Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (2) : 22301    https://doi.org/10.1007/s11467-022-1226-6
RESEARCH ARTICLE
Lee–Yang zeros in the Rydberg atoms
Chengshu Li(), Fan Yang
Institute for Advanced Study, Tsinghua University, Beijing 100084, China
 Download: PDF(2819 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Lee–Yang (LY) zeros play a fundamental role in the formulation of statistical physics in terms of (grand) partition functions, and assume theoretical significance for the phenomenon of phase transitions. In this paper, motivated by recent progress in cold Rydberg atom experiments, we explore the LY zeros in classical Rydberg blockade models. We find that the distribution of zeros of partition functions for these models in one dimension (1d) can be obtained analytically. We prove that all the LY zeros are real and negative for such models with arbitrary blockade radii. Therefore, no phase transitions happen in 1d classical Rydberg chains. We investigate how the zeros redistribute as one interpolates between different blockade radii. We also discuss possible experimental measurements of these zeros.

Keywords Lee–Yang zeros      Rydberg atom      statistical mechanics     
Corresponding Author(s): Chengshu Li   
Issue Date: 12 December 2022
 Cite this article:   
Chengshu Li,Fan Yang. Lee–Yang zeros in the Rydberg atoms[J]. Front. Phys. , 2023, 18(2): 22301.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1226-6
https://academic.hep.com.cn/fop/EN/Y2023/V18/I2/22301
Fig.1  An illustration of the proof of Lemma 1 for the case r=2. Blue dots denote the zeros and orange triangles (green squares) indicate that the polynomial is positive (negative) at that point. As a result of the recursion relation (5), the zeros in each group of three polynomials (e.g., y 1,1,y1,2,y1,3) determine the sign of the polynomials in the next group, which in turn guarantees the existence of zeros in between. A few examples are in order. We label the values of the polynomials with Greek letters as shown in the figure. First, δ <0 and ?=0 give γ< 0, which together with α> 0 fixes y 2,4. Then, ι=0 and κ>0 give θ<0, which together with λ>0 fixes y 1,4. As a final example, η<0 and ι=0 give ζ<0, which together with β>0 fixes y 2,6. Note that we only mark the zeros and the points which are directly used to fix the zeros, e.g., α, β, γ, ?, ζ, θ, ι, and λ.
Fig.2  The zeros of the partition function (33) for n=36. The largest n/3=12 of them converge to that of r=2 when V goes to , while the others diverge to exponentially, which are omitted in the lower panel.
Fig.3  The zeros of the partition function (35) for n=36. The largest n/4=9 of them converge to that of r=3 when V goes to , while the others diverge to exponentially, which are omitted in the lower panel.
Fig.4  The experimental setup for (a) open boundary condition and (b) periodic boundary condition. Blue (red) balls denote atoms in the ground (Rydberg) state, and the green ball denotes the probe atom. Typical time dependence of |L(t) | as defined in Eq. (38) is shown in (c). Here we choose n=24, r=1. The difference between the zeros (βΔ =1.37,2.85) and non-zeros (βΔ= 3,2) is clearly visible.
1 N. Yang C., D. Lee T.. Statistical theory of equations of state and phase transitions (I): Theory of condensation. Phys. Rev., 1952, 87(3): 404
https://doi.org/10.1103/PhysRev.87.404
2 D. Lee T., N. Yang C.. Statistical theory of equations of state and phase transitions (II): Lattice gas and Ising model. Phys. Rev., 1952, 87(3): 410
https://doi.org/10.1103/PhysRev.87.410
3 Asano T.. Generalization of the Lee–Yang theorem. Prog. Theor. Phys., 1968, 40(6): 1328
https://doi.org/10.1143/PTP.40.1328
4 Suzuki M.. Theorems on the Ising model with general spin and phase transition. J. Math. Phys., 1968, 9(12): 2064
https://doi.org/10.1063/1.1664546
5 Suzuki M.. Theorems on extended Ising model with applications to dilute ferromagnetism. Prog. Theor. Phys., 1968, 40(6): 1246
https://doi.org/10.1143/PTP.40.1246
6 B. Griffiths R.. Rigorous results for Ising ferromagnets of arbitrary spin. J. Math. Phys., 1969, 10(9): 1559
https://doi.org/10.1063/1.1665005
7 Asano T.. Theorems on the partition functions of the Heisenberg ferromagnets. J. Phys. Soc. Jpn., 1970, 29(2): 350
https://doi.org/10.1143/JPSJ.29.350
8 Ruelle D.. Extension of the Lee–Yang circle theorem. Phys. Rev. Lett., 1971, 26(6): 303
https://doi.org/10.1103/PhysRevLett.26.303
9 Suzuki M., E. Fisher M.. Zeros of the partition function for the Heisenberg, ferroelectric, and general Ising models. J. Math. Phys., 1971, 12(2): 235
https://doi.org/10.1063/1.1665583
10 A. Kurtze D., E. Fisher M.. The Yang–Lee edge singularity in spherical models. J. Stat. Phys., 1978, 19(3): 205
https://doi.org/10.1007/BF01011723
11 H. Lieb E., Ruelle D.. A property of zeros of the partition function for Ising spin systems. J. Math. Phys., 1972, 13: 781
https://doi.org/10.1007/978-3-662-10018-9_8
12 J. Heilmann O., H. Lieb E.. Theory of monomerdimer systems. Commun. Math. Phys., 1972, 25: 190
https://doi.org/10.1007/BF01877590
13 L. Dobrushin R., Kolafa J., B. Shlosman S.. Phase diagram of the two-dimensional Ising antiferromagnet (computer-assisted proof). Commun. Math. Phys., 1985, 102(1): 89
https://doi.org/10.1007/BF01208821
14 Beauzamy B.. On complex Lee and Yang polynomials. Commun. Math. Phys., 1996, 182(1): 177
https://doi.org/10.1007/BF02506389
15 Y. Kim S.. Yang–Lee zeros of the antiferromagnetic Ising model. Phys. Rev. Lett., 2004, 93(13): 130604
https://doi.org/10.1103/PhysRevLett.93.130604
16 O. Hwang C., Y. Kim S.. Yang–Lee zeros of triangular Ising antiferromagnets. Physica A, 2010, 389(24): 5650
https://doi.org/10.1016/j.physa.2010.08.050
17 L. Lebowitz J., Ruelle D., R. Speer E.. Location of the Lee–Yang zeros and absence of phase transitions in some Ising spin systems. J. Math. Phys., 2012, 53(9): 095211
https://doi.org/10.1063/1.4738622
18 L. Lebowitz J., A. Scaramazza J.. A note on Lee–Yang zeros in the negative half-plane. J. Phys. : Condens. Matter, 2016, 28(41): 414004
https://doi.org/10.1088/0953-8984/28/41/414004
19 Heyl M., Polkovnikov A., Kehrein S.. Dynamical quantum phase transitions in the transverse-field Ising model. Phys. Rev. Lett., 2013, 110(13): 135704
https://doi.org/10.1103/PhysRevLett.110.135704
20 Brandner K., F. Maisi V., P. Pekola J., P. Garrahan J., Flindt C.. Experimental determination of dynamical Lee–Yang zeros. Phys. Rev. Lett., 2017, 118(18): 180601
https://doi.org/10.1103/PhysRevLett.118.180601
21 Deger A., Flindt C.. Determination of universal critical exponents using Lee–Yang theory. Phys. Rev. Res., 2019, 1(2): 023004
https://doi.org/10.1103/PhysRevResearch.1.023004
22 Deger A., Brange F., Flindt C.. Lee–Yang theory, high cumulants, and large-deviation statistics of the magnetization in the Ising model. Phys. Rev. B, 2020, 102(17): 174418
https://doi.org/10.1103/PhysRevB.102.174418
23 Kist T., L. Lado J., Flindt C.. Lee–Yang theory of criticality in interacting quantum many-body systems. Phys. Rev. Res., 2021, 3(3): 033206
https://doi.org/10.1103/PhysRevResearch.3.033206
24 C. Kurtz D.. A sufficient condition for all the roots of a polynomial to be real. Am. Math. Mon., 1992, 99(3): 259
https://doi.org/10.1080/00029890.1992.11995845
25 Borcea J., Brändén P.. The Lee–Yang and Polya–Schur programs (I): Linear operators preserving stability. Invent. Math., 2009, 177(3): 541
https://doi.org/10.1007/s00222-009-0189-3
26 Borcea J., Brändén P.. The Lee–Yang and Polya–Schur programs (II): Theory of stable polynomials and applications. Commun. Pure Appl. Math., 2009, 62(12): 1595
https://doi.org/10.1002/cpa.20295
27 Ruelle D.. Characterization of Lee–Yang polynomials. Ann. Math., 2010, 171(1): 589
https://doi.org/10.4007/annals.2010.171.589
28 B. Wei B., B. Liu R.. Lee–Yang zeros and critical times in decoherence of a probe spin coupled to a bath. Phys. Rev. Lett., 2012, 109(18): 185701
https://doi.org/10.1103/PhysRevLett.109.185701
29 Peng X., Zhou H., B. Wei B., Cui J., Du J., B. Liu R.. Experimental observation of Lee–Yang zeros. Phys. Rev. Lett., 2015, 114(1): 010601
https://doi.org/10.1103/PhysRevLett.114.010601
30 Bernien H., Schwartz S., Keesling A., Levine H., Omran A., Pichler H., Choi S., S. Zibrov A., Endres M., Greiner M., Vuletić V., D. Lukin M.. Probing many body dynamics on a 51-atom quantum simulator. Nature, 2017, 551(7682): 579
https://doi.org/10.1038/nature24622
31 Keesling A., Omran A., Levine H., Bernien H., Pichler H., Choi S., Samajdar R., Schwartz S., Silvi P., Sachdev S., Zoller P., Endres M., Greiner M., Vuletić V., D. Lukin M.. Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator. Nature, 2019, 568(7751): 207
https://doi.org/10.1038/s41586-019-1070-1
32 J. Satzinger K., J. Liu Y., Smith A., Knapp C., Newman M.. et al.. Realizing topologically ordered states on a quantum processor. Science, 2021, 374(6572): 1237
https://doi.org/10.1126/science.abi8378
33 Ebadi S., T. Wang T., Levine H., Keesling A., Semeghini G., Omran A., Bluvstein D., Samajdar R., Pichler H., W. Ho W., Choi S., Sachdev S., Greiner M., Vuletić V., D. Lukin M.. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature, 2021, 595(7866): 227
https://doi.org/10.1038/s41586-021-03582-4
34 Samajdar R., W. Ho W., Pichler H., D. Lukin M., Sachdev S.. Complex density wave orders and quantum phase transitions in a model of square-lattice Rydberg atom arrays. Phys. Rev. Lett., 2020, 124(10): 103601
https://doi.org/10.1103/PhysRevLett.124.103601
35 Kalinowski M., Samajdar R., G. Melko R., D. Lukin M., Sachdev S., Choi S.. Bulk and boundary quantum phase transitions in a square Rydberg atom array. Phys. Rev. B, 2022, 105(17): 174417
https://doi.org/10.1103/PhysRevB.105.174417
36 Verresen R., D. Lukin M., Vishwanath A.. Prediction of toric code topological order from Rydberg blockade. Phys. Rev. X, 2021, 11(3): 031005
https://doi.org/10.1103/PhysRevX.11.031005
37 Semeghini G., Levine H., Keesling A., Ebadi S., T. Wang T., Bluvstein D., Verresen R., Pichler H., Kalinowski M., Samajdar R., Omran A., Sachdev S., Vishwanath A., Greiner M., Vuletić V., D. Lukin M.. Probing topological spin liquids on a programmable quantum simulator. Science, 2021, 374(6572): 1242
https://doi.org/10.1126/science.abi8794
38 Samajdar R., W. Ho W., Pichler H., D. Lukin M., Sachdev S.. Quantum phases of Rydberg atoms on a kagome lattice. Proc. Natl. Acad. Sci. USA, 2021, 118(4): e2015785118
https://doi.org/10.1073/pnas.2015785118
39 Cheng Y.Li C.Zhai H., Variational approach to quantum spin liquid in a Rydberg atom simulator, arXiv: 2112.13688 (2021)
40 Giudici G., D. Lukin M., Pichler H.. Dynamical preparation of quantum spin liquids in Rydberg atom arrays. Phys. Rev. Lett., 2022, 129(9): 090401
https://doi.org/10.1103/PhysRevLett.129.090401
41 Fendley P., Sengupta K., Sachdev S.. Competing density-wave orders in a one-dimensional hard-boson model. Phys. Rev. B, 2004, 69(7): 075106
https://doi.org/10.1103/PhysRevB.69.075106
42 Samajdar R., Choi S., Pichler H., D. Lukin M., Sachdev S.. Numerical study of the chiral Z3 quantum phase transition in one spatial dimension. Phys. Rev. A, 2018, 98(2): 023614
https://doi.org/10.1103/PhysRevA.98.023614
43 Giudici G., Angelone A., Magnifico G., Zeng Z., Giudice G., Mendes-Santos T., Dalmonte M.. Diagnosing Potts criticality and two-stage melting in one dimensional hard-core Boson models. Phys. Rev. B, 2019, 99(9): 094434
https://doi.org/10.1103/PhysRevB.99.094434
44 Chepiga N., Mila F.. Floating phase versus chiral transition in a 1D hard-Boson model. Phys. Rev. Lett., 2019, 122(1): 017205
https://doi.org/10.1103/PhysRevLett.122.017205
45 Rader M.M. Läuchli A., Floating phases in one-dimensional Rydberg Ising chains, arXiv: 1908.02068 (2019)
46 A. Maceira I.Chepiga N.Mila F., Conformal and chiral phase transitions in Rydberg chains, arXiv: 2203.01163 (2022)
47 J. Turner C., A. Michailidis A., A. Abanin D., Serbyn M., Papić Z.. Weak ergodicity breaking from quantum many-body scars. Nat. Phys., 2018, 14(7): 745
https://doi.org/10.1038/s41567-018-0137-5
48 Serbyn M., A. Abanin D., Papić Z.. Quantum many body scars and weak breaking of ergodicity. Nat. Phys., 2021, 17(6): 675
https://doi.org/10.1038/s41567-021-01230-2
49 C. Alcaraz F., A. Pimenta R.. Free fermionic and parafermionic quantum spin chains with multispin interactions. Phys. Rev. B, 2020, 102: 121101(R)
https://doi.org/10.1103/PhysRevB.102.121101
50 C. Alcaraz F., A. Pimenta R.. Integrable quantum spin chains with free fermionic and parafermionic spectrum. Phys. Rev. B, 2020, 102(23): 235170
https://doi.org/10.1103/PhysRevB.102.235170
51 Fendley P.. Free fermions in disguise. J. Phys. A Math. Theor., 2019, 52(33): 335002
https://doi.org/10.1088/1751-8121/ab305d
[1] Yafen Cai, Shuai Shi, Yijia Zhou, Jianhao Yu, Yali Tian, Yitong Li, Kuan Zhang, Chenhao Du, Weibin Li, Lin Li. A multi-band atomic candle with microwave-dressed Rydberg atoms[J]. Front. Phys. , 2023, 18(1): 12302-.
[2] Jin-Lei Wu, Yan Wang, Jin-Xuan Han, Shi-Lei Su, Yan Xia, Yongyuan Jiang, Jie Song. Unselective ground-state blockade of Rydberg atoms for implementing quantum gates[J]. Front. Phys. , 2022, 17(2): 22501-.
[3] Hanxiao Zhang, Jinhui Wu, M. Artoni, G. C. La Rocca. Single-photon-level light storage with distributed Rydberg excitations in cold atoms[J]. Front. Phys. , 2022, 17(2): 22502-.
[4] Daryl Ryan Chong, Minhyuk Kim, Jaewook Ahn, Heejeong Jeong. Machine learning identification of symmetrized base states of Rydberg atoms[J]. Front. Phys. , 2022, 17(1): 12504-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed