Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2011, Vol. 5 Issue (2) : 98-108    https://doi.org/10.1007/s11706-011-0134-4
RESEARCH ARTICLE
Numerical investigations of arc behaviour in gas metal arc welding using ANSYS CFX
M. SCHNICK1(), U. FUESSEL1, M. HERTEL1, A. SPILLE-KOHOFF2, A. B. MURPHY3
1. Institute of Surface and Manufacturing Technology, Technische Universitat Dresden, Dresden, Germany; 2. CFX Berlin Software GmBH, Berlin, Germany; 3. CSIRO Materials Science and Engineering, Lindfield NSW 2070, Australia
 Download: PDF(754 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Current numerical models of gas metal arc welding (GMAW) are trying to combine magnetohydrodynamics (MHD) models of the arc and volume of fluid (VoF) models of metal transfer. They neglect vaporization and assume an argon atmosphere for the arc region, as it is common practice for models of gas tungsten arc welding. These models predict temperatures above 20 000 K and a temperature distribution similar to tungsten inert gas (TIG) arcs. However, current spectroscopic temperature measurements in GMAW arcs demonstrate much lower arc temperatures. In contrast to TIG arcs they found a central local minimum of the radial temperature distribution. The paper presents a GMAW arc model that considers metal vapour and which is in a very good agreement with experimentally observed temperatures. Furthermore, the model is able to predict the local central minimum in the radial temperature and the radial electric current density distributions for the first time. The axially symmetric model of the welding torch, the work piece, the wire and the arc (fluid domain) implements MHD as well as turbulent mixing and thermal demixing of metal vapour in argon. The mass fraction of iron vapour obtained from the simulation shows an accumulation in the arc core and another accumulation on the fringes of the arc at 2000 to 5000 K. The demixing effects lead to very low concentrations of iron between these two regions. Sensitive analyses demonstrate the influence of the transport and radiation properties of metal vapour, and the evaporation rate relative to the wire feed. Finally the model predictions are compared with the measuring results of Zielińska et al.

Keywords arc welding      numerical simulation      GMAW      ANSYS CFX     
Corresponding Author(s): SCHNICK M.,Email:schnick@mciron.mw.tu-dresden.de   
Issue Date: 05 June 2011
 Cite this article:   
M. SCHNICK,U. FUESSEL,M. HERTEL, et al. Numerical investigations of arc behaviour in gas metal arc welding using ANSYS CFX[J]. Front Mater Sci, 2011, 5(2): 98-108.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-011-0134-4
https://academic.hep.com.cn/foms/EN/Y2011/V5/I2/98
Fig.1  Configuration of the model and the iron vapour mass source. (Reproduced with permission from Ref. [], Copyright 2010 IOP Publishing Ltd.)
Fig.2  Influence of iron vapour on plasma properties of argon. (Reproduced with permission from Ref. [], Copyright 2010 IOP Publishing Ltd.)
Fig.3  Diffusion coefficients of iron vapour in argon. (Reproduced with permission from Ref. [], Copyright 2010 IOP Publishing Ltd.)
Fig.4  Calculated values of the temperature (left), the Fe mass fraction (right), and the flow (vectors) in a 250 A arc with a vaporization rate of 1% relative to the 10 m/min wire feed rate. (Reproduced with permission from Ref. [], Copyright 2010 IOP Publishing Ltd.)
Fig.5  Influence of the vaporization and the physical properties of vapour on the radial temperature distribution at a position 1.5 mm above the workpiece (parameters as in Fig. 4)
Fig.6  Influence of the physical properties of the vapour on the radial distributions of temperature, electric current density, axial velocity and arc voltage drop above the workpiece (parameters as in Fig. 4).
Fig.7  Influence of the vaporization rate, relative to a wire feed rate of 10 m/min, in a 250 A arc using the 1 mm NECs of Menart and Malik: the temperature distribution and flow vectors (right) and metal vapour mass fraction distribution (left), images are scaled and sized; radial distributions of temperature, current density and downward velocity at a position of 1.5 mm above the workpiece).
Fig.8  Comparison of a high-speed video image (left) with reconstructions of calculated radiation intensity for spray-transfer mode GMAW with arc current of 330 A; the middle figure shows the argon (scaled transparent to red) and iron vapour radiation (scaled transparent to blue) separately; the right-hand figure shows them combined. (Reproduced with permission from Ref. [], Copyright 2010 IOP Publishing Ltd.)
Fig.9  Comparison between predicted and measured radial temperature distributions at different heights above the workpiece (left), and calculated metal vapour mass fraction and temperature distributions and flow velocity vectors (right) of a spray-transfer mode GMAW process for an arc current of 330 A. (Reproduced with permission from Ref. [], Copyright 2010 IOP Publishing Ltd.)
1 Radaj D. Schwei?prozesssimulation: Grundlagen und Anwendung. Düsseldorf: DVS-Verlag , 1999 (in German)
2 Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics , 1981, 39(1): 201–225
doi: 10.1016/0021-9991(81)90145-5
3 Wang Y, Shi Q, Tsai H L. Modeling of the effects of surface-active elements on flow patterns and weld penetration. Metallurgical and Materials Transactions B , 2001, 32(1): 145–161
doi: 10.1007/s11663-001-0017-7
4 Haidar J. An analysis of the formation of metal droplets in arc welding. Journal of Physics D: Applied Physics , 1998, 31(10): 1233–1244
doi: 10.1088/0022-3727/31/10/015
5 Hu J, Tsai H L. Heat and mass transfer in gas metal arc welding. Part I: The arc. International Journal of Heat and Mass Transfer , 2007, 50(5-6): 833–846
doi: 10.1016/j.ijheatmasstransfer.2006.08.025
6 Hu J, Tsai H L. Heat and mass transfer in gas metal arc welding. Part II: The metal. International Journal of Heat and Mass Transfer , 2007, 50(5-6): 808–820
doi: 10.1016/j.ijheatmasstransfer.2006.08.026
7 Lowke J J, Tanaka M. ‘LTE-diffusion approximation’ for arc calculations. Journal of Physics D: Applied Physics , 2006, 39(16): 3634–3643
doi: 10.1088/0022-3727/39/16/017
8 Spille-Kohoff A. Numerische Simulation des ChopArc-Schwei?prozesses’ final research report: ChopArc. Stuttgart: Frauenhofer IRB Verlag , 2005
9 Lowke J J, Morrow R, Haidar J. A simplified unified theory of arcs and their electrodes. Journal of Physics D: Applied Physics , 1997, 30(14): 2033–2042
doi: 10.1088/0022-3727/30/14/011
10 Sansonnens L, Haidar J, Lowke J J. Prediction of properties of free burning arcs including effects of ambipolar diffusion. Journal of Physics D: Applied Physics , 2000, 33(2): 148–157
doi: 10.1088/0022-3727/33/2/309
11 Metzke E, Sch?pp H. Spektralanalyse Metall-Lichtbogenplasma. Abschlussbericht ChopArc . Stuttgart: Frauenhofer IRB Verlag, 2005 (in German)
12 Goecke S F. Auswirkungen von aktivgaszumischungen im vpm-bereich zu argon auf das mig-impulsschwei?en von aluminium. Dissertation for the Doctoral Degree . Berlin: Technical University of Berlin, 2004 (in German)
13 Pellerin N, Zielińska S, Pellerin S, . Experimental investigations of the arc MIG-MAG welding. AIP Conference Proceedings , 2006, 812: 80–87
doi: 10.1063/1.2168801
14 Zielińska S, Musio? K, Dzier??ga K, . Investigations of GMAW plasma by optical emission spectroscopy. Plasma Sources Science and Technology , 2007, 16(4): 832–838
doi: 10.1088/0963-0252/16/4/019
15 Tashiro S, Tanaka M, Nakata K, . Plasma properties of helium gas tungsten arc with metal vapour. Science and Technology of Welding and Joining , 2007, 12(3): 202–207
doi: 10.1179/174329307X164391
16 Yamamoto K, Tanaka M, Tashiro S, . Numerical simulation for TIG welding of stainless steel with metal vapor. ICCES , 2008, 7(1): 1–6
17 Yamamoto K, Tanaka M, Tashiro S, . Metal vapour behaviour in thermal plasma of gas tungsten arcs during welding. Science and Technology of Welding and Joining , 2008, 13(6): 566–572
doi: 10.1179/174329308X319235
18 Lago F, Gonzalez J J, Freton P, . A numerical modelling of an electric arc and its interaction with the anode: Part I. The two-dimensional model. Journal of Physics D: Applied Physics , 2003, 37(6): 883–897
doi: 10.1088/0022-3727/37/6/013
19 Murphy A B. Thermal plasmas in gas mixtures. Journal of Physics D: Applied Physics , 2001, 34(20): R151–R173
doi: 10.1088/0022-3727/34/20/201
20 Schnick M, Füssel U, Hertel M, . Metal vapour causes a central minimum in arc temperature in gas-metal arc welding through increased radiative emission. Journal of Physics D: Applied Physics , 2010, 43(2): 022001
doi: 10.1088/0022-3727/43/2/022001
21 Schnick M, Fuessel U, Hertel M, . Modelling of gas-metal arc welding taking into account metal vapour. Journal of Physics D: Applied Physics , 2010, 43(43): 434008
doi: 10.1088/0022-3727/43/43/434008
22 Menart J, Malik S. Net emission coefficients for argon-iron thermal plasmas. Journal of Physics D: Applied Physics , 2002, 35(9): 867–874
doi: 10.1088/0022-3727/35/9/306
23 Murphy A B. A comparison of treatments of diffusion in thermal plasmas. Journal of Physics D: Applied Physics , 1996, 29(7): 1922–1932
doi: 10.1088/0022-3727/29/7/029
24 Heberlein J, Mentel J, Pfender E. The anode region of electric arcs: a survey. Journal of Physics D: Applied Physics , 2010, 43(2): 023001
doi: 10.1088/0022-3727/43/2/023001
25 Farmer A J D, Haddad G N. Rayleigh scattering measurements in a free-burning argon arc. Journal of Physics D: Applied Physics , 1988, 21(3): 426–431
doi: 10.1088/0022-3727/21/3/008
26 Murphy A B, Farmer A J D, Haidar J. Laser-scattering measurements of temperature profiles of a free-burning arc. Applied Physics Letters , 1992, 60(11): 1304–1306
doi: 10.1063/1.107324
[1] Shao-Qing GUO, Xiao-Hong LI. Numerical simulation of solidification and liquation behavior during welding of low-expansion superalloys[J]. Front Mater Sci, 2011, 5(2): 146-159.
[2] V. PLOSHIKHIN, A. PRIHODOVSKY, A. ILIN. Experimental investigation of the hot cracking mechanism in welds on the microscopic scale[J]. Front Mater Sci, 2011, 5(2): 135-145.
[3] Ji CHEN, Chuan-Song WU. Numerical simulation of humping phenomenon in high speed gas metal arc welding[J]. Front Mater Sci, 2011, 5(2): 90-97.
[4] Uwe REISGEN, Markus SCHLESER, Oleg MOKROV, Alexander ZABIROV. Virtual welding equipment for simulation of GMAW processes with integration of power source regulation[J]. Front Mater Sci, 2011, 5(2): 79-89.
[5] Jing-Qing CHEN, Hao LU, Wei CUI. Study on Ductility Dip Cracking susceptibility in Filler Metal 82 during welding[J]. Front Mater Sci, 2011, 5(2): 203-208.
[6] Rui-Hua ZHANG, Ji-Luan PAN, Seiji KATAYAMA. The mechanism of penetration increase in A-TIG welding[J]. Front Mater Sci, 2011, 5(2): 109-118.
[7] C. HEINZE, C. SCHWENK, M. RETHMEIER, J. CARON. Numerical sensitivity analysis of welding-induced residual stress depending on variations in continuous cooling transformation behavior[J]. Front Mater Sci, 2011, 5(2): 168-178.
[8] Jian-Qiang ZHANG, Bing-Yin YAO, Tai-Jiang LI, Fu-Guang LIU, Ying-Lin ZHANG, . Numerical simulation of mechanical controlling parameters for Type IV cracking on the welding joints of martensitic heat-resistant steel[J]. Front. Mater. Sci., 2010, 4(2): 210-216.
[9] Hui LI, Jian-song SHI, Rong-rong ZONG, Xiao-xia WANG, . Application of contact element method in the numerical simulation of thermal stress[J]. Front. Mater. Sci., 2009, 3(4): 421-425.
[10] Jun LI, Jian-guo YANG, Hai-long LI, De-jun YAN, Hong-yuan FANG. Numerical simulation on bucking distortion of aluminum alloy thin-plate weldment[J]. Front Mater Sci Chin, 2009, 3(1): 84-88.
[11] De-jun YAN, Xue-song LIU, Huan-yu XU, Jian-guo YANG, Hong-yuan FANG, Jing-yang LU. Welding distortion control of automobile engine stator by finite element method[J]. Front Mater Sci Chin, 2009, 3(1): 71-74.
[12] WU Chuan-song, ZOU De-gang, GAO Jin-qiang. Determining the critical transition current for metal transfer in gas metal arc welding (GMAW)[J]. Front. Mater. Sci., 2008, 2(4): 397-401.
[13] XU Wen-jing, WU Chuan-song, ZOU De-gang. Predicting of bead undercut defects in high-speed gas metal arc welding (GMAW)[J]. Front. Mater. Sci., 2008, 2(4): 402-408.
[14] GAO Jinqiang, WU Chuansong, LIU Xizhang, XIA Dianxiu. Vision-based weld seam tracking in gas metal arc welding[J]. Front. Mater. Sci., 2007, 1(3): 268-273.
[15] GUO Shaoqing, LI Xiaohong. Numerical simulation of the liquating behavior of niobium carbide in heat-affected-zone during welding of a superalloy[J]. Front. Mater. Sci., 2007, 1(2): 203-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed