sensors and Actuators B: Chemical, 2018, 258 : 517– 526
https://doi.org/10.1016/j.snb.2017.11.165
22 L, Zhang R B, Tong W Y, Ge , et al.. Facile one-step hydrothermal synthesis of SnO2 microspheres with oxygen vacancies for superior ethanol sensor. Journal of Alloys and Compounds, 2020, 814 : 152266
https://doi.org/10.1016/j.jallcom.2019.152266
23 W, Ge S, Jiao Z, Chang , et al.. Ultrafast response and high selectivity toward acetone vapor using hierarchical structured TiO2 nanosheets. ACS Applied Materials & Interfaces, 2020, 12( 11): 13200– 13207
https://doi.org/10.1021/acsami.9b23181 pmid: 32096401
24 B J, Wang S Y, Ma S T, Pei , et al.. High specific surface area SnO2 prepared by calcining Sn-MOFs and their formaldehyde-sensing characteristics. Sensors and Actuators B: Chemical, 2020, 321 : 128560
https://doi.org/10.1016/j.snb.2020.128560
25 C, Liu H B, Lu J N, Zhang , et al.. Crystal facet-dependent p-type and n-type sensing responses of TiO2 nanocrystals. Sensors and Actuators B: Chemical, 2018, 263 : 557– 567
https://doi.org/10.1016/j.snb.2018.02.145
26 S, Deng V, Tjoa H M, Fan , et al.. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. Journal of the American Chemical Society, 2012, 134( 10): 4905– 4917
https://doi.org/10.1021/ja211683m pmid: 22332949
27 Y J, Kwon S Y, Kang P, Wu , et al.. Selective improvement of NO2 gas sensing behavior in SnO2 nanowires by ion-beam irradiation. ACS Applied Materials & Interfaces, 2016, 8( 21): 13646– 13658
https://doi.org/10.1021/acsami.6b01619 pmid: 27167241
28 M Z, Xu R W, Yu Y X, Guo , et al.. New strategy towards the assembly of hierarchical heterostructures of SnO2/ZnO for NO2 detection at a ppb level. Inorganic Chemistry Frontiers, 2019, 6( 10): 2801– 2809
https://doi.org/10.1039/C9QI00788A
29 D, Gu X G, Li Y Y, Zhao , et al.. Enhanced NO2 sensing of SnO2/SnS2 heterojunction based sensor. Sensors and Actuators B: Chemical, 2017, 244 : 67– 76
https://doi.org/10.1016/j.snb.2016.12.125
30 H W, Kim H G, Na Y J, Kwon , et al.. Microwave-assisted synthesis of graphene–SnO2 nanocomposites and their applications in gas sensors. ACS Applied Materials & Interfaces, 2017, 9( 37): 31667– 31682
https://doi.org/10.1021/acsami.7b02533 pmid: 28846844
31 B X, Yang N V, Myung T T Tran . 1D metal oxide semiconductor materials for chemiresistive gas sensors: a review. Advanced Electronic Materials, 2021, 7( 9): 2100271
https://doi.org/10.1002/aelm.202100271
32 L, Zhou Z, Hu H Y, Li , et al.. Template-free construction of tin oxide porous hollow microspheres for room-temperature gas sensors. ACS Applied Materials & Interfaces, 2021, 13( 21): 25111– 25120
https://doi.org/10.1021/acsami.1c04651 pmid: 34003629
33 M S, Choi H G, Na J H, Bang , et al.. SnO2 nanowires decorated by insulating amorphous carbon layers for improved room-temperature NO2 sensing. Sensors and Actuators B: Chemical, 2021, 326 : 128801
https://doi.org/10.1016/j.snb.2020.128801
34 S K, Zhao Y B, Shen P F, Zhou , et al.. Enhanced NO2 sensing performance of ZnO nanowires functionalized with ultra-fine In2O3 nanoparticles. Sensors and Actuators B: Chemical, 2020, 308 : 127729
https://doi.org/10.1016/j.snb.2020.127729
35 P H, Suman A A, Felix H L, Tuller , et al.. Comparative gas sensor response of SnO2, SnO and Sn3O4 nanobelts to NO2 and potential interferents. Sensors and Actuators B: Chemical, 2015, 208 : 122– 127
https://doi.org/10.1016/j.snb.2014.10.119
36 K, Tôel S, Motomizu S Kuse . Naphthoquinonedioxime derivatives as analytical reagents for the spectrophotometric determination of nickel. Analytica Chimica Acta, 1975, 75( 2): 323– 334
https://doi.org/10.1016/S0003-2670(01)85357-5
37 B M Arghiropoulos . Electrical conductivity of pure and doped zinc oxides, catalysts of the hydrogenation of ethylene: I. Activation of the catalyst and adsorption of oxygen on pure zinc oxide. Journal of Catalysis, 1964, 3( 6): 477– 487
https://doi.org/10.1016/0021-9517(64)90048-X
38 S C Chang . Oxygen chemisorption on tin oxide: correlation between electrical conductivity and EPR measurements. Journal of Vacuum Science and Technology, 1980, 17( 1): 366– 369
https://doi.org/10.1116/1.570389
[1] FMS-22609-OF-Wpt_suppl_1 Download
[1] Chunfu HUANG, Cong WU, Zilu ZHANG, Yunyun XIE, Yang LI, Caihong YANG, Hai WANG. Crystalline and amorphous MnO2 cathodes with open framework enable high-performance aqueous zinc-ion batteries[J]. Front. Mater. Sci., 2021, 15(2): 202-215.
[2] Lu-Lu ZHANG, Kun HAO, Rui-Kai WANG, Xiu-Qiang MA, Tong LIU, Liang SONG, Qing YU, Zhong-Wei WANG, Jian-Min ZENG, Rong-Chang ZENG. Mo--V--Nb--O-based catalysts for low-temperature selective oxidation of Cα--OH lignin model compounds[J]. Front. Mater. Sci., 2020, 14(1): 52-61.
[3] Liuxin YANG, Zhou CHEN, Jian ZHANG, Chang-An WANG. SrTiO3/TiO2 heterostructure nanowires with enhanced electron--hole separation for efficient photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 342-351.
[4] Ruiping LIU, Ning ZHANG, Xinyu WANG, Chenhui YANG, Hui CHENG, Hanqing ZHAO. SnO2 nanoparticles anchored on graphene oxide as advanced anode materials for high-performance lithium-ion batteries[J]. Front. Mater. Sci., 2019, 13(2): 186-192.
[5] Yazi WANG, Wei LI, Yimeng FENG, Shasha LV, Mingyang LI, Zhengcao LI. Nitrogen ion irradiation effect on enhancing photocatalytic performance of CdTe/ZnO heterostructures[J]. Front. Mater. Sci., 2018, 12(4): 392-404.
[6] Francisco LóPEZ MORALES, Teresa ZAYAS, Oscar E. CONTRERAS, Leonardo SALGADO. Effect of Sn precursor on the synthesis of SnO2 and Sb-doped SnO2 particles via polymeric precursor method[J]. Front Mater Sci, 2013, 7(4): 387-395.
[7] ZHANG Yinhong, HE Yunqiu. Micro-structure of graphite-intercalated tin oxide and its influence on SnO2-based gas sensors[J]. Front. Mater. Sci., 2007, 1(3): 297-303.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed