Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (3) : 33201    https://doi.org/10.1007/s11467-023-1348-5
RESEARCH ARTICLE
Intrinsically asymmetric atomic character regulates piezoelectricity in two-dimensional materials
Yun-Qin Li1,2, Qi-Wen He3, Dai-Song Tang3, Xiao Shang3, Xiao-Chun Wang1,3()
1. School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
2. Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai 200241, China
3. Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
 Download: PDF(7582 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Decreasing of layer thickness causes the decrease of polarization until it disappears due to the existence of depolarization field. Therefore, the search for strong piezoelectric materials is highly desirable for multifunctional ultra-thin piezoelectric devices. Herein, we propose a common strategy for achieving strong piezoelectric materials through the electronic asymmetry induced by the intrinsically asymmetric atomic character of different chalcogen atoms. Accordingly, in the tetrahedral lattice structures, for example, M4X3Y3 (M = Pd/Ni, X/Y = S, Se or Te, X ≠ Y) monolayers are proved to display excellent out-of-plane piezoelectricity. Ni4Se3Te3 possesses the largest piezoelectric coefficient d33 of 61.57 pm/V, which is much larger than that of most 2D materials. Enhancing the electronic asymmetry further increases the out-of-plane piezoelectricity of Janus M4X3Y3 materials. Correspondingly, the out-of-plane piezoelectricity is positively correlated with the ratio of electronegativity difference (Red) and the electric dipole moment (P). This work provides alternative materials for energy harvesting nano-devices or self-energized wearable devices, and supplies a valuable guideline for predicting 2D materials with strong out-of-plane piezoelectricity.

Keywords piezoelectricity      intrinsically asymmetric atomic character      ratio of electronegativity difference      electric dipole moment      first-principles calculations     
Corresponding Author(s): Xiao-Chun Wang   
About author:

Peng Lei and Charity Ngina Mwangi contributed equally to this work.

Issue Date: 10 November 2023
 Cite this article:   
Yun-Qin Li,Qi-Wen He,Dai-Song Tang, et al. Intrinsically asymmetric atomic character regulates piezoelectricity in two-dimensional materials[J]. Front. Phys. , 2024, 19(3): 33201.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1348-5
https://academic.hep.com.cn/fop/EN/Y2024/V19/I3/33201
Fig.1  Schematic diagram of induced out-of-plane polarization in the 2D rectangular structure lattice (from phase I to III). The purple arrow indicates the polarization vector point toward the −z axis direction.
Fig.2  (a) Top and side views of the M4X3Y3 monolayers. (b) Four 2X−M−2Y pentatomic planes form a M4X3Y3 structure. (c) Electron localization function (ELF) map of the top X, middle M, bottom Y layers, and the ELF map of the 2X−M−2Y pentatomic planes.
Fig.3  (a−f) The Phonon spectra with the projected phonon density of states (PhDOS) for M4X3Y3 monolayers.
Fig.4  (a−f) planar-average charge density along the z direction for the M4X3Y3 monolayers. Yellow and blue regions refer to the electron accumulation and depletion with 0.006 e/bohr3 isosurfaces.
Structure e31 e32 e33 d31 d32 d33
Pd4S3Se3 37.42 27.97 30.22 0.50 0.46 3.92
Pd4S3Te3 98.27 74.33 94.78 1.87 0.17 11.10
Pd4Se3Te3 86.78 72.34 89.28 1.54 0.32 10.45
Ni4S3Se3 77.20 61.41 64.99 0.92 0.17 2.53
Ni4Se3Te3 551.54 577.20 533.26 7.93 5.81 61.57
Tab.1  The out-of-plane piezoelectric stress eil (pC/m) and strain dik (pm/V) coefficients for five fully relaxed M4X3Y3 monolayers.
Fig.5  (a, b) Schematic diagram of induced out-of-plane polarization in Pd2S3 and Ni2S3. The purple arrow indicates the polarization vector point toward the −z axis direction.
Fig.6  The out-of-plane piezoelectric stress (e33) and strain coefficients (d33) as a function of the electronegativity difference ratio Red for Pd4X3Y3 monolayers.
Fig.7  (a) Position of the positive and negative charge centers in Pd4X3Y3 along the z direction. Blue arrows are the vertical distance l between positive and negative charge centers; black arrows are the electric dipole moments P; H1, H2, H3, and H4 represent the vertical distances between two adjacent atomic layers, respectively. (b) The e33 and d33 as a function of the electric dipole moment P for Pd4X3Y3 monolayers.
1 S. Novoselov K., K. Geim A., V. Morozov S., Jiang D., Zhang Y., V. Dubonos S., V. Grigorieva I., A. Firsov A.. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
https://doi.org/10.1126/science.1102896
2 Yang C., Wu Y., Wang Y., N. Zhang H., H. Zhu L., C. Wang X.. Electronic properties of double-atom catalysts for electrocatalytic oxygen evolution reaction in alkaline solution: A DFT study. Nanoscale, 2021, 14(1): 187
https://doi.org/10.1039/D1NR06334K
3 L. Liu L., P. Chen C., S. Zhao L., Wang Y., C. Wang X.. Metal-embedded nitrogen-doped graphene for H2O molecule dissociation. Carbon, 2017, 115: 773
https://doi.org/10.1016/j.carbon.2017.01.073
4 Guo R., Guo Y., Zhang Y., Gong X., Zhang T., Yu X., Yuan S., Wang J.. Electron doping induced stable ferromagnetism in two-dimensional GdI3 monolayer. Front. Phys., 2023, 18(4): 43304
https://doi.org/10.1007/s11467-023-1297-z
5 Li S., Ji W., Zhang J., Wang Y., Zhang C., Yan S.. Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator. Front. Phys., 2023, 18(4): 43301
https://doi.org/10.1007/s11467-023-1262-x
6 Zheng G., Qu S., Zhou W., Ouyang F.. Janus monolayer TaNF: A new ferrovalley material with large valley splitting and tunable magnetic properties. Front. Phys., 2023, 18(5): 53302
https://doi.org/10.1007/s11467-023-1285-3
7 Çakır D., M. Peeters F., Sevik C., Mechanical properties of h-MX2 (M = Cr, thermal X = O. Te) monolayers: A comparative study. Appl. Phys. Lett., 2014, 104(20): 203110
https://doi.org/10.1063/1.4879543
8 Mogulkoc Y., Caglayan R., O. Ciftci Y.. Band alignment in monolayer boron phosphide with Janus MoSSe heterobilayers under strain and electric field. Phys. Rev. Appl., 2021, 16(2): 024001
https://doi.org/10.1103/PhysRevApplied.16.024001
9 D. Guo S., S. Guo X., T. Zhu Y., S. Ang Y.. Predicted ferromagnetic monolayer CrSCl with large vertical piezoelectric response: A first-principles study. Appl. Phys. Lett., 2022, 121(6): 062403
https://doi.org/10.1063/5.0109033
10 D. Guo S., X. Zhu J., Q. Mu W., G. Liu B.. Possible way to achieve anomalous valley Hall effect by piezoelectric effect in a GdCl2 monolayer. Phys. Rev. B, 2021, 104(22): 224428
https://doi.org/10.1103/PhysRevB.104.224428
11 D. Guo S., L. Tao Y., Q. Mu W., G. Liu B.. Correlation-driven threefold topological phase transition in monolayer OsBr2. Front. Phys., 2023, 18(3): 33304
https://doi.org/10.1007/s11467-022-1243-5
12 Chandrasekaran A., Mishra A., K. Singh A.. Ferroelectricity, antiferroelectricity, and ultrathin 2D electron/hole gas in multifunctional monolayer MXene. Nano Lett., 2017, 17(5): 3290
https://doi.org/10.1021/acs.nanolett.7b01035
13 Jiang Z., Wang P., Jiang X., Zhao J.. MBene (MnB): A new type of 2D metallic ferromagnet with high Curie temperature. Nanoscale Horiz., 2018, 3(3): 335
https://doi.org/10.1039/C7NH00197E
14 Zhang B., Zhou J., Sun Z.. MBenes: Progress, challenges and future. J. Mater. Chem. A, 2022, 10(30): 15865
https://doi.org/10.1039/D2TA03482D
15 L. Hong Y., Liu Z., Wang L., Zhou T., Ma W., Xu C., Feng S., Chen L., L. Chen M., M. Sun D., Q. Chen X., M. Cheng H., Ren W.. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science, 2020, 369(6504): 670
https://doi.org/10.1126/science.abb7023
16 D. Guo S., L. Tao Y., T. Guo H., Y. Zhao Z., Wang B., Wang G., Wang X.. Possible electronic state quasi-half-valley metal in a VGe2P4 monolayer. Phys. Rev. B, 2023, 107(5): 054414
https://doi.org/10.1103/PhysRevB.107.054414
17 D. Guo S., Q. Mu W., H. Wang J., X. Yang Y., Wang B., S. Ang Y.. Strain effects on the topological and valley properties of the Janus monolayer VSiGeN4. Phys. Rev. B, 2022, 106(6): 064416
https://doi.org/10.1103/PhysRevB.106.064416
18 Wu Y., Ma Y., Zheng H., Ramakrishna S.. Piezoelectric materials for flexible and wearable electronics: A review. Mater. Des., 2021, 211: 110164
https://doi.org/10.1016/j.matdes.2021.110164
19 Zhang C., Yuan W., Zhang B., Yang O., Liu Y., He L., Wang J., L. Wang Z.. High space efficiency hybrid nanogenerators for effective water wave energy harvesting. Adv. Funct. Mater., 2022, 32(18): 2111775
https://doi.org/10.1002/adfm.202111775
20 Jiang Y., An J., Liang F., Zuo G., Yi J., Ning C., Zhang H., Dong K., L. Wang Z.. Knitted self-powered sensing textiles for machine learning-assisted sitting posture monitoring and correction. Nano Res., 2022, 15(9): 8389
https://doi.org/10.1007/s12274-022-4409-0
21 Cheng R., Ning C., Chen P., Sheng F., Wei C., Zhang Y., Peng X., Dong K., L. Wang Z.. Enhanced output of on-body direct-current power textiles by efficient energy management for sustainable working of mobile electronics. Adv. Energy Mater., 2022, 12(29): 2201532
https://doi.org/10.1002/aenm.202201532
22 Wu Y., H. Yang C., N. Zhang H., H. Zhu L., Y. Wang X., Q. Li Y., Y. Zhu S., C. Wang X., The flexible Janus X2PAs (X = Si. Ge and Sn) monolayers with in-plane and out-of-plane piezoelectricity. Appl. Surf. Sci., 2022, 589: 152999
https://doi.org/10.1016/j.apsusc.2022.152999
23 Q. Li Y., Y. Wang X., Y. Zhu S., S. Tang D., W. He Q., C. Wang X.. Enhanced vertical polarization and ultra-low polarization switching barriers of two-dimensional SnS/SnSSe ferroelectric heterostructures. J. Mater. Chem. C, 2022, 10(33): 12132
https://doi.org/10.1039/D2TC02721F
24 R. Gutiérrez H., Perea-López N., L. Elías A., Berkdemir A., Wang B., Lv R., López-Urías F., H. Crespi V., Terrones H., Terrones M.. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett., 2013, 13(8): 3447
https://doi.org/10.1021/nl3026357
25 Qi J., W. Lan Y., Z. Stieg A., H. Chen J., L. Zhong Y., J. Li L., D. Chen C., Zhang Y., L. Wang K.. Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics. Nat. Commun., 2015, 6(1): 7430
https://doi.org/10.1038/ncomms8430
26 Wu W., Wang L., Li Y., Zhang F., Lin L., Niu S., Chenet D., Zhang X., Hao Y., F. Heinz T., Hone J., L. Wang Z.. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature, 2014, 514(7523): 470
https://doi.org/10.1038/nature13792
27 H. Lee J., Y. Park J., B. Cho E., Y. Kim T., A. Han S., H. Kim T., Liu Y., K. Kim S., J. Roh C., J. Yoon H., Ryu H., Seung W., S. Lee J., Lee J., W. Kim S.. Reliable piezoelectricity in bilayer WSe2 for piezoelectric nanogenerators. Adv. Mater., 2017, 29(29): 1606667
https://doi.org/10.1002/adma.201606667
28 Nasr Esfahani E., Li T., Huang B., Xu X., Li J.. Piezoelectricity of atomically thin WSe2 via laterally excited scanning probe microscopy. Nano Energy, 2018, 52: 117
https://doi.org/10.1016/j.nanoen.2018.07.050
29 Zhang C., Nie Y., Sanvito S., Du A.. First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization. Nano Lett., 2019, 19(2): 1366
https://doi.org/10.1021/acs.nanolett.8b05050
30 Dong L., Lou J., B. Shenoy V.. Large in-plane and vertical piezoelectricity in janus transition metal dichalchogenides. ACS Nano, 2017, 11(8): 8242
https://doi.org/10.1021/acsnano.7b03313
31 Q. Li Y., Y. Wang X., Y. Zhu S., S. Tang D., W. He Q., C. Wang X., asymmetric electron-transfer effect on the enhanced piezoelectricity in MoTO (T = S Active. Se, or Te) monolayers and bilayers. J. Phys. Chem. Lett., 2022, 13(41): 9654
https://doi.org/10.1021/acs.jpclett.2c02660
32 S. Naghavi S., He J., Wolverton C.. Crystal and electronic structures of palladium sesquichalcogenides. Chem. Mater., 2021, 33(7): 2298
https://doi.org/10.1021/acs.chemmater.0c04227
33 S. Naghavi S., He J., Xia Y., Wolverton C.. Pd2Se3 monolayer: A promising two-dimensional thermoelectric material with ultralow lattice thermal conductivity and high power factor. Chem. Mater., 2018, 30(16): 5639
https://doi.org/10.1021/acs.chemmater.8b01914
34 Lin J., Zuluaga S., Yu P., Liu Z., T. Pantelides S., Suenaga K.. Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2. Phys. Rev. Lett., 2017, 119(1): 016101
https://doi.org/10.1103/PhysRevLett.119.016101
35 Moradi Z., Vaezzadeh M., Saeidi M.. Thermoelectric, spin-dependent optical and quantum transport properties of 2D half-metallic Co2Se3. Phys. Chem. Chem. Phys., 2022, 24(36): 22016
https://doi.org/10.1039/D2CP02541H
36 Lv P., Tang G., Yang C., Deng J., Liu Y., Wang X., Wang X., Hong J.. Half-metallicity in two-dimensional Co2Se3 monolayer with superior mechanical flexibility. 2D Mater., 2018, 5(4): 045026
https://doi.org/10.1088/2053-1583/aadb5a
37 Luo Y., Sun M., Yu J., Schwingenschlögl U.. Pd4S3Te3, and Pd4Se3Te3: Candidate two-dimensional Janus materials for photocatalytic water splitting. Chem. Mater., 2021, 33(11): 4128
https://doi.org/10.1021/acs.chemmater.1c00812
38 Kresse G.Hafner J., Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
39 Kresse G., Hafner J.. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B, 1994, 49(20): 14251
https://doi.org/10.1103/PhysRevB.49.14251
40 P. Perdew J., Burke K., Ernzerhof M.. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
41 Alfè D., PHON: A program to calculate phonons using the small displacement method, Comput. Phys. Commun. 180(12), 2622 (2009)
42 Nosé S., A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81(1), 511 (1984)
43 Heyd J., E. Scuseria G.. Assessment and validation of a screened Coulomb hybrid density functional. J. Chem. Phys., 2004, 120(16): 7274
https://doi.org/10.1063/1.1668634
44 Henkelman G.Arnaldsson A.Jónsson H., A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36(3), 354 (2006)
45 Wu X., Vanderbilt D., R. Hamann D.. Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys. Rev. B, 2005, 72(3): 035105
https://doi.org/10.1103/PhysRevB.72.035105
46 Tang C., Zhang L., Sanvito S., Du A.. Enabling room-temperature triferroic coupling in dual transition-metal dichalcogenide monolayers via electronic asymmetry. J. Am. Chem. Soc., 2023, 145(4): 2485
https://doi.org/10.1021/jacs.2c11862
47 Chen J., H. Ryu G., Sinha S., H. Warner J.. Atomic structure and dynamics of defects and grain boundaries in 2D Pd2Se3 monolayers. ACS Nano, 2019, 13(7): 8256
https://doi.org/10.1021/acsnano.9b03645
48 Eren I., Akgenc B., Tuning the structural, electronic properties of Janus M4X3Y3 (M = Pd, dynamical X, Ni = S. Se and Te) monolayers: A DFT study. Phys. Chem. Chem. Phys., 2021, 23(37): 21139
https://doi.org/10.1039/D1CP01916C
49 Xiong W., Huang K., Yuan S., The mechanical, electronic properties of two-dimensional transition metal chalcogenides MX2, optical (M = Ni, M2X3 X = S. Te) with hexagonal and orthorhombic structures. J. Mater. Chem. C, 2019, 7(43): 13518
https://doi.org/10.1039/C9TC04933A
50 Zhao J., Zhao Y., He H., Zhou P., Liang Y., Frauenheim T.. Stacking engineering: A boosting strategy for 2D photocatalysts. J. Phys. Chem. Lett., 2021, 12(41): 10190
https://doi.org/10.1021/acs.jpclett.1c03089
51 Peng R., Ma Y., Huang B., Dai Y.. Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light. J. Mater. Chem. A, 2019, 7(2): 603
https://doi.org/10.1039/C8TA09177C
52 Yu Y., Zhou J., Guo Z., Sun Z.. Novel two-dimensional Janus MoSiGeN4 and WSiGeN4 as highly efficient photocatalysts for spontaneous overall water splitting. ACS Appl. Mater. Interfaces, 2021, 13(24): 28090
https://doi.org/10.1021/acsami.1c04138
53 N. Zhang H., Wu Y., Yang C., H. Zhu L., C. Wang X.. Enhanced out-of-plane piezoelectricity of group-III(A) Janus hydrofluoride monolayers. Phys. Rev. B, 2021, 104(23): 235437
https://doi.org/10.1103/PhysRevB.104.235437
54 N. Zhang H., Yang C., Q. Li Y., Y. Zhu S., Y. Wang X., W. He Q., S. Tang D., C. Wang X.. Large out-of-plane piezoelectricity of VIA group functionalized MXenes thin films for MEMS. Appl. Phys. Lett., 2022, 121(14): 143504
https://doi.org/10.1063/5.0106898
55 Yagmurcukardes M., T. Senger R., M. Peeters F., Sahin H.. Mechanical properties of monolayer GaS and GaSe crystals. Phys. Rev. B, 2016, 94(24): 245407
https://doi.org/10.1103/PhysRevB.94.245407
56 Yagmurcukardes M., M. Peeters F.. Stable single layer of Janus MoSO: Strong out-of-plane piezoelectricity. Phys. Rev. B, 2020, 101(15): 155205
https://doi.org/10.1103/PhysRevB.101.155205
57 D. Guo S., T. Zhu Y., Qin K., S. Ang Y.. Large out-of-plane piezoelectric response in ferromagnetic monolayer NiClI. Appl. Phys. Lett., 2022, 120(23): 232403
https://doi.org/10.1063/5.0095917
58 F. Zhao Y., H. Shen Y., Hu H., Y. Tong W., G. Duan C.. Combined piezoelectricity and ferrovalley properties in Janus monolayer VClBr. Phys. Rev. B, 2021, 103(11): 115124
https://doi.org/10.1103/PhysRevB.103.115124
59 Q. Li Y., N. Zhang H., Yang C., Y. Wang X., Y. Zhu S., C. Wang X., Ferroelastic Zr2P2XY (X/Y = I.Cl or F; X ≠ Y) monolayers with tunable in-plane electronic anisotropy and remarkable out-of-plane piezoelectricity. Appl. Surf. Sci., 2023, 608: 155202
https://doi.org/10.1016/j.apsusc.2022.155202
60 Tan J., Wang Y., Wang Z., He X., Liu Y., Wang B., I. Katsnelson M., Yuan S.. Large out-of-plane piezoelectricity of oxygen functionalized MXenes for ultrathin piezoelectric cantilevers and diaphragms. Nano Energy, 2019, 65: 104058
https://doi.org/10.1016/j.nanoen.2019.104058
61 Guo Y., Zhou S., Bai Y., Zhao J.. Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers. Appl. Phys. Lett., 2017, 110(16): 163102
https://doi.org/10.1063/1.4981877
62 Hu L., Huang X., Peculiar electronic, strong in-plane, out-of-plane second harmonic generation, piezoelectric properties of atom-thick α-M2X3 (M = Ga,In; X = S. Se): Role of spontaneous electric dipole orientations. RSC Adv., 2017, 7(87): 55034
https://doi.org/10.1039/C7RA11014F
[1] FOP-21348-OF-liyunqin_suppl_1 Download
[1] Ran Ma, Qiuhong Tan, Peizhi Yang, Yingkai Liu, Qianjin Wang. High performance photodetector based on few-layer MoTe2/CdS0.42Se0.58 flake heterojunction[J]. Front. Phys. , 2024, 19(4): 43204-.
[2] Bocheng Lei, Aolin Li, Wenzhe Zhou, Yunpeng Wang, Wei Xiong, Yu Chen, Fangping Ouyang. Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2[J]. Front. Phys. , 2024, 19(4): 43200-.
[3] Zheng Shu, Huifang Xu, Hejin Yan, Yongqing Cai. Strong anisotropy of thermal transport in the monolayer of a new puckered phase of PdSe[J]. Front. Phys. , 2024, 19(3): 33202-.
[4] Yuping Li, Mengwei Dong, Xuejie Zou, Jinhao Zhang, Jian Zhang, Xiao Huang. Freeze-drying assisted liquid exfoliation of BiFeO3 for pressure sensing[J]. Front. Phys. , 2023, 18(6): 63303-.
[5] Guibo Zheng, Shuixian Qu, Wenzhe Zhou, Fangping Ouyang. Janus monolayer TaNF: A new ferrovalley material with large valley splitting and tunable magnetic properties[J]. Front. Phys. , 2023, 18(5): 53302-.
[6] Shengshi Li, Weixiao Ji, Jianping Zhang, Yaping Wang, Changwen Zhang, Shishen Yan. Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator[J]. Front. Phys. , 2023, 18(4): 43301-.
[7] San-Dong Guo, Yu-Ling Tao, Wen-Qi Mu, Bang-Gui Liu. Correlation-driven threefold topological phase transition in monolayer OsBr2[J]. Front. Phys. , 2023, 18(3): 33304-.
[8] Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials[J]. Front. Phys. , 2023, 18(2): 23302-.
[9] Huili Zhu, Zifan Hong, Changjie Zhou, Qihui Wu, Tongchang Zheng, Lan Yang, Shuqiong Lan, Weifeng Yang. Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions[J]. Front. Phys. , 2023, 18(1): 13301-.
[10] Changjie Zhou, Huili Zhu, Weifeng Yang, Qiubao Lin, Tongchang Zheng, Lan Yang, Shuqiong Lan. Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations[J]. Front. Phys. , 2022, 17(5): 53500-.
[11] Chengyong Zhong. Predication of topological states in the allotropes of group-IV elements[J]. Front. Phys. , 2021, 16(6): 63503-.
[12] Shuang Zhou, Lu You, Hailin Zhou, Yong Pu, Zhigang Gui, Junling Wang. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications[J]. Front. Phys. , 2021, 16(1): 13301-.
[13] Quan Chen (陈泉), Wei Li (李伟), Yong Yang (杨勇). β-PtO2: Phononic, thermodynamic, and elastic properties derived from first-principles calculations[J]. Front. Phys. , 2019, 14(5): 53604-.
[14] Qun Wei, Quan Zhang, Mei-Guang Zhang, Hai-Yan Yan, Li-Xin Guo, Bing Wei. A novel hybrid sp-sp2 metallic carbon allotrope[J]. Front. Phys. , 2018, 13(5): 136105-.
[15] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed