|
|
Intrinsically asymmetric atomic character regulates piezoelectricity in two-dimensional materials |
Yun-Qin Li1,2, Qi-Wen He3, Dai-Song Tang3, Xiao Shang3, Xiao-Chun Wang1,3( ) |
1. School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China 2. Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai 200241, China 3. Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China |
|
|
Abstract Decreasing of layer thickness causes the decrease of polarization until it disappears due to the existence of depolarization field. Therefore, the search for strong piezoelectric materials is highly desirable for multifunctional ultra-thin piezoelectric devices. Herein, we propose a common strategy for achieving strong piezoelectric materials through the electronic asymmetry induced by the intrinsically asymmetric atomic character of different chalcogen atoms. Accordingly, in the tetrahedral lattice structures, for example, M4X3Y3 (M = Pd/Ni, X/Y = S, Se or Te, X ≠ Y) monolayers are proved to display excellent out-of-plane piezoelectricity. Ni4Se3Te3 possesses the largest piezoelectric coefficient d33 of 61.57 pm/V, which is much larger than that of most 2D materials. Enhancing the electronic asymmetry further increases the out-of-plane piezoelectricity of Janus M4X3Y3 materials. Correspondingly, the out-of-plane piezoelectricity is positively correlated with the ratio of electronegativity difference (Red) and the electric dipole moment (P). This work provides alternative materials for energy harvesting nano-devices or self-energized wearable devices, and supplies a valuable guideline for predicting 2D materials with strong out-of-plane piezoelectricity.
|
Keywords
piezoelectricity
intrinsically asymmetric atomic character
ratio of electronegativity difference
electric dipole moment
first-principles calculations
|
Corresponding Author(s):
Xiao-Chun Wang
|
About author: Peng Lei and Charity Ngina Mwangi contributed equally to this work. |
Issue Date: 10 November 2023
|
|
1 |
S. Novoselov K., K. Geim A., V. Morozov S., Jiang D., Zhang Y., V. Dubonos S., V. Grigorieva I., A. Firsov A.. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
https://doi.org/10.1126/science.1102896
|
2 |
Yang C., Wu Y., Wang Y., N. Zhang H., H. Zhu L., C. Wang X.. Electronic properties of double-atom catalysts for electrocatalytic oxygen evolution reaction in alkaline solution: A DFT study. Nanoscale, 2021, 14(1): 187
https://doi.org/10.1039/D1NR06334K
|
3 |
L. Liu L., P. Chen C., S. Zhao L., Wang Y., C. Wang X.. Metal-embedded nitrogen-doped graphene for H2O molecule dissociation. Carbon, 2017, 115: 773
https://doi.org/10.1016/j.carbon.2017.01.073
|
4 |
Guo R., Guo Y., Zhang Y., Gong X., Zhang T., Yu X., Yuan S., Wang J.. Electron doping induced stable ferromagnetism in two-dimensional GdI3 monolayer. Front. Phys., 2023, 18(4): 43304
https://doi.org/10.1007/s11467-023-1297-z
|
5 |
Li S., Ji W., Zhang J., Wang Y., Zhang C., Yan S.. Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator. Front. Phys., 2023, 18(4): 43301
https://doi.org/10.1007/s11467-023-1262-x
|
6 |
Zheng G., Qu S., Zhou W., Ouyang F.. Janus monolayer TaNF: A new ferrovalley material with large valley splitting and tunable magnetic properties. Front. Phys., 2023, 18(5): 53302
https://doi.org/10.1007/s11467-023-1285-3
|
7 |
Çakır D., M. Peeters F., Sevik C., Mechanical properties of h-MX2 (M = Cr, thermal X = O. Te) monolayers: A comparative study. Appl. Phys. Lett., 2014, 104(20): 203110
https://doi.org/10.1063/1.4879543
|
8 |
Mogulkoc Y., Caglayan R., O. Ciftci Y.. Band alignment in monolayer boron phosphide with Janus MoSSe heterobilayers under strain and electric field. Phys. Rev. Appl., 2021, 16(2): 024001
https://doi.org/10.1103/PhysRevApplied.16.024001
|
9 |
D. Guo S., S. Guo X., T. Zhu Y., S. Ang Y.. Predicted ferromagnetic monolayer CrSCl with large vertical piezoelectric response: A first-principles study. Appl. Phys. Lett., 2022, 121(6): 062403
https://doi.org/10.1063/5.0109033
|
10 |
D. Guo S., X. Zhu J., Q. Mu W., G. Liu B.. Possible way to achieve anomalous valley Hall effect by piezoelectric effect in a GdCl2 monolayer. Phys. Rev. B, 2021, 104(22): 224428
https://doi.org/10.1103/PhysRevB.104.224428
|
11 |
D. Guo S., L. Tao Y., Q. Mu W., G. Liu B.. Correlation-driven threefold topological phase transition in monolayer OsBr2. Front. Phys., 2023, 18(3): 33304
https://doi.org/10.1007/s11467-022-1243-5
|
12 |
Chandrasekaran A., Mishra A., K. Singh A.. Ferroelectricity, antiferroelectricity, and ultrathin 2D electron/hole gas in multifunctional monolayer MXene. Nano Lett., 2017, 17(5): 3290
https://doi.org/10.1021/acs.nanolett.7b01035
|
13 |
Jiang Z., Wang P., Jiang X., Zhao J.. MBene (MnB): A new type of 2D metallic ferromagnet with high Curie temperature. Nanoscale Horiz., 2018, 3(3): 335
https://doi.org/10.1039/C7NH00197E
|
14 |
Zhang B., Zhou J., Sun Z.. MBenes: Progress, challenges and future. J. Mater. Chem. A, 2022, 10(30): 15865
https://doi.org/10.1039/D2TA03482D
|
15 |
L. Hong Y., Liu Z., Wang L., Zhou T., Ma W., Xu C., Feng S., Chen L., L. Chen M., M. Sun D., Q. Chen X., M. Cheng H., Ren W.. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science, 2020, 369(6504): 670
https://doi.org/10.1126/science.abb7023
|
16 |
D. Guo S., L. Tao Y., T. Guo H., Y. Zhao Z., Wang B., Wang G., Wang X.. Possible electronic state quasi-half-valley metal in a VGe2P4 monolayer. Phys. Rev. B, 2023, 107(5): 054414
https://doi.org/10.1103/PhysRevB.107.054414
|
17 |
D. Guo S., Q. Mu W., H. Wang J., X. Yang Y., Wang B., S. Ang Y.. Strain effects on the topological and valley properties of the Janus monolayer VSiGeN4. Phys. Rev. B, 2022, 106(6): 064416
https://doi.org/10.1103/PhysRevB.106.064416
|
18 |
Wu Y., Ma Y., Zheng H., Ramakrishna S.. Piezoelectric materials for flexible and wearable electronics: A review. Mater. Des., 2021, 211: 110164
https://doi.org/10.1016/j.matdes.2021.110164
|
19 |
Zhang C., Yuan W., Zhang B., Yang O., Liu Y., He L., Wang J., L. Wang Z.. High space efficiency hybrid nanogenerators for effective water wave energy harvesting. Adv. Funct. Mater., 2022, 32(18): 2111775
https://doi.org/10.1002/adfm.202111775
|
20 |
Jiang Y., An J., Liang F., Zuo G., Yi J., Ning C., Zhang H., Dong K., L. Wang Z.. Knitted self-powered sensing textiles for machine learning-assisted sitting posture monitoring and correction. Nano Res., 2022, 15(9): 8389
https://doi.org/10.1007/s12274-022-4409-0
|
21 |
Cheng R., Ning C., Chen P., Sheng F., Wei C., Zhang Y., Peng X., Dong K., L. Wang Z.. Enhanced output of on-body direct-current power textiles by efficient energy management for sustainable working of mobile electronics. Adv. Energy Mater., 2022, 12(29): 2201532
https://doi.org/10.1002/aenm.202201532
|
22 |
Wu Y., H. Yang C., N. Zhang H., H. Zhu L., Y. Wang X., Q. Li Y., Y. Zhu S., C. Wang X., The flexible Janus X2PAs (X = Si. Ge and Sn) monolayers with in-plane and out-of-plane piezoelectricity. Appl. Surf. Sci., 2022, 589: 152999
https://doi.org/10.1016/j.apsusc.2022.152999
|
23 |
Q. Li Y., Y. Wang X., Y. Zhu S., S. Tang D., W. He Q., C. Wang X.. Enhanced vertical polarization and ultra-low polarization switching barriers of two-dimensional SnS/SnSSe ferroelectric heterostructures. J. Mater. Chem. C, 2022, 10(33): 12132
https://doi.org/10.1039/D2TC02721F
|
24 |
R. Gutiérrez H., Perea-López N., L. Elías A., Berkdemir A., Wang B., Lv R., López-Urías F., H. Crespi V., Terrones H., Terrones M.. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett., 2013, 13(8): 3447
https://doi.org/10.1021/nl3026357
|
25 |
Qi J., W. Lan Y., Z. Stieg A., H. Chen J., L. Zhong Y., J. Li L., D. Chen C., Zhang Y., L. Wang K.. Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics. Nat. Commun., 2015, 6(1): 7430
https://doi.org/10.1038/ncomms8430
|
26 |
Wu W., Wang L., Li Y., Zhang F., Lin L., Niu S., Chenet D., Zhang X., Hao Y., F. Heinz T., Hone J., L. Wang Z.. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature, 2014, 514(7523): 470
https://doi.org/10.1038/nature13792
|
27 |
H. Lee J., Y. Park J., B. Cho E., Y. Kim T., A. Han S., H. Kim T., Liu Y., K. Kim S., J. Roh C., J. Yoon H., Ryu H., Seung W., S. Lee J., Lee J., W. Kim S.. Reliable piezoelectricity in bilayer WSe2 for piezoelectric nanogenerators. Adv. Mater., 2017, 29(29): 1606667
https://doi.org/10.1002/adma.201606667
|
28 |
Nasr Esfahani E., Li T., Huang B., Xu X., Li J.. Piezoelectricity of atomically thin WSe2 via laterally excited scanning probe microscopy. Nano Energy, 2018, 52: 117
https://doi.org/10.1016/j.nanoen.2018.07.050
|
29 |
Zhang C., Nie Y., Sanvito S., Du A.. First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization. Nano Lett., 2019, 19(2): 1366
https://doi.org/10.1021/acs.nanolett.8b05050
|
30 |
Dong L., Lou J., B. Shenoy V.. Large in-plane and vertical piezoelectricity in janus transition metal dichalchogenides. ACS Nano, 2017, 11(8): 8242
https://doi.org/10.1021/acsnano.7b03313
|
31 |
Q. Li Y., Y. Wang X., Y. Zhu S., S. Tang D., W. He Q., C. Wang X., asymmetric electron-transfer effect on the enhanced piezoelectricity in MoTO (T = S Active. Se, or Te) monolayers and bilayers. J. Phys. Chem. Lett., 2022, 13(41): 9654
https://doi.org/10.1021/acs.jpclett.2c02660
|
32 |
S. Naghavi S., He J., Wolverton C.. Crystal and electronic structures of palladium sesquichalcogenides. Chem. Mater., 2021, 33(7): 2298
https://doi.org/10.1021/acs.chemmater.0c04227
|
33 |
S. Naghavi S., He J., Xia Y., Wolverton C.. Pd2Se3 monolayer: A promising two-dimensional thermoelectric material with ultralow lattice thermal conductivity and high power factor. Chem. Mater., 2018, 30(16): 5639
https://doi.org/10.1021/acs.chemmater.8b01914
|
34 |
Lin J., Zuluaga S., Yu P., Liu Z., T. Pantelides S., Suenaga K.. Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2. Phys. Rev. Lett., 2017, 119(1): 016101
https://doi.org/10.1103/PhysRevLett.119.016101
|
35 |
Moradi Z., Vaezzadeh M., Saeidi M.. Thermoelectric, spin-dependent optical and quantum transport properties of 2D half-metallic Co2Se3. Phys. Chem. Chem. Phys., 2022, 24(36): 22016
https://doi.org/10.1039/D2CP02541H
|
36 |
Lv P., Tang G., Yang C., Deng J., Liu Y., Wang X., Wang X., Hong J.. Half-metallicity in two-dimensional Co2Se3 monolayer with superior mechanical flexibility. 2D Mater., 2018, 5(4): 045026
https://doi.org/10.1088/2053-1583/aadb5a
|
37 |
Luo Y., Sun M., Yu J., Schwingenschlögl U.. Pd4S3Te3, and Pd4Se3Te3: Candidate two-dimensional Janus materials for photocatalytic water splitting. Chem. Mater., 2021, 33(11): 4128
https://doi.org/10.1021/acs.chemmater.1c00812
|
38 |
Kresse G.Hafner J., Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
|
39 |
Kresse G., Hafner J.. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B, 1994, 49(20): 14251
https://doi.org/10.1103/PhysRevB.49.14251
|
40 |
P. Perdew J., Burke K., Ernzerhof M.. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
|
41 |
Alfè D., PHON: A program to calculate phonons using the small displacement method, Comput. Phys. Commun. 180(12), 2622 (2009)
|
42 |
Nosé S., A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81(1), 511 (1984)
|
43 |
Heyd J., E. Scuseria G.. Assessment and validation of a screened Coulomb hybrid density functional. J. Chem. Phys., 2004, 120(16): 7274
https://doi.org/10.1063/1.1668634
|
44 |
Henkelman G.Arnaldsson A.Jónsson H., A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36(3), 354 (2006)
|
45 |
Wu X., Vanderbilt D., R. Hamann D.. Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys. Rev. B, 2005, 72(3): 035105
https://doi.org/10.1103/PhysRevB.72.035105
|
46 |
Tang C., Zhang L., Sanvito S., Du A.. Enabling room-temperature triferroic coupling in dual transition-metal dichalcogenide monolayers via electronic asymmetry. J. Am. Chem. Soc., 2023, 145(4): 2485
https://doi.org/10.1021/jacs.2c11862
|
47 |
Chen J., H. Ryu G., Sinha S., H. Warner J.. Atomic structure and dynamics of defects and grain boundaries in 2D Pd2Se3 monolayers. ACS Nano, 2019, 13(7): 8256
https://doi.org/10.1021/acsnano.9b03645
|
48 |
Eren I., Akgenc B., Tuning the structural, electronic properties of Janus M4X3Y3 (M = Pd, dynamical X, Ni = S. Se and Te) monolayers: A DFT study. Phys. Chem. Chem. Phys., 2021, 23(37): 21139
https://doi.org/10.1039/D1CP01916C
|
49 |
Xiong W., Huang K., Yuan S., The mechanical, electronic properties of two-dimensional transition metal chalcogenides MX2, optical (M = Ni, M2X3 X = S. Te) with hexagonal and orthorhombic structures. J. Mater. Chem. C, 2019, 7(43): 13518
https://doi.org/10.1039/C9TC04933A
|
50 |
Zhao J., Zhao Y., He H., Zhou P., Liang Y., Frauenheim T.. Stacking engineering: A boosting strategy for 2D photocatalysts. J. Phys. Chem. Lett., 2021, 12(41): 10190
https://doi.org/10.1021/acs.jpclett.1c03089
|
51 |
Peng R., Ma Y., Huang B., Dai Y.. Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light. J. Mater. Chem. A, 2019, 7(2): 603
https://doi.org/10.1039/C8TA09177C
|
52 |
Yu Y., Zhou J., Guo Z., Sun Z.. Novel two-dimensional Janus MoSiGeN4 and WSiGeN4 as highly efficient photocatalysts for spontaneous overall water splitting. ACS Appl. Mater. Interfaces, 2021, 13(24): 28090
https://doi.org/10.1021/acsami.1c04138
|
53 |
N. Zhang H., Wu Y., Yang C., H. Zhu L., C. Wang X.. Enhanced out-of-plane piezoelectricity of group-III(A) Janus hydrofluoride monolayers. Phys. Rev. B, 2021, 104(23): 235437
https://doi.org/10.1103/PhysRevB.104.235437
|
54 |
N. Zhang H., Yang C., Q. Li Y., Y. Zhu S., Y. Wang X., W. He Q., S. Tang D., C. Wang X.. Large out-of-plane piezoelectricity of VIA group functionalized MXenes thin films for MEMS. Appl. Phys. Lett., 2022, 121(14): 143504
https://doi.org/10.1063/5.0106898
|
55 |
Yagmurcukardes M., T. Senger R., M. Peeters F., Sahin H.. Mechanical properties of monolayer GaS and GaSe crystals. Phys. Rev. B, 2016, 94(24): 245407
https://doi.org/10.1103/PhysRevB.94.245407
|
56 |
Yagmurcukardes M., M. Peeters F.. Stable single layer of Janus MoSO: Strong out-of-plane piezoelectricity. Phys. Rev. B, 2020, 101(15): 155205
https://doi.org/10.1103/PhysRevB.101.155205
|
57 |
D. Guo S., T. Zhu Y., Qin K., S. Ang Y.. Large out-of-plane piezoelectric response in ferromagnetic monolayer NiClI. Appl. Phys. Lett., 2022, 120(23): 232403
https://doi.org/10.1063/5.0095917
|
58 |
F. Zhao Y., H. Shen Y., Hu H., Y. Tong W., G. Duan C.. Combined piezoelectricity and ferrovalley properties in Janus monolayer VClBr. Phys. Rev. B, 2021, 103(11): 115124
https://doi.org/10.1103/PhysRevB.103.115124
|
59 |
Q. Li Y., N. Zhang H., Yang C., Y. Wang X., Y. Zhu S., C. Wang X., Ferroelastic Zr2P2XY (X/Y = I.Cl or F; X ≠ Y) monolayers with tunable in-plane electronic anisotropy and remarkable out-of-plane piezoelectricity. Appl. Surf. Sci., 2023, 608: 155202
https://doi.org/10.1016/j.apsusc.2022.155202
|
60 |
Tan J., Wang Y., Wang Z., He X., Liu Y., Wang B., I. Katsnelson M., Yuan S.. Large out-of-plane piezoelectricity of oxygen functionalized MXenes for ultrathin piezoelectric cantilevers and diaphragms. Nano Energy, 2019, 65: 104058
https://doi.org/10.1016/j.nanoen.2019.104058
|
61 |
Guo Y., Zhou S., Bai Y., Zhao J.. Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers. Appl. Phys. Lett., 2017, 110(16): 163102
https://doi.org/10.1063/1.4981877
|
62 |
Hu L., Huang X., Peculiar electronic, strong in-plane, out-of-plane second harmonic generation, piezoelectric properties of atom-thick α-M2X3 (M = Ga,In; X = S. Se): Role of spontaneous electric dipole orientations. RSC Adv., 2017, 7(87): 55034
https://doi.org/10.1039/C7RA11014F
|
[1] |
FOP-21348-OF-liyunqin_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|