Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (1) : 13305    https://doi.org/10.1007/s11467-022-1216-8
RESEARCH ARTICLE
Two dimensional GeO2/MoSi2N4 van der Waals heterostructures with robust type-II band alignment
Xueping Li1,2,3, Peize Yuan1, Lin Li2, Ting Liu2, Chenhai Shen2, Yurong Jiang2, Xiaohui Song2, Congxin Xia2()
1. College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, China
2. Department of Physics, Henan Normal University, Xinxiang 453007, China
3. Henan Key Laboratory of Optoelectronic Sensing Integrated Application, Henan Normal University, Xinxiang 453007, China
 Download: PDF(3766 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Constructing two-dimensional (2D) van der Waals heterostructures (vdWHs) can expand the electronic and optoelectronic applications of 2D semiconductors. However, the work on the 2D vdWHs with robust band alignment is still scarce. Here, we employ a global structure search approach to construct the vdWHs with monolayer MoSi2N4 and wide-bandgap GeO2. The studies show that the GeO2/MoSi2N4 vdWHs have the characteristics of direct structures with the band gap of 0.946 eV and type-II band alignment with GeO2 and MoSi2N4 layers as the conduction band minimum (CBM) and valence band maximum (VBM), respectively. Also, the direct-to-indirect band gap transition can be achieved by applying biaxial strain. In particular, the 2D GeO2/MoSi2N4 vdWHs show a robust type-II band alignment under the effects of biaxial strain, interlayer distance and external electric field. The results provide a route to realize the robust type-II band alignment vdWHs, which is helpful for the implementation of optoelectronic nanodevices with stable characteristics.

Keywords van der Waals heterostructures      wide gap material      global structure search      robust type-II band alignment     
Corresponding Author(s): Congxin Xia   
Issue Date: 23 November 2022
 Cite this article:   
Xueping Li,Peize Yuan,Lin Li, et al. Two dimensional GeO2/MoSi2N4 van der Waals heterostructures with robust type-II band alignment[J]. Front. Phys. , 2023, 18(1): 13305.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1216-8
https://academic.hep.com.cn/fop/EN/Y2023/V18/I1/13305
Fig.1  (a, d) The atomic structures, (b, e) band structures, (c, f) phonon dispersion curves of GeO2 and MoSi2N4 monolayers, respectively. The Fermi level is defined as zero. In the diagram of the atomic structures, different colored balls represent different atoms.
a (Å) d (Å) Etotal (eV) EgPBE (eV) EgHSE06 (eV)
MoSi2N4 2.911 −61.603 1.79 2.35
GeO2 2.909 −18.88 3.56 5.32
GeO2/MoSi2N4 2.909 2.78 −82.816 0.275 0.946
Tab.1  The structural and electronic parameters. The lattice constant (a), interlayer distance (d), total energy (Etotal), and band gap of PBE (EgPBE) and HSE06 (EgHSE06).
Fig.2  (a) Color contour plot of total energy versus in-plane shift for GeO2/MoSi2N4 vdWHs, considering the 12 × 12 grids. (b) The geometric structure, (c) band structure and (d) phonon dispersion curves of the most stable GeO2/MoSi2N4 vdWHs. The Fermi level is defined as zero.
Fig.3  The orbital-projected band structures of GeO2/MoSi2N4 vdWHs on GeO2 (a) and MoSi2N4 (b) layer. Partial charge density (c) and plane-averaged charge density difference (d) of GeO2/MoSi2N4 vdWHs. Yellow (green) colored isosurfaces represent the charge accumulation (depletion), respectively. (e) Electrostatic potential of GeO2/MoSi2N4 vdWHs. The isosurface is set to be 0.008 e/bohr3 for (c) and 0.0001 e/ Å3 for (d).
Strain dGe-O (Å) dMo-N (Å) dSi-N (Å)
−6% 1.90 2.05 1.68
−5% 1.91 2.06 1.70
−4% 1.91 2.06 1.71
−3% 1.92 2.07 1.72
−2% 1.93 2.08 1.73
−1% 1.94 2.08 1.74
0 1.95 2.09 1.75
1% 1.96 2.10 1.76
2% 1.96 2.11 1.78
3% 1.97 2.12 1.79
4% 1.99 2.13 1.81
5% 2.00 2.14 1.82
6% 2.01 2.15 1.83
Tab.2  The bond lengths as a function of biaxial strain for GeO2/MoSi2N4 vdWHs.
Fig.4  The variation of the total energy (a), band gap (b), and interlayer charge transfer (c) of GeO2/MoSi2N4 vdWHs as a function of biaxial strain, respectively. (d−g) Projected band structures of GeO2/MoSi2N4 vdWHs with the biaxial strains of −3%, −2%, 2% and 3%.
Fig.5  The total energy (a) and band gap (b), interlayer charge transfer (c) and projected band structures (d−g) of GeO2/MoSi2N4 vdWHs at different interlayer distances, respectively.
Fig.6  The band gap (a) and band alignment (b) of GeO2/MoSi2N4 vdWHs as a function of external electric field, respectively. (c−f) The projected band structures of GeO2/MoSi2N4 vdWHs with different external electric fields. The red (green) line indicates the contribution of the GeO2 (MoSi2N4) layer.
1 Wang W., Si C., Lei W., Xiao F., Liu Y., Autieri C., Ming X.. Stacking order and Coulomb correlation effect in the layered charge density wave phase of 1T-NbS2. Phys. Rev. B, 2022, 105(3): 035119
https://doi.org/10.1103/PhysRevB.105.035119
2 Aharon-Steinberg A., Marguerite A., J. Perello D., Bagani K., Holder T., Myasoedov Y., S. Levitov L., K. Geim A., Zeldov E.. Long-range nontopological edge currents in charge-neutral graphene. Nature, 2021, 593(7860): 528
https://doi.org/10.1038/s41586-021-03501-7
3 Li X., Yuan P., Li L., He M., Li J., Xia C.. Sub-5-nm monolayer GaSe MOSFET with ultralow subthreshold swing and high on-state current: Dielectric layer effect. Phys. Rev. Appl., 2022, 18(4): 044012
https://doi.org/10.1103/PhysRevApplied.18.044012
4 Wang T., Dong A., Zhang X., K. Hocking R., Sun C.. Theoretical study of K3Sb/graphene heterostructure for electrochemical nitrogen reduction reaction. Front. Phys., 2022, 17(2): 23501
https://doi.org/10.1007/s11467-021-1115-4
5 Q. Kong Q., G. An X., Zhang J., T. Yao W., H. Sun C.. Design of heterojunction with components in different dimensions for electrocatalysis applications. Front. Phys., 2022, 17(4): 43601
https://doi.org/10.1007/s11467-022-1183-0
6 Long C., Dai Y., R. Gong Z., Jin H.. Robust type-II band alignment in Janus-MoSSe bilayer with extremely long carrier lifetime induced by the intrinsic electric field. Phys. Rev. B, 2019, 99(11): 115316
https://doi.org/10.1103/PhysRevB.99.115316
7 Ubrig N., Ponomarev E., Zultak J., Domaretskiy D., Zolyomi V., Terry D., Howarth J., Gutierrez-Lezama I., Zhukov A., R. Kudrynskyi Z., D. Kovalyuk Z., Patane A., Taniguchi T., Watanabe K., V. Gorbachev R., I. Fal’ko V., F. Morpurgo A.. Design of van der Waals interfaces for broad-spectrum optoelectronics. Nat. Mater., 2020, 19(3): 299
https://doi.org/10.1038/s41563-019-0601-3
8 G. Azadani J., Lee S., R. Kim H., Alsalman H., K. Kwon Y., Tersoff J., Low T.. Simple linear response model for predicting energy band alignment of two-dimensional vertical heterostructures. Phys. Rev. B, 2021, 103(20): 205129
https://doi.org/10.1103/PhysRevB.103.205129
9 H. Davies F., J. Price C., T. Taylor N., G. Davies S., P. Hepplestone S.. Band alignment of transition metal dichalcogenide heterostructures. Phys. Rev. B, 2021, 103(4): 045417
https://doi.org/10.1103/PhysRevB.103.045417
10 Rivera P., R. Schaibley J., M. Jones A., S. Ross J., Wu S., Aivazian G., Klement P., Seyler K., Clark G., J. Ghimire N., Yan J., G. Mandrus D., Yao W., Xu X.. Observation of long-lived interlayer excitons in monolayer MoSe2−WSe2 heterostructures. Nat. Commun., 2015, 6(1): 6242
https://doi.org/10.1038/ncomms7242
11 Rivera P., L. Seyler K., Yu H., R. Schaibley J., Yan J., G. Mandrus D., Yao W., Xu X.. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science, 2016, 351(6274): 688
https://doi.org/10.1126/science.aac7820
12 Y. Wang Y., P. Li F., Wei W., B. Huang B., Dai Y.. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides. Front. Phys., 2020, 16(1): 13501
13 Li X., Liu T., Li L., He M., Shen C., Li J., Xia C.. Reconfifigurable band alignment of m-GaS/n-XTe2 (X = Mo, W) multilayer van der Waals heterostructures for photoelectric applications. Phys. Rev. B, 2022, 106(12): 125306
https://doi.org/10.1103/PhysRevB.106.125306
14 Wijethunge D., Zhang L., Tang C., Du A.. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching. Front. Phys., 2020, 15(6): 63504
https://doi.org/10.1007/s11467-020-0987-z
15 Ghosh S., Varghese A., Jawa H., Yin Y., V. Medhekar N., Lodha S.. Polarity-tunable photocurrent through band alignment engineering in a high-speed WSe2/SnSe2 diode with large negative responsivity. ACS Nano, 2022, 16(3): 4578
https://doi.org/10.1021/acsnano.1c11110
16 Zhu Y., Zhang D., Ye H., Bai D., Li M., P. Zhang G., Zhang J., Wang J.. Magnetic and electronic properties of AlN/VSe2 van der Waals heterostructures from combined first-principles and Schrödinger−Poisson simulations. Phys. Rev. Appl., 2022, 18(2): 024012
https://doi.org/10.1103/PhysRevApplied.18.024012
17 L. Hong Y., Liu Z., Wang L., Zhou T., Ma W., Xu C., Feng S., Chen L., L. Chen M., M. Sun D., Q. Chen X., M. Cheng H., Ren W.. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science, 2020, 369(6504): 670
https://doi.org/10.1126/science.abb7023
18 Islam R., Ghosh B., Autieri C., Chowdhury S., Bansil A., Agarwal A., Singh B.. Tunable spin polarization and electronic structure of bottom-up synthesized MoSi2N4 materials. Phys. Rev. B, 2021, 104(20): L201112
https://doi.org/10.1103/PhysRevB.104.L201112
19 Bafekry A., Faraji M., M. Fadlallah M., Bagheri Khatibani A., abdolahzadeh Ziabari A., Ghergherehchi M., Nedaei S., F. Shayesteh S., Gogova D.. Tunable electronic and magnetic properties of MoSi2N4 monolayer via vacancy defects, atomic adsorption and atomic doping. Appl. Surf. Sci., 2021, 559: 149862
https://doi.org/10.1016/j.apsusc.2021.149862
20 Wu Q., Cao L., S. Ang Y., K. Ang L.. Semiconductor-to-metal transition in bilayer MoSi2N4 and WSi2N4 with strain and electric field. Appl. Phys. Lett., 2021, 118(11): 113102
https://doi.org/10.1063/5.0044431
21 Zhong H., Xiong W., Lv P., Yu J., Yuan S., Strain-induced semiconductor to metal transition in MA2Z4 bilayers (M=Ti . Mo; A=Si; Z=N, P). Phys. Rev. B, 2021, 103(8): 085124
https://doi.org/10.1103/PhysRevB.103.085124
22 Li S., Wu W., Feng X., Guan S., Feng W., Yao Y., A. Yang S., Valley-dependent properties of monolayer MoSi2N4 . WSi2N4, and MoSi2As4. Phys. Rev. B, 2020, 102(23): 235435
https://doi.org/10.1103/PhysRevB.102.235435
23 Zhong T., Ren Y., Zhang Z., Gao J., Wu M.. Sliding ferroelectricity in two-dimensional MoA2N4 (A = Si or Ge) bilayers: High polarizations and Moiré potentials. J. Mater. Chem. A, 2021, 9(35): 19659
https://doi.org/10.1039/D1TA02645C
24 Wang L., Shi Y., Liu M., Zhang A., L. Hong Y., Li R., Gao Q., Chen M., Ren W., M. Cheng H., Li Y., Q. Chen X.. Intercalated architecture of MA2Z4 family layered van der Waals materials with emerging topological, magnetic and superconducting properties. Nat. Commun., 2021, 12(1): 2361
https://doi.org/10.1038/s41467-021-22324-8
25 Wu Q., K. Ang L.. Giant tunneling magnetoresistance in atomically thin VSi2N4/MoSi2N4/VSi2N4 magnetic tunnel junction. Appl. Phys. Lett., 2022, 120(2): 022401
https://doi.org/10.1063/5.0075046
26 Zang Y., Wu Q., Du W., Dai Y., Huang B., Ma Y.. Activating electrocatalytic hydrogen evolution performance of two-dimensional MSi2N4(M=Mo, W): A theoretical prediction. Phys. Rev. Mater., 2021, 5(4): 045801
https://doi.org/10.1103/PhysRevMaterials.5.045801
27 Yuan J., Wei Q., Sun M., Yan X., Cai Y., Shen L., Schwingenschlögl U.. Protected valley states and generation of valley- and spin-polarized current in monolayer MA2Z4. Phys. Rev. B, 2022, 105(19): 195151
https://doi.org/10.1103/PhysRevB.105.195151
28 Mortazavi B., Javvaji B., Shojaei F., Rabczuk T., V. Shapeev A., Y. Zhuang X.. Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles. Nano Energy, 2021, 82: 105716
https://doi.org/10.1016/j.nanoen.2020.105716
29 Yin Y., Yi M., Guo W.. High and anomalous thermal conductivity in monolayer MSi2Z4 semiconductors. ACS Appl. Mater. Interfaces, 2021, 13(38): 45907
https://doi.org/10.1021/acsami.1c14205
30 C. Jian C., C. Ma X., Q. Zhang J., Yong X.. Strained MoSi2N4 monolayers with excellent solar energy absorption and carrier transport properties. J. Phys. Chem. C, 2021, 125(28): 15185
https://doi.org/10.1021/acs.jpcc.1c03585
31 Bafekry A., Stampfl C., Naseri M., M. Fadlallah M., Faraji M., Ghergherehchi M., Gogova D., A. H. Feghhi S.. Effect of electric field and vertical strain on the electro−optical properties of the MoSi2N4 bilayer: A first-principles calculation. J. Appl. Phys., 2021, 129(15): 155103
https://doi.org/10.1063/5.0044976
32 Cao L., Zhou G., Wang Q., K. Ang L., S. Ang Y.. Two-dimensional van der Waals electrical contact to monolayer MoSi2N4. Appl. Phys. Lett., 2021, 118(1): 013106
https://doi.org/10.1063/5.0033241
33 Zhao J., H. Jin X., Zeng H., Yao C., Yan G.. Spin-valley coupling and valley splitting in the MoSi2N4/CrCl3 van der Waals heterostructure. Appl. Phys. Lett., 2021, 119(21): 213101
https://doi.org/10.1063/5.0072266
34 Ding Y., Wang Y.. First-principles study of two-dimensional MoN2X2Y2 (X = B~In, Y = N~Te) nanosheets: The III–VI analogues of MoSi2N4 with peculiar electronic and magnetic properties. Appl. Surf. Sci., 2022, 593: 153317
https://doi.org/10.1016/j.apsusc.2022.153317
35 Nguyen C., V. Hoang N., V. Phuc H., Y. Sin A., V. Nguyen C.. Two-dimensional boron phosphide/MoGe2N4 van der Waals heterostructure: A promising tunable optoelectronic material. J. Phys. Chem. Lett., 2021, 12(21): 5076
https://doi.org/10.1021/acs.jpclett.1c01284
36 Guo Y., Dong Y., Cai X., Liu L., Jia Y.. Controllable Schottky barriers and contact types of BN intercalation layers in graphene/MoSi2As4 vdW heterostructures via applying an external electrical field. Phys. Chem. Chem. Phys., 2022, 24(30): 18331
https://doi.org/10.1039/D2CP02011D
37 Zhang Z., Chen G., Song A., Cai X., Yu W., Jia X., Jia Y.. Optoelectronic properties of bilayer van der Waals WSe2/MoSi2N4 heterostructure: A first-principles study. Physica E, 2022, 144: 115429
https://doi.org/10.1016/j.physe.2022.115429
38 Q. Nguyen C., S. Ang Y., T. Nguyen S., V. Hoang N., M. Hung N., V. Nguyen C.. Tunable type-II band alignment and electronic structure of C3N4/MoSi2N4 heterostructure: Interlayer coupling and electric field. Phys. Rev. B, 2022, 105(4): 045303
https://doi.org/10.1103/PhysRevB.105.045303
39 T. Ren Y., Hu L., T. Chen Y., J. Hu Y., L. Wang J., L. Gong P., Zhang H., Huang L., Q. Shi X.. Two-dimensional MSi2N4 monolayers and van der Waals heterostructures: Promising spintronic properties and band alignments. Phys. Rev. Mater., 2022, 6(6): 064006
https://doi.org/10.1103/PhysRevMaterials.6.064006
40 Zhang X.CaiZhu Z.Lin Y.Yu L.Wang W. Yang Q.Jia X.Jia X.Y., A two-dimensional MoSe2/MoSi2N4 van der Waals heterostructure with high carrier mobility and diversified regulation of its electronic properties, J. Mater. Chem. C 9(31), 10073 (2021)
41 Bafekry A.Faraji M.Abdollahzadeh Ziabari A.M. Fadlallah M.V. Nguyen C.Ghergherehchi M.A. H. Feghhi S., A van der Waals heterostructure of MoS2/MoSi2N4: a first-principles study, New J. Chem. 45(18), 8291 (2021)
42 Q. Ng J., Wu Q., K. Ang L., S. Ang Y.. Tunable electronic properties and band alignments of MoSi2N4/GaN and MoSi2N4/ZnO van der Waals heterostructures. Appl. Phys. Lett., 2022, 120(10): 103101
https://doi.org/10.1063/5.0083736
43 Sozen Y., Yagmurcukardes M., Sahin H.. Vibrational and optical identification of GeO2 and GeO single layers: A first-principles study. Phys. Chem. Chem. Phys., 2021, 23(37): 21307
https://doi.org/10.1039/D1CP02299G
44 Chuang S., Battaglia C., Azcatl A., McDonnell S., S. Kang J., Yin X., Tosun M., Kapadia R., Fang H., M. Wallace R., Javey A.. MoS2 p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett., 2014, 14(3): 1337
https://doi.org/10.1021/nl4043505
45 Kim H., J. Choi H.. Thickness dependence of work function, ionization energy, and electron affinity of Mo and W dichalcogenides from DFT and GW calculations. Phys. Rev. B, 2021, 103(8): 085404
https://doi.org/10.1103/PhysRevB.103.085404
46 Y. Zhang B., Xu K., Yao Q., Jannat A., Ren G., R. Field M., Wen X., Zhou C., Zavabeti A., Z. Ou J.. Hexagonal metal oxide monolayers derived from the metal-gas interface. Nat. Mater., 2021, 20(8): 1073
https://doi.org/10.1038/s41563-020-00899-9
47 Kresse G., Furthmuller J.. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
48 P. Perdew J., Burke K., Ernzerhof M.. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
49 Heyd J., E. Scuseria G., Ernzerhof M.. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 2003, 118(18): 8207
https://doi.org/10.1063/1.1564060
50 Kresse G., Joubert D.. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
https://doi.org/10.1103/PhysRevB.59.1758
51 Mogulkoc Y., Caglayan R., O. Ciftci Y.. Band alignment in monolayer boron phosphide with Janus MoSSe heterobilayers under strain and electric field. Phys. Rev. Appl., 2021, 16(2): 024001
https://doi.org/10.1103/PhysRevApplied.16.024001
52 L. Liu Y., Shi Y., Yin H., L. Yang C.. Two-dimensional BP/β-AsP van der Waals heterostructures as promising photocatalyst for water splitting. Appl. Phys. Lett., 2020, 117(6): 063901
https://doi.org/10.1063/5.0014867
53 Patel S., Dey U., P. Adhikari N., Taraphder A.. Electric field and strain-induced band-gap engineering and manipulation of the Rashba spin splitting in Janus van der Waals heterostructures. Phys. Rev. B, 2022, 106(3): 035125
https://doi.org/10.1103/PhysRevB.106.035125
54 Yagmurcukardes M., Torun E., T. Senger R., M. Peeters F., Sahin H.. Mg(OH)2−WS2 van der Waals heterobilayer: Electric field tunable band-gap crossover. Phys. Rev. B, 2016, 94(19): 195403
https://doi.org/10.1103/PhysRevB.94.195403
55 Iordanidou K., Wiktor J.. Two-dimensional MoTe2/SnSe2 van der Waals heterostructures for tunnel-FET applications. Phys. Rev. Mater., 2022, 6(8): 084001
https://doi.org/10.1103/PhysRevMaterials.6.084001
56 Liang K., Huang T., Yang K., Si Y., Y. Wu H., C. Lian J., Q. Huang W., Y. Hu W., F. Huang G.. Dipole engineering of two-dimensional van der Waals heterostructures for enhanced power-conversion efficiency: The case of Janus Ga2SeTe/InS. Phys. Rev. Appl., 2021, 16(5): 054043
https://doi.org/10.1103/PhysRevApplied.16.054043
[1] fop-21216-OF-xiacongxin_suppl_1 Download
[1] Yanyan Li, Mingjun Yang, Yanan Lu, Dan Cao, Xiaoshuang Chen, Haibo Shu. Reversible doping polarity and ultrahigh carrier density in two-dimensional van der Waals ferroelectric heterostructures[J]. Front. Phys. , 2023, 18(3): 33307-.
[2] Yuan-Yuan Wang, Feng-Ping Li, Wei Wei, Bai-Biao Huang, Ying Dai. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides[J]. Front. Phys. , 2021, 16(1): 13501-.
[3] Yue Liu (刘月), Yu Zhou (周煜), Hao Zhang (张昊), Feirong Ran (冉飞荣), Weihao Zhao (赵炜昊), Lin Wang (王琳), Chengjie Pei (裴成杰), Jindong Zhang (张锦东), Xiao Huang (黄晓), Hai Li (李海). Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy[J]. Front. Phys. , 2019, 14(1): 13607-.
[4] Tataiana Latychevskaia, Seok-Kyun Son, Yaping Yang, Dale Chancellor, Michael Brown, Servet Ozdemir, Ivan Madan, Gabriele Berruto, Fabrizio Carbone, Artem Mishchenko, Kostya S. Novoselov. Stacking transition in rhombohedral graphite[J]. Front. Phys. , 2019, 14(1): 13608-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed