Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (6) : 63303    https://doi.org/10.1007/s11467-023-1301-7
RESEARCH ARTICLE
Freeze-drying assisted liquid exfoliation of BiFeO3 for pressure sensing
Yuping Li, Mengwei Dong, Xuejie Zou, Jinhao Zhang, Jian Zhang(), Xiao Huang()
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
 Download: PDF(6026 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Breaking up bulk crystals of functional materials into nanoscale thinner layers can lead to interesting properties and enhanced functionalities due to the size and interface effects. However, unlike the van der Waals layered crystals, many materials cannot be exfoliated into thin layers by liquid exfoliation. BiFeO3 is a piezoelectric ceramic material, which is commonly synthesized as bulk crystals, limiting its wider applications. In this contribution, a freeze-drying assisted liquid exfoliation method was adopted to fabricate thin-layered BiFeO3 nanoplates with lateral sizes of up to 500 nm and thicknesses of 10−20 nm. The freeze-drying process showed a vital role in the preparation process by imposing stress on the dispersed BiFeO3 crystals during the liquid-to-solid-to-gas transition of the solvent. Such stress resulted in lattice strains in the freeze-dried BiFeO3 crystals, which enabled their further exfoliation under subsequent ultrasonication. Considering the intrinsic piezoelectric effect of BiFeO3, pressure sensors based on bulk and thin-layer BiFeO3 were also fabricated. The pressure sensor based on BiFeO3 nanoplates exhibited a largely enhanced sensitivity with a wider working range than the bulk counterpart, because of the stronger piezoelectric effect induced and the extra electrical charges at abundant interlayer interfaces. We suggest that the freeze-drying assisted liquid exfoliation method can be applied to other non-van der Waals crystals to bring about more functional material systems.

Keywords BiFeO3 nanoplates      liquid exfoliation      piezoelectricity      pressure sensor     
Corresponding Author(s): Jian Zhang,Xiao Huang   
About author:

* These authors contributed equally to this work.

Issue Date: 27 June 2023
 Cite this article:   
Yuping Li,Mengwei Dong,Xuejie Zou, et al. Freeze-drying assisted liquid exfoliation of BiFeO3 for pressure sensing[J]. Front. Phys. , 2023, 18(6): 63303.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1301-7
https://academic.hep.com.cn/fop/EN/Y2023/V18/I6/63303
Fig.1  (a) Schematic diagram of preparation process for thin-layer BiFeO3 nanoplates. (b) SEM image of bulk BiFeO3 crystals. (c) TEM image of as-exfoliated thin-layer BiFeO3 nanoplates. (d) XRD patterns of the bulk BiFeO3 and as-exfoliated BiFeO3 nanoplates. (e) HRTEM image of an as-exfoliated BiFeO3 nanoplate.
SolventLiquid density (g/cm3)Solid density (g/cm3)Volume change (%)Surface tension (mN/m)
Methanol0.7910.899?12.0221.82
Ethanol0.7890.848?6.0221.33
Water1.00.928.771.12
Tab.1  Volume change during liquid-to-solid transition and surface tension of the different solvents.
Fig.2  (a) XRD patterns of bulk BiFeO3 and freeze-dried BiFeO3 in different solvents. (b) Schematic illustration of the formation mechanism of BiFeO3 nanoplates.
Fig.3  (a) XRD patterns of freeze-dried bulk BiFeO3 and products obtained after exfoliation in ethanol, water and methanol. TEM images of products obtained after exfoliation in (b) ethanol, (c) water and (d) methanol for 8 h.
Fig.4  (a) The response of a pressure sensor based on thin-layer BiFeO3 nanoplates under an applied pressure range of 34.8 Pa?9.9 kPa. (b) Comparison of the responses of sensors based on nanoplates and bulk crystals of BiFeO3 under an applied pressure range of 34.8–693 Pa. (c) Pressure-response curves of sensors based on nanoplates and bulk crystals of BiFeO3. (d) Long-term stability of sensor based on BiFeO3 nanoplates under 34.8 Pa and 251.5 Pa pressure.
Fig.5  (a) Schematic illustration of the sensing mechanism of bulk and thin-layer BiFeO3 based pressure sensor. (b) The plot between the capacitance and mass of sensing material.
1 Tao L. , Zhang K. , Tian H. , Liu Y. , Y. Wang D. , Q. Chen Y. , Yang Y. , L. Ren T. . Graphene-paper pressure sensor for detecting human motions. ACS Nano, 2017, 11(9): 8790
https://doi.org/10.1021/acsnano.7b02826
2 Guan L. , Nilghaz A. , Su B. , Jiang L. , Cheng W. , Shen W. . Stretchable‐fiber‐confined wetting conductive liquids as wearable human health monitors. Adv. Funct. Mater., 2016, 26(25): 4511
https://doi.org/10.1002/adfm.201600443
3 M. Boutry C. , Beker L. , Kaizawa Y. , Vassos C. , Tran H. , C. Hinckley A. , Pfattner R. , Niu S. , Li J. , Claverie J. , Wang Z. , Chang J. , M. Fox P. , Bao Z. . Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng., 2019, 3(1): 47
https://doi.org/10.1038/s41551-018-0336-5
4 Li L.Zheng J.Chen J.Luo Z.Su Y.Tang W.Gao X.Li Y.Cao C.Liu Q.Kang X.Wang L.Li H., Flexible pressure sensors for biomedical applications: From ex vivo to in vivo, Adv. Mater. Interfaces 7(17), 2000743 (2020)
5 Kim D. , Lu N. , Ma R. , S. Kim Y. , H. Kim R. , Wang S. , Wu J. , M. Won S. , Tao H. , Islam A. , J. Yu K. , Kim T. , Chowdhury R. , Ying M. , Xu L. , Li M. , J. Chung H. , Keum H. , McCormick M. , Liu P. , W. Zhang Y. , G. Omenetto F. , Huang Y. , Coleman T. , A. Rogers J. . Epidermal electronics. Science, 2011, 333(6044): 838
https://doi.org/10.1126/science.1206157
6 C. B. Mannsfeld S. , C. K. Tee B. , M. Stoltenberg R. , V. H. H. Chen C. , Barman S. , V. O. Muir B. , N. Sokolov A. , Reese C. , Bao Z. . Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater., 2010, 9(10): 859
https://doi.org/10.1038/nmat2834
7 J. Lipomi D. , Vosgueritchian M. , C. K. Tee B. , L. Hellstrom S. , A. Lee J. , H. Fox C. , Bao Z. . Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol., 2011, 6(12): 788
https://doi.org/10.1038/nnano.2011.184
8 Fan F. , Lin L. , Zhu G. , Wu W. , Zhang R. , L. Wang Z. . Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett., 2012, 12(6): 3109
https://doi.org/10.1021/nl300988z
9 Ding Y. , Yang J. , R. Tolle C. , Zhu Z. . Flexible and compressible PEDOT: PSS@melamine conductive sponge prepared via one-step dip coating as piezoresistive pressure sensor for human motion detection. ACS Appl. Mater. Interfaces, 2018, 10(18): 16077
https://doi.org/10.1021/acsami.8b00457
10 Shuai X. , Zhu P. , Zeng W. , Hu Y. , Liang X. , Zhang Y. , Sun R. , Wong C. . Highly sensitive flexible pressure sensor based on silver nanowires-embedded polydimethylsiloxane electrode with microarray structure. ACS Appl. Mater. Interfaces, 2017, 9(31): 26314
https://doi.org/10.1021/acsami.7b05753
11 Maity K. , Garain S. , Henkel K. , Schmeißer D. , Mandal D. . Self-powered human-health monitoring through aligned PVDF nanofibers interfaced skin-interactive piezoelectric sensor. ACS Appl. Polym. Mater., 2020, 2(2): 862
https://doi.org/10.1021/acsapm.9b00846
12 Xu S. , Qin Y. , Xu C. , Wei Y. , Yang R. , L. Wang Z. . Self-powered nanowire devices. Nat. Nanotechnol., 2010, 5(5): 366
https://doi.org/10.1038/nnano.2010.46
13 Lin L. , Xie Y. , Wang S. , Wu W. , Niu S. , Wen X. , L. Wang Z. . Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano, 2013, 7(9): 8266
https://doi.org/10.1021/nn4037514
14 Huang T. , Yang S. , He P. , Sun J. , Zhang S. , Li D. , Meng Y. , Zhou J. , Tang H. , Liang J. , Ding G. , Xie X. . Phase-separation-induced PVDF/graphene coating on fabrics toward flexible piezoelectric sensors. ACS Appl. Mater. Interfaces, 2018, 10(36): 30732
https://doi.org/10.1021/acsami.8b10552
15 Ha M. , Lim S. , Park J. , S. Um D. , Lee Y. , Ko H. . Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins. Adv. Funct. Mater., 2015, 25(19): 2841
https://doi.org/10.1002/adfm.201500453
16 Kim Y. , Y. Lee K. , K. Hwang S. , Park C. , W. Kim S. , Cho J. . Layer-by-layer controlled perovskite nanocomposite thin films for piezoelectric nanogenerators. Adv. Funct. Mater., 2014, 24(40): 6262
https://doi.org/10.1002/adfm.201401599
17 Qi Y. , C. McAlpine M. . Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci., 2010, 3(9): 1275
https://doi.org/10.1039/c0ee00137f
18 Liu H.Zhong J.Lee C.W. Lee S.Lin L., A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications, Appl. Phys. Rev. 5(4), 041306 (2018)
19 G. Yeo H. , Xue T. , Roundy S. , Ma X. , Rahn C. , Trolier-McKinstry S. . Strongly (001) oriented bimorph PZT film on metal foils grown by RF‐sputtering for wrist‐worn piezoelectric energy harvesters. Adv. Funct. Mater., 2018, 28(36): 1801327
https://doi.org/10.1002/adfm.201801327
20 Yi J. , Liu L. , Shu L. , Huang Y. , F. Li J. . Outstanding ferroelectricity in sol–gel-derived polycrystalline BiFeO3 films within a wide thickness range. ACS Appl. Mater. Interfaces, 2022, 14(18): 21696
https://doi.org/10.1021/acsami.2c03137
21 Wang J. , B. Neaton J. , Zheng H. , Nagarajan V. , B. Ogale S. , Liu B. , Viehland D. , Vaithyanathan V. , G. Schlom D. , V. Waghmare U. , A. Spaldin N. , M. Rabe K. , Wuttig M. , Ramesh R. . Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003, 299(5613): 1719
https://doi.org/10.1126/science.1080615
22 Silva J. , Reyes A. , Esparza H. , Camacho H. , Fuentes L. . BiFeO3: A review on synthesis, doping and crystal structure. Integr. Ferroelectr., 2011, 126(1): 47
https://doi.org/10.1080/10584587.2011.574986
23 Dai M. , Wang Z. , Wang F. , Qiu Y. , Zhang J. , Y. Xu C. , Zhai T. , Cao W. , Fu Y. , Jia D. , Zhou Y. , A. Hu P. . Two-dimensional van der Waals materials with aligned in-plane polarization and large piezoelectric effect for self-powered piezoelectric sensors. Nano Lett., 2019, 19(8): 5410
https://doi.org/10.1021/acs.nanolett.9b01907
24 H. Lee M. , J. Kim D. , S. Park J. , W. Kim S. , K. Song T. , H. Kim M. , J. Kim W. , Do D. , K. Jeong I. . High-performance lead-free piezoceramics with high Curie temperatures. Adv. Mater., 2015, 27(43): 6976
https://doi.org/10.1002/adma.201502424
25 Shimizu K. , Hojo H. , Ikuhara Y. , Azuma M. . Enhanced piezoelectric response due to polarization rotation in cobalt-substituted BiFeO3 epitaxial thin films. Adv. Mater., 2016, 28(39): 8639
https://doi.org/10.1002/adma.201602450
26 Shimizu K. , Hojo H. , Ikuhara Y. , Azuma M. . Piezoelectric materials: Enhanced piezoelectric response due to polarization rotation in cobalt-substituted BiFeO3 epitaxial thin films. Adv. Mater., 2016, 28(39): 8785
https://doi.org/10.1002/adma.201670277
27 Hu P. , Yan L. , Zhao C. , Zhang Y. , Niu J. . Double-layer structured PVDF nanocomposite film designed for flexible nanogenerator exhibiting enhanced piezoelectric output and mechanical property. Compos. Sci. Technol., 2018, 168: 327
https://doi.org/10.1016/j.compscitech.2018.10.021
28 N. Duerloo K.T. Ong M.J. Reed E., Intrinsic piezoelectricity in two-dimensional materials, J. Phys. Chem. Lett. 3(19), 2871 (2012)
29 G. D. Zhao, T. Hu, L. Bellaiche , W. Ren. Liu, Structural and magnetic properties of two-dimensional layered BiFeO3 from first principles, Phys. Rev. B 103, 081403 (2021)
30 Yan H. , Deng H. , Ding N. , He J. , Peng L. , Sun L. , Yang P. , Chu J. . Influence of transition elements doping on structural, optical and magnetic properties of BiFeO3 films fabricated by magnetron sputtering. Mater. Lett., 2013, 111: 123
https://doi.org/10.1016/j.matlet.2013.08.075
31 Zhang X. , Deng J. , Yan J. , Song Y. , Mo Z. , Qian J. , Wu X. , Yuan S. , Li H. , Xu H. . Cryo-mediated liquid-phase exfoliated 2D BP coupled with 2D C3N4 to photodegradate organic pollutants and simultaneously generate hydrogen. Appl. Surf. Sci., 2019, 490: 117
https://doi.org/10.1016/j.apsusc.2019.05.246
32 Wang H. , Lv W. , Shi J. , Wang H. , Wang D. , Jin L. , Chao J. , A. van Aken P. , Chen R. , Huang W. . Efficient liquid nitrogen exfoliation of MoS2 ultrathin nanosheets in the pure 2H phase. ACS Sustain. Chem. & Eng., 2020, 8(1): 84
https://doi.org/10.1021/acssuschemeng.9b04057
33 Wang Y. , Liu Y. , Zhang J. , Wu J. , Xu H. , Wen X. , Zhang X. , S. Tiwary C. , Yang W. , Vajtai R. , Zhang Y. , Chopra N. , N. Odeh I. , Wu Y. , M. Ajayan P. . Cryo-mediated exfoliation and fracturing of layered materials into 2D quantum dots. Sci. Adv., 2017, 3(12): 1701500
https://doi.org/10.1126/sciadv.1701500
34 Abroodi M. , Bagheri A. , M. Razavizadeh B. . Surface tension of binary and ternary systems containing monoethanolamine (MEA), water and alcohols (methanol, ethanol, and isopropanol) at 303.15 K. J. Chem. Eng. Data, 2020, 65(6): 3173
https://doi.org/10.1021/acs.jced.0c00192
35 Cesur S. , E. Cam M. , S. Sayin F. , Gunduz O. . Electrically controlled drug release of donepezil and BiFeO3 magnetic nanoparticle-loaded PVA microbubbles/nanoparticles for the treatment of Alzheimer’s disease. J. Drug Deliv. Sci. Technol., 2022, 67: 102977
https://doi.org/10.1016/j.jddst.2021.102977
36 Ding H. , T. Khan S. , Zeng S. , Sun L. . Exfoliation of nanosized α-zirconium phosphate in methanol. Inorg. Chem., 2021, 60(11): 8276
https://doi.org/10.1021/acs.inorgchem.1c00968
37 Jonnalagadda K. , W. Cho S. , Chasiotis I. , Friedmann T. , Sullivan J. . Effect of intrinsic stress gradient on the effective mode-I fracture toughness of amorphous diamond-like carbon films for MEMS. J. Mech. Phys. Solids, 2008, 56(2): 388
https://doi.org/10.1016/j.jmps.2007.05.013
38 Park K. , H. Son J. , T. Hwang G. , K. Jeong C. , Ryu J. , Koo M. , Choi I. , H. Lee S. , Byun M. , L. Wang Z. , J. Lee K. . Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater., 2014, 26(16): 2514
https://doi.org/10.1002/adma.201305659
39 Barzegar A. , Damjanovic D. , Setter N. . Analytical modeling of the apparent d33 piezoelectric coefficient determined by the direct quasistatic method for different boundary conditions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2005, 52(11): 1897
https://doi.org/10.1109/TUFFC.2005.1561657
40 Dong J. , Ouyang G. . Edge effect on the piezoelectric characteristics of rectangular-shaped monolayer MSe2 (M = Cr, Mo, W) nanosheets. J. Phys. D Appl. Phys., 2021, 54(23): 235502
https://doi.org/10.1088/1361-6463/abecb3
41 Zhu Z.Zhang A.Ouyang G.Yang G., Edge effect on band gap shift in Si nanowires with polygonal cross-sections, Appl. Phys. Lett. 98(26), 263112 (2011)
42 Dong J.Ouyang G., Edge effect on the piezoelectric characteristics of rectangular-shaped monolayer MSe2 (M = Cr, Mo, W) nanosheets, J. Phys. D: Appl. Phys. 54(23), 235502 (2021)
43 Lee Y. , Park J. , Cho S. , E. Shin Y. , Lee H. , Kim J. , Myoung J. , Cho S. , Kang S. , Baig C. , Ko H. . Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano, 2018, 12(4): 4045
https://doi.org/10.1021/acsnano.8b01805
[1] fop-21301-of-huangxiao_suppl_1 Download
[1] Yun-Qin Li, Qi-Wen He, Dai-Song Tang, Xiao Shang, Xiao-Chun Wang. Intrinsically asymmetric atomic character regulates piezoelectricity in two-dimensional materials[J]. Front. Phys. , 2024, 19(3): 33201-.
[2] San-Dong Guo, Yu-Ling Tao, Wen-Qi Mu, Bang-Gui Liu. Correlation-driven threefold topological phase transition in monolayer OsBr2[J]. Front. Phys. , 2023, 18(3): 33304-.
[3] Shuang Zhou, Lu You, Hailin Zhou, Yong Pu, Zhigang Gui, Junling Wang. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications[J]. Front. Phys. , 2021, 16(1): 13301-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed