Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (5) : 53506    https://doi.org/10.1007/s11467-022-1164-3
RESEARCH ARTICLE
Lattice Boltzmann study of three-dimensional immiscible Rayleigh–Taylor instability in turbulent mixing stage
Bin Liu1, Chunhua Zhang2, Qin Lou3, Hong Liang1()
1. Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, China
2. Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
3. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
 Download: PDF(2185 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we numerically studied the late-time evolutional mechanism of three-dimensional (3D) single-mode immiscible Rayleigh–Taylor instability (RTI) by using an improved lattice Boltzmann multiphase method implemented on graphics processing units. The influences of extensive dimensionless Reynolds numbers and Atwood numbers on phase interfacial dynamics, spike and bubble growth were investigated in details. The longtime numerical experiments indicate that the development of 3D singlemode RTI with a high Reynolds number can be summarized into four different stages: linear growth stage, saturated velocity growth stage, reacceleration stage and turbulent mixing stage. A series of complex interfacial structures with large topological changes can be observed at the turbulent mixing stage, which always preserve the symmetries with respect to the middle axis for a low Atwood number, and the lines of symmetry within spike and bubble are broken as the Atwood number is increased. Five statistical methods for computing the spike and bubble growth rates were then analyzed to reveal the growth law of 3D single-mode RTI in turbulent mixing stage. It is found that the spike late-time growth rate shows an overall increase with the Atwood number, while the bubble growth rate experiences a slight decrease with the Atwood number at first and then basically maintains a steady value of around 0.1. When the Reynolds number decreases, the later stages cannot be reached gradually and the evolution of phase interface presents a laminar flow state.

Keywords lattice Boltzmann      phase field      Rayleigh–Taylor instability      computational fluid dynamics      interfacial instability     
Corresponding Author(s): Hong Liang   
Issue Date: 06 May 2022
 Cite this article:   
Bin Liu,Chunhua Zhang,Qin Lou, et al. Lattice Boltzmann study of three-dimensional immiscible Rayleigh–Taylor instability in turbulent mixing stage[J]. Front. Phys. , 2022, 17(5): 53506.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1164-3
https://academic.hep.com.cn/fop/EN/Y2022/V17/I5/53506
1 A. Burrows , Supernova explosions in the universe, Nature 403 (6771), 727 (2000)
https://doi.org/10.1038/35001501
2 M. Chertkov , Phenomenology of Rayleigh–Taylor turbulence, Phys. Rev. Lett. 91 (11), 115001 (2003)
https://doi.org/10.1103/PhysRevLett.91.115001
3 R. Betti and O. A. Hurricane , Inertial-confinement fusion with lasers, Nat. Phys. 12 (5), 435 (2016)
https://doi.org/10.1038/nphys3736
4 L. Rayleigh , Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proc. Lond. Math. Soc. 14, 170 (1883)
5 G. I. Taylor , The instability of liquid surfaces when accelerated in a direction perpendicular to their plane, Proc. R. Soc. Lond. A 201 (1065), 192 (1950)
https://doi.org/10.1098/rspa.1950.0052
6 Y. Zhou , Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing (I), Phys. Rep. 720-722, 1 (2017)
https://doi.org/10.1016/j.physrep.2017.07.005
7 Y. Zhou , Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing (II), Phys. Rep. 723–725, 1 (2017)
https://doi.org/10.1016/j.physrep.2017.07.008
8 G. Boffetta and A. Mazzino , Incompressible Rayleigh– Taylor turbulence, Annu. Rev. Fluid Mech. 49 (1), 119 (2017)
https://doi.org/10.1146/annurev-fluid-010816-060111
9 D. Livescu , Turbulence with large thermal and compositional density variations, Annu. Rev. Fluid Mech. 52 (1), 309 (2020)
https://doi.org/10.1146/annurev-fluid-010719-060114
10 H. Liang , X. L. Hu , X. F. Huang , and J. R. Xu , Direct numerical simulations of multi-mode immiscible Rayleigh– Taylor instability with high Reynolds numbers, Phys. Fluids 31 (11), 112104 (2019)
https://doi.org/10.1063/1.5127888
11 H. S. Tavares , L. Biferale , M. Sbragaglia , and A. A. Mailybaev , Immiscible Rayleigh–Taylor turbulence using mesoscopic lattice Boltzmann algorithms, Phys. Rev. Fluids 6 (5), 054606 (2021)
https://doi.org/10.1103/PhysRevFluids.6.054606
12 P. Ramaprabhu , G. Dimonte , P. Woodward , C. Fryer , G. Rockefeller , K. Muthuraman , P. H. Lin , and J. Jayaraj , The late-time dynamics of the single-mode Rayleigh– Taylor instability, Phys. Fluids 24 (7), 074107 (2012)
https://doi.org/10.1063/1.4733396
13 T. Wei and D. Livescu , Late-time quadratic growth in single-mode Rayleigh–Taylor instability, Phys. Rev. E 86 (4), 046405 (2012)
https://doi.org/10.1103/PhysRevE.86.046405
14 D. J. Lewis , The instability of liquid surfaces when accelerated in a direction perpendicular to their planes (II), Proc. R. Soc. Lond. A 202 (1068), 81 (1950)
https://doi.org/10.1098/rspa.1950.0086
15 R. Bellman and R. H. Pennington , Effects of surface tension and viscosity on Taylor instability, Q. Appl. Math. 12 (2), 151 (1954)
https://doi.org/10.1090/qam/63198
16 R. Menikoff , R. C. Mjolsness , D. H. Sharp , and C. Zemach , Unstable normal mode for Rayleigh–Taylor instability in viscous fluids, Phys. Fluids 20 (12), 2000 (1977)
https://doi.org/10.1063/1.861831
17 D. Layzer , On the instability of superposed fluids in a gravitational field, Astrophys. J. 122, 1 (1955)
https://doi.org/10.1086/146048
18 V. N. Goncharov , Analytical model of nonlinear, singlemode, classical Rayleigh–Taylor instability at arbitrary Atwood numbers, Phys. Rev. Lett. 88 (13), 134502 (2002)
https://doi.org/10.1103/PhysRevLett.88.134502
19 S. I. Sohn , Effects of surface tension and viscosity on the growth rates of Rayleigh–Taylor and Richtmyer–Meshkov instabilities, Phys. Rev. E 80 (5), 055302 (2009)
https://doi.org/10.1103/PhysRevE.80.055302
20 R. Betti and J. Sanz , Bubble acceleration in the ablative Rayleigh–Taylor instability, Phys. Rev. Lett. 97 (20), 205002 (2006)
https://doi.org/10.1103/PhysRevLett.97.205002
21 J. T. Waddell , C. E. Niederhaus , and J. W. Jacobs , Experimental study of Rayleigh–Taylor instability: Low Atwood number liquid systems with single-mode initial perturbations, Phys. Fluids 13 (5), 1263 (2001)
https://doi.org/10.1063/1.1359762
22 J. Glimm , X. L. Li , and A. D. Lin , Nonuniform approach to terminal velocity for single mode Rayleigh–Taylor instability, Acta Math. Appl. Sin. 18 (1), 1 (2002)
https://doi.org/10.1007/s102550200001
23 P. Ramaprabhu , G. Dimonte , Y. N. Young , A. C. Calder , and B. Fryxell , Limits of the potential flow approach to the single-mode Rayleigh–Taylor problem, Phys. Rev. E 74 (6), 066308 (2006)
https://doi.org/10.1103/PhysRevE.74.066308
24 J. P. Wilkinson , and J. W. Jacobs , Experimental study of the single-mode three-dimensional Rayleigh–Taylor instability, Phys. Fluids 19 (12), 124102 (2007)
https://doi.org/10.1063/1.2813548
25 X. Bian , H. Aluie , D. X. Zhao , H. S. Zhang , and D. Livescu , Revisiting the late-time growth of single-mode Rayleigh–Taylor instability and the role of vorticity, Physica D 403, 132250 (2020)
https://doi.org/10.1016/j.physd.2019.132250
26 H. Liang , Z. H. Xia , and H. W. Huang , Late-time description of immiscible Rayleigh–Taylor instability: A lattice Boltzmann study, Phys. Fluids 33 (8), 082103 (2021)
https://doi.org/10.1063/5.0057269
27 X. L. Hu , H. Liang , and H. L. Wang , Lattice Boltzmann method simulations of the immiscible Rayleigh–Taylor instability with high Reynolds numbers, Wuli Xuebao 69 (4), 044701 (2020)
https://doi.org/10.7498/aps.69.20191504
28 H. Liang , Q. X. Li , B. C. Shi , and Z. H. Chai , Lattice Boltzmann simulation of three-dimensional Rayleigh– Taylor instability, Phys. Rev. E 93 (3), 033113 (2016)
https://doi.org/10.1103/PhysRevE.93.033113
29 Z. X. Hu , Y. S. Zhang , B. L. Tian , Z. W. He , and L. Li , Effect of viscosity on two-dimensional single-mode Rayleigh–Taylor instability during and after the reacceleration stage, Phys. Fluids 31 (10), 104108 (2019)
https://doi.org/10.1063/1.5122247
30 A. Xu , G. Zhang , Y. Gan , F. Chen , and X. Yu , Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys. 7 (5), 582 (2012)
https://doi.org/10.1007/s11467-012-0269-5
31 B. Yan , A. Xu , G. Zhang , Y. Ying , and H. Li , Lattice Boltzmann model for combustion and detonation, Front. Phys. 8 (1), 94 (2013)
https://doi.org/10.1007/s11467-013-0286-z
32 F. Chen , A. Xu , and G. Zhang , Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh–Taylor instability, Front. Phys. 11 (6), 114703 (2016)
https://doi.org/10.1007/s11467-016-0603-4
33 L. Chen , H. L. Lai , C. D. Lin , and D. M. Li , Specific heat ratio effects of compressible Rayleigh–Taylor instability studied by discrete Boltzmann method, Front. Phys. 16 (5), 52500 (2021)
https://doi.org/10.1007/s11467-021-1096-3
34 F. Chen , A. Xu , Y. Zhang , Y. Gan , B. Liu , and S. Wang , Effects of the initial perturbations on the Rayleigh–Taylor–Kelvin–Helmholtz instability system, Front. Phys. 17 (3), 33505 (2022)
https://doi.org/10.1007/s11467-021-1145-y
35 Z. L. Guo and C. Shu , Lattice Boltzmann Method and Its Applications in Engineering, World Scientific, Singapore, 2013
36 H. Liu , Q. Kang , C. R. Leonardi , S. Schmieschek , A. Narvaez , B. D. Jones , J. R. Williams , A. J. Valocchi , and J. Harting , Multiphase lattice Boltzmann simulations for porous media applications, Computat. Geosci. 20 (4), 777 (2016)
37 H. Liang , B. C. Shi , and Z. H. Chai , Lattice Boltzmann modeling of three-phase incompressible flows, Phys. Rev. E 93 (1), 013308 (2016)
https://doi.org/10.1103/PhysRevE.93.013308
38 D. Jacqmin , Calculation of two-phase Navier–Stokes flows using phase-field modeling, J. Comput. Phys. 155 (1), 96 (1999)
https://doi.org/10.1006/jcph.1999.6332
39 H. Liang , B. C. Shi , Z. L. Guo , and Z. H. Chai , Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows, Phys. Rev. E 89 (5), 053320 (2014)
https://doi.org/10.1103/PhysRevE.89.053320
40 H. Liang , B. C. Shi , and Z. H. Chai , An effcient phasefield-based multiple-relaxation-time lattice Boltzmann model for three-dimensional multiphase flows, Comput. Math. Appl. 73 (7), 1524 (2017)
https://doi.org/10.1016/j.camwa.2017.01.020
41 D. d’Humières , I. Ginzburg , M. Krafczyk , P. Lallemand , and L. S. Luo , Multiple-relaxation-time lattice Boltzmann models in three dimensions, Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci. 360 (1792), 437 (2002)
https://doi.org/10.1098/rsta.2001.0955
42 S. I. Abarzhi , A. Gorobets , and K. R. Sreenivasan , Rayleigh–Taylor turbulent mixing of immiscible, miscible and stratified fluids, Phys. Fluids 17 (8), 081705 (2005)
https://doi.org/10.1063/1.2009027
43 K. R. Sreenivasan , On the scaling of the turbulence energy dissipation rate, Phys. Fluids 27 (5), 1048 (1984)
https://doi.org/10.1063/1.864731
44 J. R. Ristorcelli and T. T. Clark , Rayleigh–Taylor turbulence: Self-similar analysis and direct numerical simulations, J. Fluid Mech. 507, 213 (2004)
https://doi.org/10.1017/S0022112004008286
45 A. W. Cook , W. Cabot , and P. L. Miller , The mixing transition in Rayleigh–Taylor instability, J. Fluid Mech. 511, 333 (2004)
https://doi.org/10.1017/S0022112004009681
46 W. H. Cabot and A. W. Cook , Reynolds number effects on Rayleigh–Taylor instability with possible implications for type Ia supernovae, Nat. Phys. 2 (8), 562 (2006)
https://doi.org/10.1038/nphys361
47 T. T. Clark , A numerical study of the statistics of a twodimensional Rayleigh–Taylor mixing layer, Phys. Fluids 15 (8), 2413 (2003)
https://doi.org/10.1063/1.1589015
48 D. H. Olson and J. W. Jacobs , Experimental study of Rayleigh–Taylor instability with a complex initial perturbation, Phys. Fluids 21 (3), 034103 (2009)
https://doi.org/10.1063/1.3085811
49 B. Akula and D. Ranjan , Dynamics of buoyancy-driven flows at moderately high Atwood numbers, J. Fluid Mech. 795, 313 (2016)
https://doi.org/10.1017/jfm.2016.199
[1] Raúl Machado. On the generalized Hermite-based lattice Boltzmann construction, lattice sets, weights, moments, distribution functions and high-order models[J]. Front. Phys. , 2014, 9(4): 490-510.
[2] Feng Chen, Ai-Guo Xu, Guang-Cai Zhang, Yong-Long Wang. Two-dimensional Multiple-Relaxation-Time Lattice Boltzmann model for compressible and incompressible flows[J]. Front. Phys. , 2014, 9(2): 246-254.
[3] Ai-Guo Xu, Guang-Cai Zhang, Yang-Jun Ying, Xi-Jun Yu. Simulation study on cavity growth in ductile metal materials under dynamic loading[J]. Front. Phys. , 2013, 8(4): 394-404.
[4] Bo Yan, Ai-Guo Xu, Guang-Cai Zhang, Yang-Jun Ying, Hua Li. Lattice Boltzmann model for combustion and detonation[J]. Front. Phys. , 2013, 8(1): 94-110.
[5] Ai-Guo Xu, Guang-Cai Zhang, Yan-Biao Gan, Feng Chen, Xi-Jun Yu. Lattice Boltzmann modeling and simulation of compressible flows[J]. Front. Phys. , 2012, 7(5): 582-600.
[6] Yan-Biao Gan, Ai-Guo Xu, Guang-Cai Zhang, Ying-Jun Li. Physical modeling of multiphase flow via lattice Boltzmann method: Numerical effects, equation of state and boundary conditions[J]. Front. Phys. , 2012, 7(4): 481-490.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed