Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (3) : 33307    https://doi.org/10.1007/s11467-022-1244-4
RESEARCH ARTICLE
Reversible doping polarity and ultrahigh carrier density in two-dimensional van der Waals ferroelectric heterostructures
Yanyan Li1, Mingjun Yang1, Yanan Lu1, Dan Cao2, Xiaoshuang Chen3, Haibo Shu1()
1. College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
2. College of Science, China Jiliang University, Hangzhou 310018, China
3. National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Science, Shanghai 200083, China
 Download: PDF(8013 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Van der Waals semiconductor heterostructures (VSHs) composed of two or more two-dimensional (2D) materials with different band gaps exhibit huge potential for exploiting high-performance multifunctional devices. The application of 2D VSHs in atomically thin devices highly depends on the control of their carrier type and density. Herein, on the basis of comprehensive first-principles calculations, we report a new strategy to manipulate the doping polarity and carrier density in a class of 2D VSHs consisting of atomically thin transition metal dichalcogenides (TMDs) and α-In2X3 (X = S, Se) ferroelectrics via switchable polarization field. Our calculated results indicate that the band bending of In2X3 layer driven by the FE polarization can be utilized for engineering the band alignment and doping polarity of TMD/In2X3 VSHs, which enables us to control their carrier density and type of the VSHs by the orientation and magnitude of local FE polarization field. Inspired by these findings, we demonstrate that doping-free p−n junctions achieved in MoTe2/In2Se3 VSHs exhibit high carrier density (1013−1014 cm−2), and the inversion of the VHSs from n−p junctions to p−i−n junctions has been realized by the polarization switching from upward to downward states. This work provides a nonvolatile and nondestructive doping strategy for obtaining programmable p−n van der Waals (vdW) junctions and opens the possibilities for self-powered and multifunctional device applications.

Keywords van der Waals heterostructures      ferroelectric polarization      carrier type      band alignment      density-functional theory     
Corresponding Author(s): Haibo Shu   
Issue Date: 11 January 2023
 Cite this article:   
Yanyan Li,Mingjun Yang,Yanan Lu, et al. Reversible doping polarity and ultrahigh carrier density in two-dimensional van der Waals ferroelectric heterostructures[J]. Front. Phys. , 2023, 18(3): 33307.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1244-4
https://academic.hep.com.cn/fop/EN/Y2023/V18/I3/33307
Fig.1  Atomic structures and intrinsic polarization of 2D α-In2X3 ferroelectrics. (a) Top and side views of the atomic structure of trilayer In2X3 nanosheets in FE and PE phases. The arrows ↓ and ↑ denote the ferroelectric α-In2X3 nanosheet in Pdown and Pup states, respectively. The rhombic frames represent the range of a unit cell. The blue and orange balls denote In and X atoms, respectively. (b) The average EPD (Φ) of a trilayer α-In2Se3 along the out-of-plane direction. Here ΔΦ denotes the electrostatic potential difference between two surface terminations. (c) The μ of 2D α-In2X3 ferroelectrics as a function of ΔΦ.
Fig.2  Polarization effect on electronic properties of 2D α-In2X3 nanosheets. (a) Projected band structure and DOS of a trilayer α-In2Se3 nanosheet obtained by the HSE06 functional. The Fermi level is set to the energy zero point. (b) Charge density isosurfaces of CBM and VBM states in the trilayer α-In2Se3 nanosheet. (c) Schematic of the polarization-induced layer-by-layer band shift in a trilayer α-In2X3 nanosheet. (d) Band-edge energies of eight 2D α-In2X3 structures relative to the vacuum level. EC and EV correspond to the energy of CBM and VBM, respectively. The arrows indicate the polarization direction.
Fig.3  Top and side views of the atomic structure of 2D MoTe2/In2Se3 VSHs in Pdown and Pup states. The solid frames denote the supercells of α-In2Se3 and MoTe2 used for the construction of VSHs, and the dash frames denote the primitive cell of α-In2Se3 and MoTe2. T-In2Se3 and B-In2Se3 denote the top-layer and bottom-layer In2Se3, respectively.
Fig.4  Band alignments of 2D MoTe2/In2Se3(↑) VSHs with the thickness range of In2Se3 layer from 1L to 3L. (a?c) Projected band structure and DOS of VSH with (a) 1L-In2Se3, (b) 2L-In2Se3, and (c) 3L-In2Se3. The red and blue bands denote the contribution from In2Se3 and MoTe2 layers, respectively. The horizontal dash lines denote the position of Fermi level. T-In2Se3, M-In2Se3, and B-In2Se3 represent the top-layer, middle-layer, and bottom-layer In2Se3 in the VSHs, respectively. (d) Schematic of band alignments of MoTe2/In2Se3(↑) VSHs. The black and gray arrows denote the carrier transport direction and polarization direction, respectively.
Fig.5  Band alignments of 2D MoTe2/In2Se3(↓) VSHs with the thickness range of In2Se3 layer from 1L to 3L. (a?c) Projected band structure and DOS of VSH with (a) 1L-In2Se3, (b) 2L-In2Se3, and (c) 3L-In2Se3. The red and blue bands represent the contribution of In2Se3 and MoTe2 layers, respectively. The horizontal dash lines denote the position of Fermi level. T-In2Se3, M-In2Se3, and B-In2Se3 represent the top-layer, middle-layer, and bottom-layer In2Se3 in the VSHs, respectively. (d) Schematic of band alignments of MoTe2/In2Se3(↓) VSHs. The arrows indicate the polarization direction.
Fig.6  Average electrostatic potential (Φ) and interfacial charge transfer of MoTe2/In2Se3 VSHs. (a) Electrostatic potential distribution of MoTe2/3L-In2Se3 VSH in Pup (red line) and Pdown (blue line) states. (b) Electrostatic potential differences (ΔΦ) of MoTe2/In2Se3 VSHs and isolated In2Se3 nanosheets as a function of In2Se3 layer thickness. (c) The charge-density difference and interfacial charge transfer (Q) of MoTe2/3L-In2Se3 VSH in Pdown (left) and Pup (right) state.
Fig.7  Polarization-dependent carrier density in 2D MoTe2/In2Se3 VSHs. The σn (solid lines) and σp (dash lines) of MoTe2/In2Se3 VSHs in (a) Pup state and (b) Pdown state. The VSH-nL (n = 1?3) denote the MoTe2/In2Se3 VSH with nL-In2Se3 layer. The spatial distribution of (c) σn and (d) σp in MoTe2/3L-In2Se3 VSH along the FE switching pathway from the Pup state, PE phase, to Pdown state.
1 Simon J. , Protasenko V. , Lian C. , Xing H. , Jena D. . Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science, 2010, 327(5961): 60
https://doi.org/10.1126/science.1183226
2 D. Sau J. , M. Lutchyn R. , Tewari S. , Das Sarma S. . Generic new platform for topological quantum computation using semiconductor heterostructures. Phys. Rev. Lett., 2010, 104(4): 040502
https://doi.org/10.1103/PhysRevLett.104.040502
3 Siegert C. , Ghosh A. , Pepper M. , Farrer I. , A. Ritchie D. . The possibility of an intrinsic spin lattice in high-mobility semiconductor heterostructures. Nat. Phys., 2007, 3(5): 315
https://doi.org/10.1038/nphys559
4 Narayan J. , Oktyabrsky S. . Formation of misfit dislocations in thin film heterostructures. J. Appl. Phys., 2002, 92(12): 7122
https://doi.org/10.1063/1.1521789
5 Liu X. , Cao D. , Yao Y. , Tang P. , Zhang M. , Chen X. , Shu H. . Heteroepitaxial growth and interface band alignment in a large-mismatch CsPbI3/GaN heterojunction. J. Mater. Chem. C, 2022, 10(6): 1984
https://doi.org/10.1039/D1TC05533J
6 Yang R. , Fan J. , Sun M. . Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties. Front. Phys., 2022, 17(4): 43202
https://doi.org/10.1007/s11467-022-1176-z
7 Mak K. , Shan J. . Photonics and Optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics, 2016, 10(4): 216
https://doi.org/10.1038/nphoton.2015.282
8 Liu H. , Du Y. , Deng Y. , D. Ye P. . Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev., 2015, 44(9): 2732
https://doi.org/10.1039/C4CS00257A
9 Zhang S. , Guo S. , Chen Z. , Wang Y. , Gao H. , Gómez-Herrero J. , Ares P. , Zamora F. , Zhu Z. , Zeng H. . Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem. Soc. Rev., 2018, 47(3): 982
https://doi.org/10.1039/C7CS00125H
10 Liu Y. , O. Weiss N. , Duan X. , C. Cheng H. , Huang Y. , Duan X. . Van der Waals heterostructures and devices. Nat. Rev. Mater., 2016, 1(9): 16042
https://doi.org/10.1038/natrevmats.2016.42
11 Y. Wang Y. , P. Li F. , Wei W. , B. Huang B. , Dai Y. . Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides. Front. Phys., 2021, 16(1): 13501
https://doi.org/10.1007/s11467-020-0991-3
12 Zhang L. , Zhang Z. , Wu F. , Wang D. , Gogna R. , Hou S. , Watanabe K. , Taniguchi K. , Kulkarni K. , Kuo T. , R. Forrest S. , Deng H. . Twist-angle dependence of moiré excitons in WS2/MoSe2 heterobilayers. Nat. Commun., 2020, 11(1): 5888
https://doi.org/10.1038/s41467-020-19466-6
13 R. Rosenberger M. , J. Chuang H. , Phillips M. , P. Oleshko V. , M. McCreary K. , V. Sivaram S. , S. Hellberg C. , T. Jonker B. . Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(4): 4550
https://doi.org/10.1021/acsnano.0c00088
14 Chen H. , Wen X. , Zhang J. , Wu T. , Gong Y. , Zhang X. , Yuan J. , Yi C. , Lou J. , M. Ajayan P. , Zhuang W. , Zhang G. , Zheng J. . Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun., 2016, 7(1): 12512
https://doi.org/10.1038/ncomms12512
15 F. Rigosi A. , M. Hill H. , Li Y. , Chernikov A. , F. Heinz T. . Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2. Nano Lett., 2015, 15(8): 5033
https://doi.org/10.1021/acs.nanolett.5b01055
16 Guo J. , Wang L. , Yu Y. , Wang P. , Huang Y. , Duan X. . SnSe/MoS2 van der Waals heterostructure junction field-effect transistors with nearly ideal subthreshold slope. Adv. Mater., 2019, 31(49): 1902962
https://doi.org/10.1002/adma.201902962
17 Cheng Y. , Tang P. , Liang P. , Liu X. , Cao D. , Chen X. , Shu H. . Sulfur-driven transition from vertical to lateral growth of 2D SnS−SnS2 heterostructures and their band alignments. J. Phys. Chem. C, 2020, 124(50): 27820
https://doi.org/10.1021/acs.jpcc.0c09101
18 Xu J. , Jia J. , Lai S. , Ju J. , Lee S. . Tunneling field effect transistor integrated with black phosphorus-MoS2 junction and ion gel dielectric. Appl. Phys. Lett., 2017, 110(3): 033103
https://doi.org/10.1063/1.4974303
19 J. Liang S. , Cheng B. , Cui X. , Miao F. . Van der Waals heterostructures for high-performance device applications: Challenges and opportunities. Adv. Mater., 2020, 32: 1903800
20 Cheng R. , Wang F. , Yin L. , Wang Z. , Wen Y. , A. Shifa T. , He J. . High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat. Electron., 2018, 1(6): 356
https://doi.org/10.1038/s41928-018-0086-0
21 P. Komsa H. , Kotakoski J. , Kurasch S. , Lehtinen O. , Kaiser U. , V. Krasheninnikov A. . Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping. Phys. Rev. Lett., 2012, 109(3): 035503
https://doi.org/10.1103/PhysRevLett.109.035503
22 Zhang Q. , Ying H. , Li X. , Xiang R. , Zheng Y. , Wang H. , Su J. , Xu M. , Zheng X. , Maruyama S. , Zhang X. . Controlled doping engineering in 2D MoS2 crystals toward performance augmentation of optoelectronic devices. ACS Appl. Mater. Interfaces, 2021, 13(27): 31861
https://doi.org/10.1021/acsami.1c07286
23 Gong Y. , Yuan H. , L. Wu C. , Tang P. , Z. Yang S. , Yang A. , Li G. , Liu B. , van de Groep J. , L. Brongersma M. , F. Chisholm M. , C. Zhang S. , Zhou W. , Cui Y. . Spatial controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol., 2018, 13(4): 294
https://doi.org/10.1038/s41565-018-0069-3
24 Kiriya D. , Tosun M. , Zhao P. , S. Kang J. , Javey A. . Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc., 2014, 136(22): 7853
https://doi.org/10.1021/ja5033327
25 Shi W. , Kahn S. , Jiang L. , Y. Wang S. , Z. Tsai H. , Wong D. , Taniguchi T. , Watanabe K. , Wang F. , F. Crommie M. , Zettl A. . Reversible writing of high mobility and high-carrier density doping patterns in two-dimensional van der Waals heterostructures. Nat. Electron., 2020, 3(2): 99
https://doi.org/10.1038/s41928-019-0351-x
26 Zhang R. , Xie Z. , An C. , Fan S. , Zhang Q. , Wu S. , Xu L. , Hu X. , Zhang D. , Sun D. , Chen J. , Liu J. . Ultraviolet light-induced persistent and degenerated doping in MoS2 for potential photocontrollable electronics applications. ACS Appl. Mater. Interfaces, 2018, 10(33): 27840
https://doi.org/10.1021/acsami.8b07196
27 Buscema M. , J. Groenendijk D. , A. Steele G. , S. J. van der Zant H. , Castellanos-Gomez A. . Photovoltaic effect in few-layer phosphorus PN junctions defined local electrostatic gating. Nat. Commun., 2014, 5(1): 4651
https://doi.org/10.1038/ncomms5651
28 Agnihotri P. , Dhakras P. , U. Lee J. . Bipolar junction transistors in two-dimensional WSe2 with large current and photocurrent grains. Nano Lett., 2016, 16(7): 4355
https://doi.org/10.1021/acs.nanolett.6b01444
29 J. Lee S. , Lin Z. , Duan X. , Huang Y. . Doping on demand in 2D devices. Nat. Electron., 2020, 3(2): 77
https://doi.org/10.1038/s41928-020-0376-1
30 Kong L. , Zhang X. , Tao Q. , Zhang M. , Dang W. , Li Z. , Feng L. , Liao L. , Duan X. , Liu Y. . Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun., 2020, 11(1): 1866
https://doi.org/10.1038/s41467-020-15776-x
31 Wijethunge D. , Zhang L. , Tang C. , Du A. . Tunning band alignment and optical properites of 2D van der Waals heterostructure via ferroelectric polarization switching. Front. Phys., 2020, 15(6): 63504
https://doi.org/10.1007/s11467-020-0987-z
32 W. Chen J.T. Lo S.C. Ho S.S. Wong S.H. Y. Vu T.Q. Zhang X.D. Liu Y.Y. Chiou Y.X. Chen Y.C. Yang J.C. Chen Y.H. Chu Y.H. Lee Y.J. Chung C.M. Chen T.H. Chen C.L. Wu C., A gate-free monolayer WSe2 PN diode, Nat. Commun. 9(1), 3143 (2018)
33 Lu Z. , Serrao C. , I. Khan A. , You L. , C. Wong J. , Ye Y. , Zhu H. , Zhang X. , Salahuddin S. . Nonvolatile MoS2 field effect transistors directly gated by single crystalline epitaxial ferroelectric. Appl. Phys. Lett., 2017, 111(2): 023104
https://doi.org/10.1063/1.4992113
34 Nguyen A. , Sharma P. , Scott T. , Preciado E. , Klee V. , Sun D. , H. D. Lu I. , Barroso D. , H. Kim S. , Y. Shur V. , R. Akhmatkhanov A. , Gruverman A. , Bartels L. , A. Dowben P. . Toward ferroelectric control of monolayer MoS2. Nano Lett., 2015, 15(5): 3364
https://doi.org/10.1021/acs.nanolett.5b00687
35 Liu X. , Zhou X. , Pan Y. , Yang J. , Xiang H. , Yuan Y. , Liu S. , Luo H. , Zhang D. , Sun J. . Charge–ferroelectric transition in ultrathin Na0.5Bi4.5Ti4O15 flakes probed via a dual-gated full van der Waals transistor. Adv. Mater., 2020, 32(49): 2004813
https://doi.org/10.1002/adma.202004813
36 Wu G. , Wang X. , Chen Y. , Wu S. , Wu B. , Jiang Y. , Shen S. , Lin T. , Liu Q. , Wang X. , Zhou P. , Zhang S. , Hu W. , Meng X. , Chu J. , Wang J. . MoTe2 p–n homojunctions defined by ferroelectric polarization. Adv. Mater., 2020, 32(16): 1907937
https://doi.org/10.1002/adma.201907937
37 Wu G. , Tian B. , Liu L. , Lv W. , Wu S. , Wang X. , Chen Y. , Li J. , Wang Z. , Wu S. , Shen H. , Lin T. , Zhou P. , Liu Q. , Duan C. , Zhang S. , Meng X. , Wu S. , Hu W. , Wang X. , Chu J. , Wang J. . Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron., 2020, 3(1): 43
https://doi.org/10.1038/s41928-019-0350-y
38 A. Spaldin N. . Fundamental size limits in ferroelectricity. Science, 2004, 304(5677): 1606
https://doi.org/10.1126/science.1099822
39 Dawber M. , M. Rabe K. , F. Scott J. . Physics of thin-film ferroelectric oxides. Rev. Mod. Phys., 2005, 77(4): 1083
https://doi.org/10.1103/RevModPhys.77.1083
40 Belianinov A. , He Q. , Dziaugys A. , Maksymovych P. , Eliseev E. , Borisevich A. , Morozovska A. , Banys J. , Vysochanskii Y. , V. Kalinin S. . CuInP2S6 room temperature layered ferroelectric. Nano Lett., 2015, 15(6): 3808
https://doi.org/10.1021/acs.nanolett.5b00491
41 Ding W. , Zhu J. , Wang J. , Gao Y. , Xiao D. , Gu Y. , Zhang Z. , Zhu W. . Prediction of intrinsic two-dimensional frroelectrics in In2Se3 and other III2−VI3 van der Waals materials. Nat. Commun., 2017, 8(1): 14956
https://doi.org/10.1038/ncomms14956
42 Higashitarumizu N. , Kawamoto H. , J. Lee C. , H. Lin B. , H. Chu F. , Yonemori I. , Nishimura T. , Wakabayashi K. , Chang W. , Nagashio K. . Purely in-plane ferroelectricity in monolayer SnS at room temperature. Nat. Commun., 2020, 11(1): 2428
https://doi.org/10.1038/s41467-020-16291-9
43 Yuan S. , Luo X. , L. Chan H. , Xiao C. , Dai Y. , Xie M. , Hao J. . Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun., 2019, 10(1): 1775
https://doi.org/10.1038/s41467-019-09669-x
44 Xue F. , Hu W. , C. Lee K. , S. Lu L. , Zhang J. , L. Tang H. , Han A. , T. Hsu W. , Tu S. , H. Chang W. , H. Lien C. , H. He J. , Zhang Z. , J. Li L. , Zhang X. . Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes down to the monolayer limit. Adv. Funct. Mater., 2018, 28(50): 1803738
https://doi.org/10.1002/adfm.201803738
45 Quereda J. , Biele R. , Rubio-Bollinger G. , Agrait N. , D’Agosta R. , Castellanos-Gomez A. . Strong quantum confinement effect in the optical properties of ultrathinα-In2Se3. Adv. Opt. Mater., 2016, 4(12): 1939
https://doi.org/10.1002/adom.201600365
46 Yang M. , Shu H. , Li Y. , Cao D. , Chen X. . Polarization-induced band alignment transition and nonvolatile p−n junctions in 2D van der Waals heterostructures. Adv. Electron. Mater., 2022, 8(3): 2101022
https://doi.org/10.1002/aelm.202101022
47 Kresse G. , Furthmüller J. . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
48 C. Payne M. , P. Teter M. , C. Allan D. , A. Arias T. , D. Joannopoulos J. . Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys., 1992, 64(4): 1045
https://doi.org/10.1103/RevModPhys.64.1045
49 Grimme S. . Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 2006, 27(15): 1787
https://doi.org/10.1002/jcc.20495
50 Heyd J. , E. Scuseria G. , Ernzerhof M. . Hybrid functionals based on a screened coulomb potential. J. Chem. Phys., 2003, 118(18): 8207
https://doi.org/10.1063/1.1564060
51 D. King-Smith R. , Vanderbilt D. . Theory of polarization of crystalline solids. Phys. Rev. B, 1993, 47(3): 1651
https://doi.org/10.1103/PhysRevB.47.1651
52 F. Bader R., A quantum theory of molecular structure and its applications, Chem. Rev. 91(5), 893 (1991)
53 F. Io W. , Yuan S. , Y. Pang S. , W. Wong L. , Zhao J. , Hao J. . Temperature- and thickness-dependence of robust out-of-plane ferroelectricity in CVD grown ultrathin van der Waals α-In2Se3 layers. Nano Res., 2020, 13(7): 1897
https://doi.org/10.1007/s12274-020-2640-0
54 Peng R. , Ma Y. , Zhang S. , Huang B. , Kou L. , Dai Y. . Self-doped p–n junctions in two-dimensional In2X3 van der Waals materials. Mater. Horiz., 2020, 7(2): 504
https://doi.org/10.1039/C9MH01109A
55 Björkman T. , Gulans A. , V. Krasheninnikov A. , M. Nieminen R. . Van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys. Rev. Lett., 2012, 108(23): 235502
https://doi.org/10.1103/PhysRevLett.108.235502
56 Yang M. , Shu H. , Tang P. , Liang P. , Cao D. , Chen X. . Intrinsic polarization-induced enhanced ferromagnetism and self-doped p–n junctions in CrBr3/GaN van der Waals heterostructures. ACS Appl. Mater. Interfaces, 2021, 13(7): 8764
https://doi.org/10.1021/acsami.0c21532
57 J. Jeon P. , T. Lee Y. , Y. Lim J. , S. Kim J. , K. Hwang D. , Im S. . Black phosphorus−zinc oxide nanomaterial heterojunction for p−n diode and junction field-effect transistor. Nano Lett., 2016, 16(2): 1293
https://doi.org/10.1021/acs.nanolett.5b04664
58 K. Srivastava P. , Hassan Y. , Gebredingle Y. , Jung J. , Kang B. , J. Yoo W. , Singh B. , Lee C. . Van der waals broken-gap p−n heterojunction tunnel diode based on black Phosphorus and rhenium disulfide. ACS Appl. Mater. Interfaces, 2019, 11(8): 8266
https://doi.org/10.1021/acsami.8b22103
59 Qu D. , Liu X. , Huang M. , Lee C. , Ahmed F. , Kim H. , S. Ruoff R. , Hone J. , J. Yoo W. . Carrier-type modulation and mobility improvement of thin MoTe2. Adv. Mater., 2017, 29(39): 1606433
https://doi.org/10.1002/adma.201606433
60 Xie Y. , Wu E. , Fan S. , Geng G. , Hu X. , Xu L. , Wu S. , Liu J. , Zhang D. . Modulation of MoTe2/MoS2 van der Waals heterojunctions for multifunctional devices using N2O plasma with an opposite doping effect. Nanoscale, 2021, 13(16): 7851
https://doi.org/10.1039/D0NR08814E
61 E. Kim J. , T. Kang W. , Tu Vu V. , R. Kim Y. , S. Shin Y. , Lee I. , Y. Won U. , H. Lee B. , Kim K. , L. Phan T. , H. Lee Y. , J. Yu W. . Ideal PN photodiode using doping controlled WSe2−MoSe2 lateral heterostructure. J. Mater. Chem. C, 2021, 9(10): 3504
https://doi.org/10.1039/D0TC05625A
62 H. Lee C. , H. Lee G. , M. van der Zande A. , Chen W. , Li Y. , Han M. , Cui X. , Arefe G. , Nuckolls C. , F. Heinz T. , Guo J. , Hone J. , Kim P. . Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol., 2014, 9(9): 676
https://doi.org/10.1038/nnano.2014.150
[1] fop-21244-OF-shuhaibo_suppl_1 Download
[1] Xueping Li, Peize Yuan, Lin Li, Ting Liu, Chenhai Shen, Yurong Jiang, Xiaohui Song, Congxin Xia. Two dimensional GeO2/MoSi2N4 van der Waals heterostructures with robust type-II band alignment[J]. Front. Phys. , 2023, 18(1): 13305-.
[2] Huili Zhu, Zifan Hong, Changjie Zhou, Qihui Wu, Tongchang Zheng, Lan Yang, Shuqiong Lan, Weifeng Yang. Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions[J]. Front. Phys. , 2023, 18(1): 13301-.
[3] Yuan-Yuan Wang, Feng-Ping Li, Wei Wei, Bai-Biao Huang, Ying Dai. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides[J]. Front. Phys. , 2021, 16(1): 13501-.
[4] Yue Liu (刘月), Yu Zhou (周煜), Hao Zhang (张昊), Feirong Ran (冉飞荣), Weihao Zhao (赵炜昊), Lin Wang (王琳), Chengjie Pei (裴成杰), Jindong Zhang (张锦东), Xiao Huang (黄晓), Hai Li (李海). Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy[J]. Front. Phys. , 2019, 14(1): 13607-.
[5] Tataiana Latychevskaia, Seok-Kyun Son, Yaping Yang, Dale Chancellor, Michael Brown, Servet Ozdemir, Ivan Madan, Gabriele Berruto, Fabrizio Carbone, Artem Mishchenko, Kostya S. Novoselov. Stacking transition in rhombohedral graphite[J]. Front. Phys. , 2019, 14(1): 13608-.
[6] Pei Li, Zhao-Meng Gao, Xiu-Shi Huang, Long-Fei Wang, Wei-Feng Zhang, Hai-Zhong Guo. Ferroelectric polarization reversal tuned by magnetic field in a ferroelectric BiFeO3/Nb-doped SrTiO3 heterojunction[J]. Front. Phys. , 2018, 13(5): 136803-.
[7] Hao Yuan, Zhenyu Li. Interfacial properties of black phosphorus/transition metal carbide van der Waals heterostructures[J]. Front. Phys. , 2018, 13(3): 138103-.
[8] Xiang Liu, Wen-Bo Mi. Spontaneous ferroelectricity in strained low-temperature monoclinic Fe3O4: A first-principles study[J]. Front. Phys. , 2018, 13(2): 134204-.
[9] OUYANG Fang-ping, XU Hui. Ab initio study of transport properties of an all-carbon molecular switch based on C20 molecule[J]. Front. Phys. , 2007, 2(1): 36-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed