Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2021, Vol. 15 Issue (4) : 589-600    https://doi.org/10.1007/s11706-021-0581-5
RESEARCH ARTICLE
Microwave hydrothermal synthesis of WO3(H2O)0.333/CdS nanocomposites for efficient visible-light photocatalytic hydrogen evolution
Tingting MA, Zhen LI, Wen LIU, Jiaxu CHEN, Moucui WU, Zhenghua WANG()
Key Laboratory of Functional Molecular Solids (Ministry of Education), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
 Download: PDF(1917 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

WO3(H2O)0.333/CdS (WS) nanocomposites are obtained via a rapid microwave hydrothermal method, and they are served as visible light-driven photocatalysts for the H2 generation. By using Pt as the cocatalyst, the WS nanocomposite with 70 wt.% CdS reaches the H2 evolution rate of 10.32 mmol·g−1·h−1, much quicker than those of WO3(H2O)0.333 and CdS. The cycling test reveals the good photocatalytic stability of the WS nanocomposite. The carrier transfer mechanism of WS nanocomposites can be explained by the Z-scheme mechanism. The existence of the Z-scheme heterojunction greatly helps to separate photogenerated carriers and thus improves the photocatalytic activity. The present work provides a rapid synthesis method for preparing Z-scheme heterojunction photocatalysts, and may be helpful for the green production of hydrogen.

Keywords nanocomposite      semiconductor      photocatalysis      hydrogen evolution     
Corresponding Author(s): Zhenghua WANG   
Online First Date: 07 December 2021    Issue Date: 28 December 2021
 Cite this article:   
Tingting MA,Zhen LI,Wen LIU, et al. Microwave hydrothermal synthesis of WO3(H2O)0.333/CdS nanocomposites for efficient visible-light photocatalytic hydrogen evolution[J]. Front. Mater. Sci., 2021, 15(4): 589-600.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-021-0581-5
https://academic.hep.com.cn/foms/EN/Y2021/V15/I4/589
Sample w(WO3(H2O)0.333)/g w(CdCl2·2.5H2O)/g w(S)/g Content(CdS)/%
WS-1 0.05 0.3161 0.0444 80
WS-2 0.05 0.1844 0.0259 70
WS-3 0.05 0.1185 0.0166 60
Tab.1  The amounts of raw materials for preparing the WS nanocomposites
Fig.1  XRD patterns of CdS, WO3(H2O)0.333 and the WS-2 nanocomposite.
Fig.2  (a)(d)(g) SEM images, (b)(e)(h) TEM images and (c)(f)(i) EDS patterns of CdS (top), WO3(H2O)0.333 (middle), and the WS-2 nanocomposite (bottom). Insets in panels (b), (e) and (h) show corresponding HRTEM images.
Fig.3  FT-IR spectra of CdS, WO3(H2O)0.333 and the WS-2 nanocomposite.
Fig.4  XPS spectra: (a) Cd 3d and (b) S 2p in CdS and WS-2; (c) W 4f and (d) O 1s in WO3(H2O)0.333 and WS-2.
Fig.5  (a) UV-vis DRS results of CdS, WO3(H2O)0.333 and the WS-2 nanocomposite. (b) Plots of (αhν)2 versus energy () for CdS and WO3(H2O)0.333.
Fig.6  (a) N2 adsorption–desorption isotherms and (b) BET surface areas of CdS, WO3(H2O)0.333 and WS nanocomposites.
Fig.7  (a) Photocatalytic H2 production rates of the photocatalysts. (b) Cycling tests of the WS-2 nanocomposite and CdS.
Fig.8  (a) Photocurrent density–time curves and (b) Nyquist plots of CdS, WO3(H2O)0.333 and the WS-2 nanocomposite.
Fig.9  Optimized models and electrostatic potentials of (a) CdS (0 0 1) facet and (b) WO3(H2O)0.333 (1 1 0) facet. (c) Band structures of CdS and WO3(H2O)0.333 before and after contact. (d) The photocatalysis mechanism of the WS-2 nanocomposite.
  Fig. S1 XRD patterns of WS-1, WS-2 and WS-3.
  Fig. S2 SEM (upper) and TEM (lower) images of (a)(d) WS-1, (b)(e) WS-2, and (c)(f) WS-3.
  Fig. S3(a) XPS survey spectra of CdS, WO3(H2O)0.333 and the WS-2 nanocomposite. (b) XPS spectra of N 1s in CdS and WS-2.
  Fig. S4 Photocatalytic H2 production rates of photocatalysts without the Pt cocatalyst.
  Fig. S5 XRD patterns of WS-2 before and after the cycling test.
Catalyst Co-catalyst Light source Sacrificial agent H2 production rate/(mmol·g−1·h−1) Ref.
CdS/Ti3C2 300 W Xe lamp, λ≥420 nm lactic acid 2.407 [S1]
Mo2C/CdS Xe lamp, λ≥420 nm lactic acid 7.7 [S2]
CdS/Co9S8 300 W Xe lamp, λ≥420 nm lactic acid 11.60 [S3]
CdS/g-C3N4 1 wt.% Pt 300 W Xe lamp, λ≥420 nm lactic acid 2.323 [S4]
CdS/g-C3N4 5 wt.% Pd 300 W Xe lamp, λ≥420 nm Na2SO3 + Na2S 0.293 [S5]
ZnO/CdS 350 W Xe lamp Na2SO3 + Na2S 4.134 [S6]
N-TiO2/CdS 3 wt.% Pt 300 W Xe lamp, λ≥420 nm Na2SO3 + Na2S 4.472 [S7]
CdS/N-NaNbO3 2 wt.% Pt 300 W Xe lamp, λ≥420 nm Na2SO3 + Na2S 9.211 [S8]
CdS 0.6 wt.% Pt 300 W Xe lamp, λ≥420 nm Na2SO3 + Na2S 4.45 this work
WO3(H2O)0.333/CdS 0.6 wt.% Pt 300 W Xe lamp, λ≥420 nm Na2SO3 + Na2S 10.32 this work
  Table S1 Comparison of the H2 production rates catalyzed by photocatalysts in the literature and in this work
1 I Staffell, D Scamman, A V Abad, et al.. The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science, 2019, 12(2): 463–491
https://doi.org/10.1039/C8EE01157E
2 F Dawood, M Anda, G M Shafiullah. Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 2020, 45(7): 3847–3869
https://doi.org/10.1016/j.ijhydene.2019.12.059
3 X Chen, S Shen, L Guo, et al.. Semiconductor-based photocatalytic hydrogen generation. Chemical Reviews, 2010, 110(11): 6503–6570
https://doi.org/10.1021/cr1001645 pmid: 21062099
4 Q Wang, K Domen. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chemical Reviews, 2020, 120(2): 919–985
https://doi.org/10.1021/acs.chemrev.9b00201 pmid: 31393702
5 M H Elsayed, J Jayakumar, M Abdellah, et al.. Visible-light-driven hydrogen evolution using nitrogen-doped carbon quantum dot-implanted polymer dots as metal-free photocatalysts. Applied Catalysis B: Environmental, 2021, 283: 119659
https://doi.org/10.1016/j.apcatb.2020.119659
6 Y J Yuan, D Chen, Z T Yu, et al.. Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(25): 11606–11630
https://doi.org/10.1039/C8TA00671G
7 R Singh, S Dutta. A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts. Fuel, 2018, 220: 607–620
https://doi.org/10.1016/j.fuel.2018.02.068
8 Z Li, X Meng, Z Zhang. Recent development on MoS2-based photocatalysis: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35: 39–55
https://doi.org/10.1016/j.jphotochemrev.2017.12.002
9 Y P Xing, X K Wang, S H Hao, et al.. Recent advances in the improvement of g-C3N4 based photocatalytic materials. Chinese Chemical Letters, 2021, 32(1): 13–20
https://doi.org/10.1016/j.cclet.2020.11.011
10 X Q Hao, J Zhou, Z W Cui, et al.. Zn-vacancy mediated electron‒hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 229: 41–51
https://doi.org/10.1016/j.apcatb.2018.02.006
11 J Pan, S Shen, W Zhou, et al.. Recent progress in photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2020, 36(3): 1905068
https://doi.org/10.3866/PKU.WHXB201905068
12 Z Z Liang, R C Shen, Y H Ng, et al.. A review on 2D MoS2 cocatalysts in photocatalytic H2 production. Journal of Materials Science and Technology, 2020, 56: 89–121
https://doi.org/10.1016/j.jmst.2020.04.032
13 G Zhao, X Xu. Cocatalysts from types, preparation to applications in the field of photocatalysis. Nanoscale, 2021, 13(24): 10649–10667
https://doi.org/10.1039/D1NR02464G pmid: 34105577
14 G Zhao, S H Hao, J H Guo, et al.. Design of p–n homojunctions in metal-free carbon nitride photocatalyst for overall water splitting. Chinese Journal of Catalysis, 2021, 42(3): 501–509
https://doi.org/10.1016/S1872-2067(20)63670-1
15 G Zhao, Y P Xing, S H Hao, et al.. Why the hydrothermal fluorinated method can improve photocatalytic activity of carbon nitride. Chinese Chemical Letters, 2021, 32(1): 277–281
https://doi.org/10.1016/j.cclet.2020.11.033
16 L Cheng, Q J Xiang, Y L Liao, et al.. CdS-based photocatalysts. Energy & Environmental Science, 2018, 11(6): 1362–1391
https://doi.org/10.1039/C7EE03640J
17 M Reza Gholipour, C T Dinh, F Béland, et al.. Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale, 2015, 7(18): 8187–8208
https://doi.org/10.1039/C4NR07224C pmid: 25804291
18 C Ji, C Du, J D Steinkruger, et al.. In-situ hydrothermal fabrication of CdS/g-C3N4 nanocomposites for enhanced photocatalytic water splitting. Materials Letters, 2019, 240: 128–131
https://doi.org/10.1016/j.matlet.2018.12.128
19 L L Li, X L Yin, D H Pang, et al.. One-pot synthesis of MoS2/CdS nanosphere heterostructures for efficient H2 evolution under visible light irradiation. International Journal of Hydrogen Energy, 2019, 44(60): 31930–31939
https://doi.org/10.1016/j.ijhydene.2019.10.056
20 Z Wang, C Li, K Domen. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chemical Society Reviews, 2019, 48(7): 2109–2125
https://doi.org/10.1039/C8CS00542G pmid: 30328438
21 Z M Jiang, Q Chen, Q Q Zheng, et al.. Constructing 1D/2D Schottky-based heterojunctions between Mn0.2Cd0.8S nanorods and Ti3C2 nanosheets for boosted photocatalytic H2 evolution. Acta Physico-Chimica Sinica, 2021, 37(6): 201005910.3866/PKU.WHXB202010059
22 R C Shen, Y N Ding, S B Li, et al.. Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution. Chinese Journal of Catalysis, 2021, 42(1): 25–36
https://doi.org/10.1016/S1872-2067(20)63600-2
23 S J Zhang, S H Duan, G L Chen, et al.. MoS2/Zn3In2S6 composite photocatalysts for enhancement of visible light-driven hydrogen production from formic acid. Chinese Journal of Catalysis, 2021, 42(1): 193–204
https://doi.org/10.1016/S1872-2067(20)63584-7
24 Q L Xu, D K Ma, S B Yang, et al.. Novel g-C3N4/g-C3N4 S-scheme isotype heterojunction for improved photocatalytic hydrogen generation. Applied Surface Science, 2019, 495: 143555
https://doi.org/10.1016/j.apsusc.2019.143555
25 H N Ge, F Y Xu, B Cheng, et al.. S-scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2 production photocatalyst. ChemCatChem, 2019, 11(24): 6301–6309
https://doi.org/10.1002/cctc.201901486
26 F He, A Y Meng, B Cheng, et al.. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chinese Journal of Catalysis, 2020, 41(1): 9–20
https://doi.org/10.1016/S1872-2067(19)63382-6
27 D D Ren, W N Zhang, Y N Ding, et al.. In situ fabrication of robust cocatalyst-free CdS/g-C3N4 2D‒2D step-scheme heterojunctions for highly active H2 evolution. Solar RRL, 2020, 4(8): 1900423
https://doi.org/10.1002/solr.201900423
28 H X Fan, H L Zhou, W J Li, et al.. Facile fabrication of 2D/2D step-scheme In2S3/Bi2O2CO3 heterojunction towards enhanced photocatalytic activity. Applied Surface Science, 2020, 504: 144351
https://doi.org/10.1016/j.apsusc.2019.144351
29 J H Luo, Z X Lin, Y Zhao, et al.. The embedded CuInS2 into hollow-concave carbon nitride for photocatalytic H2O splitting into H2 with S-scheme principle. Chinese Journal of Catalysis, 2020, 41(1): 122–130
https://doi.org/10.1016/S1872-2067(19)63490-X
30 J Wang, G H Wang, B Cheng, et al.. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chinese Journal of Catalysis, 2021, 42(1): 56–68
https://doi.org/10.1016/S1872-2067(20)63634-8
31 J J Peng, J Shen, X H Yu, et al.. Construction of LSPR-enhanced 0D/2D CdS/MoO3−x S-scheme heterojunctions for visible-light-driven photocatalytic H2 evolution. Chinese Journal of Catalysis, 2021, 42(1): 87–96
https://doi.org/10.1016/S1872-2067(20)63595-1
32 J X Wei, Y W Chen, H Y Zhang, et al.. Hierarchically porous S-scheme CdS/UiO-66 photocatalyst for efficient 4-nitroaniline reduction. Chinese Journal of Catalysis, 2021, 42(1): 78–86
https://doi.org/10.1016/S1872-2067(20)63661-0
33 S Wageh, A A Al-Ghamdi, R Jafer, et al.. A new heterojunction in photocatalysis: S-scheme heterojunction. Chinese Journal of Catalysis, 2021, 42(5): 667–669
https://doi.org/10.1016/S1872-2067(20)63705-6
34 R C Shen, X Y Lu, Q Q Zheng, et al.. Tracking S-scheme charge transfer pathways in Mo2C/CdS H2 evolution photocatalysts. Solar RRL, 2021, 5(7): 2100177
https://doi.org/10.1002/solr.202100177
35 Q L Xu, L Y Zhang, B Cheng, et al.. S-scheme heterojunction photocatalyst. Chem, 2020, 6(7): 1543–1559
https://doi.org/10.1016/j.chempr.2020.06.010
36 D Cao, H An, X Q Yan, et al.. Fabrication of Z-scheme heterojunction of SiC/Pt/CdS nanorod for efficient photocatalytic H2 evolution. Acta Physico-Chimica Sinica, 2020, 36(3): 1901051
https://doi.org/10.3866/PKU.WHXB201901051
37 H M Gong, X Q Hao, Z L Jin, et al.. WP modified S-scheme Zn0.5Cd0.5S/WO3 for efficient photocatalytic hydrogen production. New Journal of Chemistry, 2019, 43(48): 19159–19171
https://doi.org/10.1039/C9NJ04584H
38 R G He, H J Liu, H M Liu, et al.. S-scheme photocatalyst Bi2O3/TiO2 nanofiber with improved photocatalytic performance. Journal of Materials Science and Technology, 2020, 52: 145–151
https://doi.org/10.1016/j.jmst.2020.03.027
39 N Zhang, D Chen, B C Cai, et al.. Facile synthesis of CdS-ZnWO4 composite photocatalysts for efficient visible light driven hydrogen evolution. International Journal of Hydrogen Energy, 2017, 42(4): 1962–1969
https://doi.org/10.1016/j.ijhydene.2016.10.023
40 M Yuan, W H Zhou, D X Kou, et al.. Cu2ZnSnS4 decorated CdS nanorods for enhanced visible-light-driven photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2018, 43(45): 20408–20416
https://doi.org/10.1016/j.ijhydene.2018.09.161
41 L Wei, D Zeng, Z Xie, et al.. NiO nanosheets coupled with CdS nanorods as 2D/1D heterojunction for improved photocatalytic hydrogen evolution. Frontiers in Chemistry, 2021, 9: 655583
https://doi.org/10.3389/fchem.2021.655583 pmid: 33937197
42 R L Zhang, C Wang, H Chen, et al.. Cadmium sulfide inverse opal for photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2020, 36(3): 1803014
https://doi.org/10.3866/PKU.WHXB201803014
43 R C Shen, D D Ren, Y N Ding, et al.. Nanostructured CdS for efficient photocatalytic H2 evolution: A review. Science China: Materials, 2020, 63(11): 2153–2188
https://doi.org/10.1007/s40843-020-1456-x
44 D D Ren, R C Shen, Z M Jiang, et al.. Highly efficient visible-light photocatalytic H2 evolution over 2D–2D CdS/Cu7S4 layered heterojunctions. Chinese Journal of Catalysis, 2020, 41(1): 31–40
https://doi.org/10.1016/S1872-2067(19)63467-4
45 Z Li, X Wang, J F Zhang, et al.. Preparation of Z-scheme WO3(H2O)0.333/Ag3PO4 composites with enhanced photocatalytic activity and durability. Chinese Journal of Catalysis, 2019, 40(3): 326–334
https://doi.org/10.1016/S1872-2067(18)63165-1
46 Z Li, T T Ma, X Zhang, et al.. In2Se3/CdS nanocomposites as high efficiency photocatalysts for hydrogen production under visible light irradiation. International Journal of Hydrogen Energy, 2021, 46(29): 15539–15549
https://doi.org/10.1016/j.ijhydene.2021.02.098
47 Z Li, D Jin, Z H Wang. ZnO/CdSe-diethylenetriamine nanocomposite as a step-scheme photocatalyst for photocatalytic hydrogen evolution. Applied Surface Science, 2020, 529: 147071
https://doi.org/10.1016/j.apsusc.2020.147071
48 S Ma, Y P Deng, J Xie, et al.. Noble-metal-free Ni3C cocatalysts decorated CdS nanosheets for high efficiency visible-light-driven photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2018, 227: 218–228
https://doi.org/10.1016/j.apcatb.2018.01.031
49 T M Di, B Cheng, W K Ho, et al.. Hierarchically CdS–Ag2S nanocomposites for efficient photocatalytic H2 production. Applied Surface Science, 2019, 470: 196–204
https://doi.org/10.1016/j.apsusc.2018.11.010
50 J Chen, X Xio, Y Wang, et al.. Ag nanoparticles decorated WO3/g-C3N4 2D/2D heterostructure with enhanced photocatalytic activity for organic pollutants degradation. Applied Surface Science, 2019, 467: 1000–1010
https://doi.org/10.1016/j.apsusc.2018.10.236
51 Y Li, X Wei, X Yan, et al.. Construction of inorganic‒organic 2D/2D WO3/g-C3N4 nanosheet arrays toward efficient photoelectrochemical splitting of natural seawater. Physical Chemistry Chemical Physics, 2016, 18(15): 10255–10261
https://doi.org/10.1039/C6CP00353B pmid: 27022001
52 D Ma, J W Shi, Y Zou, et al.. Highly efficient photocatalyst based on a CdS quantum dots/ZnO nanoplates 0D/2D heterojunction for hydrogen evolution from water splitting. ACS Applied Materials & Interfaces, 2017, 9(30): 25377–25386
https://doi.org/10.1021/acsami.7b08407 pmid: 28696670
53 D Kim, K Yong. Boron doping induced charge transfer switching of a C3N4/ZnO photocatalyst from Z-scheme to type II to enhance photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2021, 282: 119538
https://doi.org/10.1016/j.apcatb.2020.119538
[1] Dong XIANG, Libing LIU, Xiaoyu CHEN, Yuanpeng WU, Menghan WANG, Jie ZHANG, Chunxia ZHAO, Hui LI, Zhenyu LI, Ping WANG, Yuntao LI. High-performance fiber strain sensor of carbon nanotube/thermoplastic polyurethane@styrene butadiene styrene with a double percolated structure[J]. Front. Mater. Sci., 2022, 16(1): 220586-.
[2] Nabi ULLAH, Rizwan ULLAH, Saraf KHAN, Yuanguo XU. Boron nitride-based electrocatalysts for HER, OER, and ORR: A mini-review[J]. Front. Mater. Sci., 2021, 15(4): 543-552.
[3] Bharat BARUAH, Christopher KELLEY, Grace B. DJOKOTO, Kelly M. HARTNETT. Polymer-capped gold nanoparticles and ZnO nanorods form binary photocatalyst on cotton fabrics: Catalytic breakdown of dye[J]. Front. Mater. Sci., 2021, 15(3): 431-447.
[4] Xuhua YE, Xiangyu YAN, Xini CHU, Shixiang ZUO, Wenjie LIU, Xiazhang LI, Chao YAO. Construction of upconversion fluoride/attapulgite nanocomposite for visible-light-driven photocatalytic nitrogen fixation[J]. Front. Mater. Sci., 2020, 14(4): 469-480.
[5] Yun ZHAO, Linan YANG, Canliang MA. One-step gas-phase construction of carbon-coated Fe3O4 nanoparticle/carbon nanotube composite with enhanced electrochemical energy storage[J]. Front. Mater. Sci., 2020, 14(2): 145-154.
[6] Danhua ZHU, Qianjie ZHOU, Aiqin LIANG, Weiqiang ZHOU, Yanan CHANG, Danqin LI, Jing WU, Guo YE, Jingkun XU, Yong REN. Two-step preparation of carbon nanotubes/RuO2/polyindole ternary nanocomposites and their application as high-performance supercapacitors[J]. Front. Mater. Sci., 2020, 14(2): 109-119.
[7] Xiangyu YAN, Da DAI, Kun MA, Shixiang ZUO, Wenjie LIU, Xiazhang LI, Chao YAO. Microwave hydrothermal synthesis of lanthanum oxyfluoride nanorods for photocatalytic nitrogen fixation: Effect of Pr doping[J]. Front. Mater. Sci., 2020, 14(1): 43-51.
[8] Dong ZHANG, Jingxin CHEN, Chunyu DU, Bingjun ZHU, Qingru WANG, Qiang SHI, Shouxin CUI, Wenjun WANG. Enhancement of red emission assigned to inversion defects in ZnAl2O4:Cr3+ hollow spheres[J]. Front. Mater. Sci., 2020, 14(1): 73-80.
[9] Timur Sh. ATABAEV, Anara MOLKENOVA. Upconversion optical nanomaterials applied for photocatalysis and photovoltaics: Recent advances and perspectives[J]. Front. Mater. Sci., 2019, 13(4): 335-341.
[10] Yanlin JIA, Zhiyuan MA, Zhicheng LI, Zhenli HE, Junming SHAO, Hong ZHANG. Electrochemical performances of NiO/Ni2N nanocomposite thin film as anode material for lithium ion batteries[J]. Front. Mater. Sci., 2019, 13(4): 367-374.
[11] Liuxin YANG, Zhou CHEN, Jian ZHANG, Chang-An WANG. SrTiO3/TiO2 heterostructure nanowires with enhanced electron--hole separation for efficient photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 342-351.
[12] Palepu Teja RAVINDAR, Vidya Sagar CHOPPELLA, Anil Kumar MOKSHAGUNDAM, M. KIRUBA, Sunil G. BABU, Korupolu Raghu BABU, L. John BERCHMANS, Gosipathala SREEDHAR. Enhanced visible-light-driven photocatalysis of Bi2YO4Cl heterostructures functionallized by bimetallic RhNi nanoparticles[J]. Front. Mater. Sci., 2018, 12(4): 405-414.
[13] Zhongchi WANG, Gongsheng SONG, Jianle XU, Qiang FU, Chunxu PAN. Electrospun titania fibers by incorporating graphene/Ag hybrids for the improved visible-light photocatalysis[J]. Front. Mater. Sci., 2018, 12(4): 379-391.
[14] Wei LI, Lizhong ZHAO, Zhongwu LIU. Micromagnetic simulation on magnetic properties of Nd2Fe14B/α-Fe nanocomposites with Fe nanowires as the soft phase[J]. Front. Mater. Sci., 2018, 12(4): 348-353.
[15] Chuan DENG, Xianxian WEI, Ruixiang LIU, Yajie DU, Lei PAN, Xiang ZHONG, Jianhua SONG. Synthesis of sillenite-type Bi36Fe2O57 and elemental bismuth with visible-light photocatalytic activity for water treatment[J]. Front. Mater. Sci., 2018, 12(4): 415-425.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed