|
|
Lattice Boltzmann study of three-dimensional immiscible Rayleigh–Taylor instability in turbulent mixing stage |
Bin Liu1, Chunhua Zhang2, Qin Lou3, Hong Liang1( ) |
1. Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, China 2. Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China 3. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China |
|
|
Abstract In this paper, we numerically studied the late-time evolutional mechanism of three-dimensional (3D) single-mode immiscible Rayleigh–Taylor instability (RTI) by using an improved lattice Boltzmann multiphase method implemented on graphics processing units. The influences of extensive dimensionless Reynolds numbers and Atwood numbers on phase interfacial dynamics, spike and bubble growth were investigated in details. The longtime numerical experiments indicate that the development of 3D singlemode RTI with a high Reynolds number can be summarized into four different stages: linear growth stage, saturated velocity growth stage, reacceleration stage and turbulent mixing stage. A series of complex interfacial structures with large topological changes can be observed at the turbulent mixing stage, which always preserve the symmetries with respect to the middle axis for a low Atwood number, and the lines of symmetry within spike and bubble are broken as the Atwood number is increased. Five statistical methods for computing the spike and bubble growth rates were then analyzed to reveal the growth law of 3D single-mode RTI in turbulent mixing stage. It is found that the spike late-time growth rate shows an overall increase with the Atwood number, while the bubble growth rate experiences a slight decrease with the Atwood number at first and then basically maintains a steady value of around 0.1. When the Reynolds number decreases, the later stages cannot be reached gradually and the evolution of phase interface presents a laminar flow state.
|
Keywords
lattice Boltzmann
phase field
Rayleigh–Taylor instability
computational fluid dynamics
interfacial instability
|
Corresponding Author(s):
Hong Liang
|
Issue Date: 06 May 2022
|
|
1 |
A. Burrows , Supernova explosions in the universe, Nature 403 (6771), 727 (2000)
https://doi.org/10.1038/35001501
|
2 |
M. Chertkov , Phenomenology of Rayleigh–Taylor turbulence, Phys. Rev. Lett. 91 (11), 115001 (2003)
https://doi.org/10.1103/PhysRevLett.91.115001
|
3 |
R. Betti and O. A. Hurricane , Inertial-confinement fusion with lasers, Nat. Phys. 12 (5), 435 (2016)
https://doi.org/10.1038/nphys3736
|
4 |
L. Rayleigh , Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proc. Lond. Math. Soc. 14, 170 (1883)
|
5 |
G. I. Taylor , The instability of liquid surfaces when accelerated in a direction perpendicular to their plane, Proc. R. Soc. Lond. A 201 (1065), 192 (1950)
https://doi.org/10.1098/rspa.1950.0052
|
6 |
Y. Zhou , Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing (I), Phys. Rep. 720-722, 1 (2017)
https://doi.org/10.1016/j.physrep.2017.07.005
|
7 |
Y. Zhou , Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing (II), Phys. Rep. 723–725, 1 (2017)
https://doi.org/10.1016/j.physrep.2017.07.008
|
8 |
G. Boffetta and A. Mazzino , Incompressible Rayleigh– Taylor turbulence, Annu. Rev. Fluid Mech. 49 (1), 119 (2017)
https://doi.org/10.1146/annurev-fluid-010816-060111
|
9 |
D. Livescu , Turbulence with large thermal and compositional density variations, Annu. Rev. Fluid Mech. 52 (1), 309 (2020)
https://doi.org/10.1146/annurev-fluid-010719-060114
|
10 |
H. Liang , X. L. Hu , X. F. Huang , and J. R. Xu , Direct numerical simulations of multi-mode immiscible Rayleigh– Taylor instability with high Reynolds numbers, Phys. Fluids 31 (11), 112104 (2019)
https://doi.org/10.1063/1.5127888
|
11 |
H. S. Tavares , L. Biferale , M. Sbragaglia , and A. A. Mailybaev , Immiscible Rayleigh–Taylor turbulence using mesoscopic lattice Boltzmann algorithms, Phys. Rev. Fluids 6 (5), 054606 (2021)
https://doi.org/10.1103/PhysRevFluids.6.054606
|
12 |
P. Ramaprabhu , G. Dimonte , P. Woodward , C. Fryer , G. Rockefeller , K. Muthuraman , P. H. Lin , and J. Jayaraj , The late-time dynamics of the single-mode Rayleigh– Taylor instability, Phys. Fluids 24 (7), 074107 (2012)
https://doi.org/10.1063/1.4733396
|
13 |
T. Wei and D. Livescu , Late-time quadratic growth in single-mode Rayleigh–Taylor instability, Phys. Rev. E 86 (4), 046405 (2012)
https://doi.org/10.1103/PhysRevE.86.046405
|
14 |
D. J. Lewis , The instability of liquid surfaces when accelerated in a direction perpendicular to their planes (II), Proc. R. Soc. Lond. A 202 (1068), 81 (1950)
https://doi.org/10.1098/rspa.1950.0086
|
15 |
R. Bellman and R. H. Pennington , Effects of surface tension and viscosity on Taylor instability, Q. Appl. Math. 12 (2), 151 (1954)
https://doi.org/10.1090/qam/63198
|
16 |
R. Menikoff , R. C. Mjolsness , D. H. Sharp , and C. Zemach , Unstable normal mode for Rayleigh–Taylor instability in viscous fluids, Phys. Fluids 20 (12), 2000 (1977)
https://doi.org/10.1063/1.861831
|
17 |
D. Layzer , On the instability of superposed fluids in a gravitational field, Astrophys. J. 122, 1 (1955)
https://doi.org/10.1086/146048
|
18 |
V. N. Goncharov , Analytical model of nonlinear, singlemode, classical Rayleigh–Taylor instability at arbitrary Atwood numbers, Phys. Rev. Lett. 88 (13), 134502 (2002)
https://doi.org/10.1103/PhysRevLett.88.134502
|
19 |
S. I. Sohn , Effects of surface tension and viscosity on the growth rates of Rayleigh–Taylor and Richtmyer–Meshkov instabilities, Phys. Rev. E 80 (5), 055302 (2009)
https://doi.org/10.1103/PhysRevE.80.055302
|
20 |
R. Betti and J. Sanz , Bubble acceleration in the ablative Rayleigh–Taylor instability, Phys. Rev. Lett. 97 (20), 205002 (2006)
https://doi.org/10.1103/PhysRevLett.97.205002
|
21 |
J. T. Waddell , C. E. Niederhaus , and J. W. Jacobs , Experimental study of Rayleigh–Taylor instability: Low Atwood number liquid systems with single-mode initial perturbations, Phys. Fluids 13 (5), 1263 (2001)
https://doi.org/10.1063/1.1359762
|
22 |
J. Glimm , X. L. Li , and A. D. Lin , Nonuniform approach to terminal velocity for single mode Rayleigh–Taylor instability, Acta Math. Appl. Sin. 18 (1), 1 (2002)
https://doi.org/10.1007/s102550200001
|
23 |
P. Ramaprabhu , G. Dimonte , Y. N. Young , A. C. Calder , and B. Fryxell , Limits of the potential flow approach to the single-mode Rayleigh–Taylor problem, Phys. Rev. E 74 (6), 066308 (2006)
https://doi.org/10.1103/PhysRevE.74.066308
|
24 |
J. P. Wilkinson , and J. W. Jacobs , Experimental study of the single-mode three-dimensional Rayleigh–Taylor instability, Phys. Fluids 19 (12), 124102 (2007)
https://doi.org/10.1063/1.2813548
|
25 |
X. Bian , H. Aluie , D. X. Zhao , H. S. Zhang , and D. Livescu , Revisiting the late-time growth of single-mode Rayleigh–Taylor instability and the role of vorticity, Physica D 403, 132250 (2020)
https://doi.org/10.1016/j.physd.2019.132250
|
26 |
H. Liang , Z. H. Xia , and H. W. Huang , Late-time description of immiscible Rayleigh–Taylor instability: A lattice Boltzmann study, Phys. Fluids 33 (8), 082103 (2021)
https://doi.org/10.1063/5.0057269
|
27 |
X. L. Hu , H. Liang , and H. L. Wang , Lattice Boltzmann method simulations of the immiscible Rayleigh–Taylor instability with high Reynolds numbers, Wuli Xuebao 69 (4), 044701 (2020)
https://doi.org/10.7498/aps.69.20191504
|
28 |
H. Liang , Q. X. Li , B. C. Shi , and Z. H. Chai , Lattice Boltzmann simulation of three-dimensional Rayleigh– Taylor instability, Phys. Rev. E 93 (3), 033113 (2016)
https://doi.org/10.1103/PhysRevE.93.033113
|
29 |
Z. X. Hu , Y. S. Zhang , B. L. Tian , Z. W. He , and L. Li , Effect of viscosity on two-dimensional single-mode Rayleigh–Taylor instability during and after the reacceleration stage, Phys. Fluids 31 (10), 104108 (2019)
https://doi.org/10.1063/1.5122247
|
30 |
A. Xu , G. Zhang , Y. Gan , F. Chen , and X. Yu , Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys. 7 (5), 582 (2012)
https://doi.org/10.1007/s11467-012-0269-5
|
31 |
B. Yan , A. Xu , G. Zhang , Y. Ying , and H. Li , Lattice Boltzmann model for combustion and detonation, Front. Phys. 8 (1), 94 (2013)
https://doi.org/10.1007/s11467-013-0286-z
|
32 |
F. Chen , A. Xu , and G. Zhang , Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh–Taylor instability, Front. Phys. 11 (6), 114703 (2016)
https://doi.org/10.1007/s11467-016-0603-4
|
33 |
L. Chen , H. L. Lai , C. D. Lin , and D. M. Li , Specific heat ratio effects of compressible Rayleigh–Taylor instability studied by discrete Boltzmann method, Front. Phys. 16 (5), 52500 (2021)
https://doi.org/10.1007/s11467-021-1096-3
|
34 |
F. Chen , A. Xu , Y. Zhang , Y. Gan , B. Liu , and S. Wang , Effects of the initial perturbations on the Rayleigh–Taylor–Kelvin–Helmholtz instability system, Front. Phys. 17 (3), 33505 (2022)
https://doi.org/10.1007/s11467-021-1145-y
|
35 |
Z. L. Guo and C. Shu , Lattice Boltzmann Method and Its Applications in Engineering, World Scientific, Singapore, 2013
|
36 |
H. Liu , Q. Kang , C. R. Leonardi , S. Schmieschek , A. Narvaez , B. D. Jones , J. R. Williams , A. J. Valocchi , and J. Harting , Multiphase lattice Boltzmann simulations for porous media applications, Computat. Geosci. 20 (4), 777 (2016)
|
37 |
H. Liang , B. C. Shi , and Z. H. Chai , Lattice Boltzmann modeling of three-phase incompressible flows, Phys. Rev. E 93 (1), 013308 (2016)
https://doi.org/10.1103/PhysRevE.93.013308
|
38 |
D. Jacqmin , Calculation of two-phase Navier–Stokes flows using phase-field modeling, J. Comput. Phys. 155 (1), 96 (1999)
https://doi.org/10.1006/jcph.1999.6332
|
39 |
H. Liang , B. C. Shi , Z. L. Guo , and Z. H. Chai , Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows, Phys. Rev. E 89 (5), 053320 (2014)
https://doi.org/10.1103/PhysRevE.89.053320
|
40 |
H. Liang , B. C. Shi , and Z. H. Chai , An effcient phasefield-based multiple-relaxation-time lattice Boltzmann model for three-dimensional multiphase flows, Comput. Math. Appl. 73 (7), 1524 (2017)
https://doi.org/10.1016/j.camwa.2017.01.020
|
41 |
D. d’Humières , I. Ginzburg , M. Krafczyk , P. Lallemand , and L. S. Luo , Multiple-relaxation-time lattice Boltzmann models in three dimensions, Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci. 360 (1792), 437 (2002)
https://doi.org/10.1098/rsta.2001.0955
|
42 |
S. I. Abarzhi , A. Gorobets , and K. R. Sreenivasan , Rayleigh–Taylor turbulent mixing of immiscible, miscible and stratified fluids, Phys. Fluids 17 (8), 081705 (2005)
https://doi.org/10.1063/1.2009027
|
43 |
K. R. Sreenivasan , On the scaling of the turbulence energy dissipation rate, Phys. Fluids 27 (5), 1048 (1984)
https://doi.org/10.1063/1.864731
|
44 |
J. R. Ristorcelli and T. T. Clark , Rayleigh–Taylor turbulence: Self-similar analysis and direct numerical simulations, J. Fluid Mech. 507, 213 (2004)
https://doi.org/10.1017/S0022112004008286
|
45 |
A. W. Cook , W. Cabot , and P. L. Miller , The mixing transition in Rayleigh–Taylor instability, J. Fluid Mech. 511, 333 (2004)
https://doi.org/10.1017/S0022112004009681
|
46 |
W. H. Cabot and A. W. Cook , Reynolds number effects on Rayleigh–Taylor instability with possible implications for type Ia supernovae, Nat. Phys. 2 (8), 562 (2006)
https://doi.org/10.1038/nphys361
|
47 |
T. T. Clark , A numerical study of the statistics of a twodimensional Rayleigh–Taylor mixing layer, Phys. Fluids 15 (8), 2413 (2003)
https://doi.org/10.1063/1.1589015
|
48 |
D. H. Olson and J. W. Jacobs , Experimental study of Rayleigh–Taylor instability with a complex initial perturbation, Phys. Fluids 21 (3), 034103 (2009)
https://doi.org/10.1063/1.3085811
|
49 |
B. Akula and D. Ranjan , Dynamics of buoyancy-driven flows at moderately high Atwood numbers, J. Fluid Mech. 795, 313 (2016)
https://doi.org/10.1017/jfm.2016.199
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|