|
|
Strong anisotropy of thermal transport in the monolayer of a new puckered phase of PdSe |
Zheng Shu, Huifang Xu, Hejin Yan, Yongqing Cai( ) |
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China |
|
|
Abstract We examine the electronic and transport properties of a new phase PdSe monolayer with a puckered structure calculated by first-principles and Boltzmann transport equation. The spin−orbit coupling is found to play a negligible effect on the electronic properties of PdSe monolayer. The lattice thermal conductivity of PdSe monolayer exhibits remarkable anisotropic characteristic due to anisotropic phonon group velocity along different directions and its intrinsic structure anisotropy. The compromised electronic mobility despite a relatively low thermal conduction results in a moderate ZT value but significantly anisotropic thermoelectric performance in single-layer PdSe. The present work suggests that the remarkable thermal transport anisotropy of PdSe monolayer can be used for thermal management, and enhance the scope of possibilities for heat flow manipulation in PdSe based devices. The sizeable puckered cages and wiggling lattice implies it an ideal platform for ionic and molecular engineering for thermoelectronic applications.
|
Keywords
2D materials
first-principles calculations
phonon
|
Corresponding Author(s):
Yongqing Cai
|
About author: Peng Lei and Charity Ngina Mwangi contributed equally to this work. |
Issue Date: 17 November 2023
|
|
1 |
S. Novoselov K.I. Fal′ko V.Colombo L.R. Gellert P.G. Schwab M.Kim K., A roadmap for graphene, Nature 490(7419), 192 (2012)
|
2 |
Shan G. , Ding Z. , Gogotsi Y. . Two-dimensional MXenes and their applications. Front. Phys., 2023, 18(1): 13604
https://doi.org/10.1007/s11467-022-1254-2
|
3 |
S. Novoselov K. , V. Andreeva D. , C. Ren W. , C. Shan G. . Graphene and other two-dimensional materials. Front. Phys., 2019, 14(1): 13301
https://doi.org/10.1007/s11467-018-0835-6
|
4 |
S. Novoselov K. , K. Geim A. , V. Morozov S. , Jiang D. , Zhang Y. , V. Dubonos S. , V. Grigorieva I. , A. Firsov A. . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
https://doi.org/10.1126/science.1102896
|
5 |
Cai W. , L. Moore A. , Zhu Y. , Li X. , Chen S. , Shi L. , S. Ruoff R. . Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett., 2010, 10(5): 1645
https://doi.org/10.1021/nl9041966
|
6 |
K. Ellis J. , J. Lucero M. , E. Scuseria G. . The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl. Phys. Lett., 2011, 99(26): 261908
https://doi.org/10.1063/1.3672219
|
7 |
Li H. , Zhang Q. , C. R. Yap C. , K. Tay B. , H. T. Edwin T. , Olivier A. , Baillargeat D. . From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater., 2012, 22(7): 1385
https://doi.org/10.1002/adfm.201102111
|
8 |
Shu Z. , Cui X. , Wang B. , Yan H. , Cai Y. . Fast intercalation of lithium in semi‐metallic γ‐GeSe nanosheet: A new group‐IV monochalcogenide for lithium‐ion battery application. ChemSusChem, 2022, 15(15): e202200564
https://doi.org/10.1002/cssc.202200564
|
9 |
Feng Y. , Zhou W. , Wang Y. , Zhou J. , Liu E. , Fu Y. , Ni Z. , Wu X. , Yuan H. , Miao F. , Wang B. , Wan X. , Xing D. . Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry. Phys. Rev. B, 2015, 92(5): 054110
https://doi.org/10.1103/PhysRevB.92.054110
|
10 |
Laturia A. , L. Van de Put M. , G. Vandenberghe W. . Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: From monolayer to bulk. npj 2D Mater. Appl., 2018, 2(1): 6
https://doi.org/10.1038/s41699-018-0050-x
|
11 |
Yang T. , T. Song T. , Zhou J. , Wang S. , Chi D. , Shen L. , Yang M. , P. Feng Y. . High-throughput screening of transition metal single atom catalysts anchored on molybdenum disulfide for nitrogen fixation. Nano Energy, 2020, 68: 104304
https://doi.org/10.1016/j.nanoen.2019.104304
|
12 |
Shu Z. , Yan H. , Chen H. , Cai Y. . Mutual modulation via charge transfer and unpaired electrons of catalytic sites for the superior intrinsic activity of N2 reduction: From high-throughput computation assisted with a machine learning perspective. J. Mater. Chem. A, 2022, 10(10): 5470
https://doi.org/10.1039/D1TA10688K
|
13 |
Pan L. , Wang Z. , Carrete J. , K. H. Madsen G. . Thermoelectric properties of the Janus PtSTe monolayer compared with its parent structures. Phys. Rev. Mater., 2022, 6(8): 084005
https://doi.org/10.1103/PhysRevMaterials.6.084005
|
14 |
Tan C. , Yu P. , Hu Y. , Chen J. , Huang Y. , Cai Y. , Luo Z. , Li B. , Lu Q. , Wang L. , Liu Z. , Zhang H. . High-yield exfoliation of ultrathin two-dimensional ternary chalcogenide nanosheets for highly sensitive and selective fluorescence DNA sensors. J. Am. Chem. Soc., 2015, 137(32): 10430
https://doi.org/10.1021/jacs.5b06982
|
15 |
Liu E. , Fu Y. , Wang Y. , Feng Y. , Liu H. , Wan X. , Zhou W. , Wang B. , Shao L. , H. Ho C. , S. Huang Y. , Cao Z. , Wang L. , Li A. , Zeng J. , Song F. , Wang X. , Shi Y. , Yuan H. , Y. Hwang H. , Cui Y. , Miao F. , Xing D. . Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun., 2015, 6(1): 6991
https://doi.org/10.1038/ncomms7991
|
16 |
Yuan J. , Chen Y. , Xie Y. , Zhang X. , Rao D. , Guo Y. , Yan X. , P. Feng Y. , Cai Y. . Squeezed metallic droplet with tunable Kubo gap and charge injection in transition metal dichalcogenides. Proc. Natl. Acad. Sci. USA, 2020, 117(12): 6362
https://doi.org/10.1073/pnas.1920036117
|
17 |
D. Oyedele A. , Yang S. , Liang L. , A. Puretzky A. , Wang K. , Zhang J. , Yu P. , R. Pudasaini P. , W. Ghosh A. , Liu Z. , M. Rouleau C. , G. Sumpter B. , F. Chisholm M. , Zhou W. , D. Rack P. , B. Geohegan D. , Xiao K. . PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc., 2017, 139(40): 14090
https://doi.org/10.1021/jacs.7b04865
|
18 |
N. Hoffman A. , Gu Y. , Liang L. , D. Fowlkes J. , Xiao K. , D. Rack P. . Exploring the air stability of PdSe2 via electrical transport measurements and defect calculations. npj 2D Mater. Appl., 2019, 3(1): 50
https://doi.org/10.1038/s41699-019-0132-4
|
19 |
Liu G. , Zeng Q. , Zhu P. , Quhe R. , Lu P. . Negative Poisson’s ratio in monolayer PdSe2. Comput. Mater. Sci., 2019, 160: 309
https://doi.org/10.1016/j.commatsci.2019.01.024
|
20 |
V. Kuklin A. , Ågren H. . Quasiparticle electronic structure and optical spectra of single-layer and bilayer PdSe2: Proximity and defect-induced band gap renormalization. Phys. Rev. B, 2019, 99(24): 245114
https://doi.org/10.1103/PhysRevB.99.245114
|
21 |
Tangpakonsab P. , Moontragoon P. , Hussain T. , Kaewmaraya T. . Thermoelectric efficiency of two-dimensional pentagonal-PdSe2 at high temperatures and the role of strain. ACS Appl. Energy Mater., 2022, 5(11): 14522
https://doi.org/10.1021/acsaem.2c03141
|
22 |
Lin J. , Zuluaga S. , Yu P. , Liu Z. , T. Pantelides S. , Suenaga K. . Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2. Phys. Rev. Lett., 2017, 119(1): 016101
https://doi.org/10.1103/PhysRevLett.119.016101
|
23 |
Xu X. , Robertson J. , Li H. . Semiconducting few-layer PdSe2 and Pd2Se3: Native point defects and contacts with native metallic Pd17Se15. Phys. Chem. Chem. Phys., 2020, 22(14): 7365
https://doi.org/10.1039/C9CP06654C
|
24 |
S. Naghavi S. , He J. , Xia Y. , Wolverton C. . Pd2Se3 monolayer: A promising two-dimensional thermoelectric material with ultralow lattice thermal conductivity and high power factor. Chem. Mater., 2018, 30(16): 5639
https://doi.org/10.1021/acs.chemmater.8b01914
|
25 |
Huang M. , Jiang X. , Zheng Y. , Xu Z. , X. Xue X. , Chen K. , Feng Y. . Novel two-dimensional PdSe phase: A puckered material with excellent electronic and optical properties. Front. Phys., 2022, 17(5): 53504
https://doi.org/10.1007/s11467-022-1154-5
|
26 |
T. Call S. , Y. Zubarev D. , I. Boldyrev A. . Global minimum structure searches via particle swarm optimization. J. Comput. Chem., 2007, 28(7): 1177
https://doi.org/10.1002/jcc.20621
|
27 |
Wang Y.Lv J.Zhu L.Ma Y., CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183(10), 2063 (2012)
|
28 |
Chen L. , Li K. , Peng X. , Lian H. , Lin X. , Fu Z. . Isogeometric boundary element analysis for 2D transient heat conduction problem with radial integration method. Comput. Model. Eng. Sci., 2021, 126(1): 125
https://doi.org/10.32604/cmes.2021.012821
|
29 |
Cheng H. , Xing Z. , Peng M. . The improved element-free Galerkin method for anisotropic steady-state heat conduction problems. Comput. Model. Eng. Sci., 2022, 132(3): 945
https://doi.org/10.32604/cmes.2022.020755
|
30 |
Kresse G. , Furthmüller J. . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
https://doi.org/10.1016/0927-0256(96)00008-0
|
31 |
Kresse G. , Furthmüller J. . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
|
32 |
E. Blöchl P. . Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
https://doi.org/10.1103/PhysRevB.50.17953
|
33 |
P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
|
34 |
J. Martyna G. , L. Klein M. , Tuckerman M. . Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys., 1992, 97(4): 2635
https://doi.org/10.1063/1.463940
|
35 |
Heyd J. , E. Scuseria G. , Ernzerhof M. . Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 2003, 118(18): 8207
https://doi.org/10.1063/1.1564060
|
36 |
Togo A. , Oba F. , Tanaka I. . First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B, 2008, 78(13): 134106
https://doi.org/10.1103/PhysRevB.78.134106
|
37 |
Eriksson F. , Fransson E. , Erhart P. . The Hiphive Package for the extraction of high-order force constants by machine learning. Adv. Theory Simul., 2019, 2(5): 1800184
https://doi.org/10.1002/adts.201800184
|
38 |
K. H. Madsen G. , Carrete J. , J. Verstraete M. . BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun., 2018, 231: 140
https://doi.org/10.1016/j.cpc.2018.05.010
|
39 |
Li W. , Carrete J. , A. Katcho N. , Mingo N. . ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun., 2014, 185(6): 1747
https://doi.org/10.1016/j.cpc.2014.02.015
|
40 |
D. Becke A.E. Edgecombe K., A simple measure of electron localization in atomic and molecular systems, J. Chem. Phys. 92(9), 5397 (1990)
|
41 |
Ma J. , Meng F. , He J. , Jia Y. , Li W. . Strain-induced ultrahigh electron mobility and thermoelectric figure of merit in monolayer α-Te. ACS Appl. Mater. Interfaces, 2020, 12(39): 43901
https://doi.org/10.1021/acsami.0c10236
|
42 |
D. Zhao L. , H. Lo S. , Zhang Y. , Sun H. , Tan G. , Uher C. , Wolverton C. , P. Dravid V. , G. Kanatzidis M. . Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508(7496): 373
https://doi.org/10.1038/nature13184
|
43 |
Shu Z. , Wang B. , Cui X. , Yan X. , Yan H. , Jia H. , Cai Y. . High-performance thermoelectric monolayer γ-GeSe and its group-IV monochalcogenide isostructural family. Chem. Eng. J., 2023, 454: 140242
https://doi.org/10.1016/j.cej.2022.140242
|
44 |
Y. Lv H. , J. Lu W. , F. Shao D. , P. Sun Y. . Enhanced thermoelectric performance of phosphorene by strain-induced band convergence. Phys. Rev. B, 2014, 90(8): 085433
https://doi.org/10.1103/PhysRevB.90.085433
|
45 |
Y. Lee W. , S. Kang M. , W. Park N. , S. Kim G. , D. Nguyen A. , W. Choi J. , G. Yoon Y. , S. Kim Y. , W. Jang H. , Saitoh E. , K. Lee S. . Layer dependence of out-of-plane electrical conductivity and Seebeck coefficient in continuous mono-to multilayer MoS2 films. J. Mater. Chem. A, 2021, 9(47): 26896
https://doi.org/10.1039/D1TA07854B
|
46 |
Bardeen J. , Shockley W. . Deformation potentials and mobilities in non-polar crystals. Phys. Rev., 1950, 80(1): 72
https://doi.org/10.1103/PhysRev.80.72
|
47 |
Wang B. , Yan X. , Cui X. , Cai Y. . First-principles study of the phonon lifetime and low lattice thermal conductivity of monolayer γ-GeSe: A comparative study. ACS Appl. Nano Mater., 2022, 5(10): 15441
https://doi.org/10.1021/acsanm.2c03476
|
48 |
Wang N. , Li M. , Xiao H. , Zu X. , Qiao L. . Layered LaCuOSe: A promising anisotropic thermoelectric material. Phys. Rev. Appl., 2020, 13(2): 024038
https://doi.org/10.1103/PhysRevApplied.13.024038
|
49 |
Zhang G. , W. Zhang Y. . Thermoelectric properties of two-dimensional transition metal dichalcogenides. J. Mater. Chem. C, 2017, 5(31): 7684
https://doi.org/10.1039/C7TC01088E
|
50 |
Qin G. , Qin Z. , Z. Fang W. , C. Zhang L. , Y. Yue S. , B. Yan Q. , Hu M. , Su G. . Diverse anisotropy of phonon transport in two-dimensional group IV–VI compounds: A comparative study. Nanoscale, 2016, 8(21): 11306
https://doi.org/10.1039/C6NR01349J
|
51 |
Tong Z. , Dumitrică T. , Frauenheim T. . Ultralow thermal conductivity in two-dimensional MoO3. Nano Lett., 2021, 21(10): 4351
https://doi.org/10.1021/acs.nanolett.1c00935
|
52 |
V. Thanh V. , V. Truong D. , T. Hung N. . Janus γ-GeSSe monolayer as a high-performance material for photocatalysis and thermoelectricity. ACS Appl. Energy Mater., 2023, 6(2): 910
https://doi.org/10.1021/acsaem.2c03316
|
53 |
Y. Lv H. , J. Lu W. , F. Shao D. , Y. Lu H. , P. Sun Y. . Strain-induced enhancement in the thermoelectric performance of a ZrS2 monolayer. J. Mater. Chem. C, 2016, 4(20): 4538
https://doi.org/10.1039/C6TC01135G
|
54 |
Cui X. , Yan X. , Wang B. , Cai Y. . Phononic transport in 1T′-MoTe2: Anisotropic structure with an isotropic lattice thermal conductivity. Appl. Surf. Sci., 2023, 608: 155238
https://doi.org/10.1016/j.apsusc.2022.155238
|
55 |
Su Y. , Deng C. , Liu J. , Zheng X. , Wei Y. , Chen Y. , Yu W. , Guo X. , Cai W. , Peng G. , Huang H. , Zhang X. . Highly in-plane anisotropy of thermal transport in suspended ternary chalcogenide Ta2NiS5. Nano Res., 2022, 15(7): 6601
https://doi.org/10.1007/s12274-022-4317-3
|
56 |
Yan X. , Wang B. , Hai Y. , R. Kripalani D. , Ke Q. , Cai Y. . Phonon anharmonicity and thermal conductivity of two-dimensional van der Waals materials: A review. Sci. China Phys. Mech. Astron., 2022, 65(11): 117004
https://doi.org/10.1007/s11433-022-1949-9
|
[1] |
fop-21354-OF-caiyongqing_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|