Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (3) : 33202    https://doi.org/10.1007/s11467-023-1354-7
RESEARCH ARTICLE
Strong anisotropy of thermal transport in the monolayer of a new puckered phase of PdSe
Zheng Shu, Huifang Xu, Hejin Yan, Yongqing Cai()
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
 Download: PDF(5757 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We examine the electronic and transport properties of a new phase PdSe monolayer with a puckered structure calculated by first-principles and Boltzmann transport equation. The spin−orbit coupling is found to play a negligible effect on the electronic properties of PdSe monolayer. The lattice thermal conductivity of PdSe monolayer exhibits remarkable anisotropic characteristic due to anisotropic phonon group velocity along different directions and its intrinsic structure anisotropy. The compromised electronic mobility despite a relatively low thermal conduction results in a moderate ZT value but significantly anisotropic thermoelectric performance in single-layer PdSe. The present work suggests that the remarkable thermal transport anisotropy of PdSe monolayer can be used for thermal management, and enhance the scope of possibilities for heat flow manipulation in PdSe based devices. The sizeable puckered cages and wiggling lattice implies it an ideal platform for ionic and molecular engineering for thermoelectronic applications.

Keywords 2D materials      first-principles calculations      phonon     
Corresponding Author(s): Yongqing Cai   
About author:

Peng Lei and Charity Ngina Mwangi contributed equally to this work.

Issue Date: 17 November 2023
 Cite this article:   
Zheng Shu,Huifang Xu,Hejin Yan, et al. Strong anisotropy of thermal transport in the monolayer of a new puckered phase of PdSe[J]. Front. Phys. , 2024, 19(3): 33202.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1354-7
https://academic.hep.com.cn/fop/EN/Y2024/V19/I3/33202
Fig.1  (a) Top and (b) side views of the relaxed atomic structure of puckered PdSe monolayer. The unit cell is indicated by the black solid lines. (c) The electron localization function (ELF) of PdSe monolayer viewed along (010) direction. The blue and orange balls represent Pd and Se atoms, respectively.
Fig.2  Fluctuations of total energy during ab initio MD simulations for PdSe monolayer at T = 300, 500, 700 and 900 K with the annealing time of 10 ps.
Fig.3  (a) K-point path in the first Brillouin zone of PdSe. Band structures of PdSe monolayer calculated by (b) PBE, (c) HSE06 and (d) HSE06+SOC.
Fig.4  Electronic transport properties of p-type PdSe monolayer. (a) Seebeck coefficient S, (b) electrical conductivity σ, (c) power factor σS2 and (d) electronic thermal conductivity κe as a function of carrier concentration at temperature of 300, 500, 700 and 900 K.
Fig.5  Electronic transport properties of n-type PdSe monolayer. (a) Seebeck coefficient S, (b) electrical conductivity σ, (c) power factor σS2 and (d) electronic thermal conductivity κe as a function of carrier concentration at temperature of 300, 500, 700 and 900 K.
DirectionCarrier typeE1 (eV)C2D (J/m2)m* (me)μ (cm2·V?1·s?1)τ (× 10?15 s)
xx (a axis)Electron2.3613.572.973.916.61
Hole1.7213.5729.190.081.27
yy (b axis)Electron7.4098.559.140.311.59
Hole9.7098.551.824.484.64
Tab.1  Results of the calculated deformation potential constants E1, 2D elastic modulus C2D, effective mass m?, carrier mobility μ and relaxation time along the xx (a axis) and yy (b axis) directions of PdSe monolayer at 300 K.
Fig.6  (a) The temperature dependent lattice thermal conductivity κl. (b) The cumulative thermal conductivity of PdSe. The phonon group velocity along the (c) x-axis and (d) y-axis.
Fig.7  The ZT values for (a) p- and (b) n-type PdSe monolayer as a function of carrier concentration at temperature of 300, 500, 700 and 900 K.
1 S. Novoselov K.I. Fal′ko V.Colombo L.R. Gellert P.G. Schwab M.Kim K., A roadmap for graphene, Nature 490(7419), 192 (2012)
2 Shan G. , Ding Z. , Gogotsi Y. . Two-dimensional MXenes and their applications. Front. Phys., 2023, 18(1): 13604
https://doi.org/10.1007/s11467-022-1254-2
3 S. Novoselov K. , V. Andreeva D. , C. Ren W. , C. Shan G. . Graphene and other two-dimensional materials. Front. Phys., 2019, 14(1): 13301
https://doi.org/10.1007/s11467-018-0835-6
4 S. Novoselov K. , K. Geim A. , V. Morozov S. , Jiang D. , Zhang Y. , V. Dubonos S. , V. Grigorieva I. , A. Firsov A. . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
https://doi.org/10.1126/science.1102896
5 Cai W. , L. Moore A. , Zhu Y. , Li X. , Chen S. , Shi L. , S. Ruoff R. . Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett., 2010, 10(5): 1645
https://doi.org/10.1021/nl9041966
6 K. Ellis J. , J. Lucero M. , E. Scuseria G. . The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl. Phys. Lett., 2011, 99(26): 261908
https://doi.org/10.1063/1.3672219
7 Li H. , Zhang Q. , C. R. Yap C. , K. Tay B. , H. T. Edwin T. , Olivier A. , Baillargeat D. . From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater., 2012, 22(7): 1385
https://doi.org/10.1002/adfm.201102111
8 Shu Z. , Cui X. , Wang B. , Yan H. , Cai Y. . Fast intercalation of lithium in semi‐metallic γ‐GeSe nanosheet: A new group‐IV monochalcogenide for lithium‐ion battery application. ChemSusChem, 2022, 15(15): e202200564
https://doi.org/10.1002/cssc.202200564
9 Feng Y. , Zhou W. , Wang Y. , Zhou J. , Liu E. , Fu Y. , Ni Z. , Wu X. , Yuan H. , Miao F. , Wang B. , Wan X. , Xing D. . Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry. Phys. Rev. B, 2015, 92(5): 054110
https://doi.org/10.1103/PhysRevB.92.054110
10 Laturia A. , L. Van de Put M. , G. Vandenberghe W. . Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: From monolayer to bulk. npj 2D Mater. Appl., 2018, 2(1): 6
https://doi.org/10.1038/s41699-018-0050-x
11 Yang T. , T. Song T. , Zhou J. , Wang S. , Chi D. , Shen L. , Yang M. , P. Feng Y. . High-throughput screening of transition metal single atom catalysts anchored on molybdenum disulfide for nitrogen fixation. Nano Energy, 2020, 68: 104304
https://doi.org/10.1016/j.nanoen.2019.104304
12 Shu Z. , Yan H. , Chen H. , Cai Y. . Mutual modulation via charge transfer and unpaired electrons of catalytic sites for the superior intrinsic activity of N2 reduction: From high-throughput computation assisted with a machine learning perspective. J. Mater. Chem. A, 2022, 10(10): 5470
https://doi.org/10.1039/D1TA10688K
13 Pan L. , Wang Z. , Carrete J. , K. H. Madsen G. . Thermoelectric properties of the Janus PtSTe monolayer compared with its parent structures. Phys. Rev. Mater., 2022, 6(8): 084005
https://doi.org/10.1103/PhysRevMaterials.6.084005
14 Tan C. , Yu P. , Hu Y. , Chen J. , Huang Y. , Cai Y. , Luo Z. , Li B. , Lu Q. , Wang L. , Liu Z. , Zhang H. . High-yield exfoliation of ultrathin two-dimensional ternary chalcogenide nanosheets for highly sensitive and selective fluorescence DNA sensors. J. Am. Chem. Soc., 2015, 137(32): 10430
https://doi.org/10.1021/jacs.5b06982
15 Liu E. , Fu Y. , Wang Y. , Feng Y. , Liu H. , Wan X. , Zhou W. , Wang B. , Shao L. , H. Ho C. , S. Huang Y. , Cao Z. , Wang L. , Li A. , Zeng J. , Song F. , Wang X. , Shi Y. , Yuan H. , Y. Hwang H. , Cui Y. , Miao F. , Xing D. . Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun., 2015, 6(1): 6991
https://doi.org/10.1038/ncomms7991
16 Yuan J. , Chen Y. , Xie Y. , Zhang X. , Rao D. , Guo Y. , Yan X. , P. Feng Y. , Cai Y. . Squeezed metallic droplet with tunable Kubo gap and charge injection in transition metal dichalcogenides. Proc. Natl. Acad. Sci. USA, 2020, 117(12): 6362
https://doi.org/10.1073/pnas.1920036117
17 D. Oyedele A. , Yang S. , Liang L. , A. Puretzky A. , Wang K. , Zhang J. , Yu P. , R. Pudasaini P. , W. Ghosh A. , Liu Z. , M. Rouleau C. , G. Sumpter B. , F. Chisholm M. , Zhou W. , D. Rack P. , B. Geohegan D. , Xiao K. . PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc., 2017, 139(40): 14090
https://doi.org/10.1021/jacs.7b04865
18 N. Hoffman A. , Gu Y. , Liang L. , D. Fowlkes J. , Xiao K. , D. Rack P. . Exploring the air stability of PdSe2 via electrical transport measurements and defect calculations. npj 2D Mater. Appl., 2019, 3(1): 50
https://doi.org/10.1038/s41699-019-0132-4
19 Liu G. , Zeng Q. , Zhu P. , Quhe R. , Lu P. . Negative Poisson’s ratio in monolayer PdSe2. Comput. Mater. Sci., 2019, 160: 309
https://doi.org/10.1016/j.commatsci.2019.01.024
20 V. Kuklin A. , Ågren H. . Quasiparticle electronic structure and optical spectra of single-layer and bilayer PdSe2: Proximity and defect-induced band gap renormalization. Phys. Rev. B, 2019, 99(24): 245114
https://doi.org/10.1103/PhysRevB.99.245114
21 Tangpakonsab P. , Moontragoon P. , Hussain T. , Kaewmaraya T. . Thermoelectric efficiency of two-dimensional pentagonal-PdSe2 at high temperatures and the role of strain. ACS Appl. Energy Mater., 2022, 5(11): 14522
https://doi.org/10.1021/acsaem.2c03141
22 Lin J. , Zuluaga S. , Yu P. , Liu Z. , T. Pantelides S. , Suenaga K. . Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2. Phys. Rev. Lett., 2017, 119(1): 016101
https://doi.org/10.1103/PhysRevLett.119.016101
23 Xu X. , Robertson J. , Li H. . Semiconducting few-layer PdSe2 and Pd2Se3: Native point defects and contacts with native metallic Pd17Se15. Phys. Chem. Chem. Phys., 2020, 22(14): 7365
https://doi.org/10.1039/C9CP06654C
24 S. Naghavi S. , He J. , Xia Y. , Wolverton C. . Pd2Se3 monolayer: A promising two-dimensional thermoelectric material with ultralow lattice thermal conductivity and high power factor. Chem. Mater., 2018, 30(16): 5639
https://doi.org/10.1021/acs.chemmater.8b01914
25 Huang M. , Jiang X. , Zheng Y. , Xu Z. , X. Xue X. , Chen K. , Feng Y. . Novel two-dimensional PdSe phase: A puckered material with excellent electronic and optical properties. Front. Phys., 2022, 17(5): 53504
https://doi.org/10.1007/s11467-022-1154-5
26 T. Call S. , Y. Zubarev D. , I. Boldyrev A. . Global minimum structure searches via particle swarm optimization. J. Comput. Chem., 2007, 28(7): 1177
https://doi.org/10.1002/jcc.20621
27 Wang Y.Lv J.Zhu L.Ma Y., CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183(10), 2063 (2012)
28 Chen L. , Li K. , Peng X. , Lian H. , Lin X. , Fu Z. . Isogeometric boundary element analysis for 2D transient heat conduction problem with radial integration method. Comput. Model. Eng. Sci., 2021, 126(1): 125
https://doi.org/10.32604/cmes.2021.012821
29 Cheng H. , Xing Z. , Peng M. . The improved element-free Galerkin method for anisotropic steady-state heat conduction problems. Comput. Model. Eng. Sci., 2022, 132(3): 945
https://doi.org/10.32604/cmes.2022.020755
30 Kresse G. , Furthmüller J. . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
https://doi.org/10.1016/0927-0256(96)00008-0
31 Kresse G. , Furthmüller J. . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
32 E. Blöchl P. . Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
https://doi.org/10.1103/PhysRevB.50.17953
33 P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
34 J. Martyna G. , L. Klein M. , Tuckerman M. . Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys., 1992, 97(4): 2635
https://doi.org/10.1063/1.463940
35 Heyd J. , E. Scuseria G. , Ernzerhof M. . Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 2003, 118(18): 8207
https://doi.org/10.1063/1.1564060
36 Togo A. , Oba F. , Tanaka I. . First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B, 2008, 78(13): 134106
https://doi.org/10.1103/PhysRevB.78.134106
37 Eriksson F. , Fransson E. , Erhart P. . The Hiphive Package for the extraction of high-order force constants by machine learning. Adv. Theory Simul., 2019, 2(5): 1800184
https://doi.org/10.1002/adts.201800184
38 K. H. Madsen G. , Carrete J. , J. Verstraete M. . BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun., 2018, 231: 140
https://doi.org/10.1016/j.cpc.2018.05.010
39 Li W. , Carrete J. , A. Katcho N. , Mingo N. . ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun., 2014, 185(6): 1747
https://doi.org/10.1016/j.cpc.2014.02.015
40 D. Becke A.E. Edgecombe K., A simple measure of electron localization in atomic and molecular systems, J. Chem. Phys. 92(9), 5397 (1990)
41 Ma J. , Meng F. , He J. , Jia Y. , Li W. . Strain-induced ultrahigh electron mobility and thermoelectric figure of merit in monolayer α-Te. ACS Appl. Mater. Interfaces, 2020, 12(39): 43901
https://doi.org/10.1021/acsami.0c10236
42 D. Zhao L. , H. Lo S. , Zhang Y. , Sun H. , Tan G. , Uher C. , Wolverton C. , P. Dravid V. , G. Kanatzidis M. . Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508(7496): 373
https://doi.org/10.1038/nature13184
43 Shu Z. , Wang B. , Cui X. , Yan X. , Yan H. , Jia H. , Cai Y. . High-performance thermoelectric monolayer γ-GeSe and its group-IV monochalcogenide isostructural family. Chem. Eng. J., 2023, 454: 140242
https://doi.org/10.1016/j.cej.2022.140242
44 Y. Lv H. , J. Lu W. , F. Shao D. , P. Sun Y. . Enhanced thermoelectric performance of phosphorene by strain-induced band convergence. Phys. Rev. B, 2014, 90(8): 085433
https://doi.org/10.1103/PhysRevB.90.085433
45 Y. Lee W. , S. Kang M. , W. Park N. , S. Kim G. , D. Nguyen A. , W. Choi J. , G. Yoon Y. , S. Kim Y. , W. Jang H. , Saitoh E. , K. Lee S. . Layer dependence of out-of-plane electrical conductivity and Seebeck coefficient in continuous mono-to multilayer MoS2 films. J. Mater. Chem. A, 2021, 9(47): 26896
https://doi.org/10.1039/D1TA07854B
46 Bardeen J. , Shockley W. . Deformation potentials and mobilities in non-polar crystals. Phys. Rev., 1950, 80(1): 72
https://doi.org/10.1103/PhysRev.80.72
47 Wang B. , Yan X. , Cui X. , Cai Y. . First-principles study of the phonon lifetime and low lattice thermal conductivity of monolayer γ-GeSe: A comparative study. ACS Appl. Nano Mater., 2022, 5(10): 15441
https://doi.org/10.1021/acsanm.2c03476
48 Wang N. , Li M. , Xiao H. , Zu X. , Qiao L. . Layered LaCuOSe: A promising anisotropic thermoelectric material. Phys. Rev. Appl., 2020, 13(2): 024038
https://doi.org/10.1103/PhysRevApplied.13.024038
49 Zhang G. , W. Zhang Y. . Thermoelectric properties of two-dimensional transition metal dichalcogenides. J. Mater. Chem. C, 2017, 5(31): 7684
https://doi.org/10.1039/C7TC01088E
50 Qin G. , Qin Z. , Z. Fang W. , C. Zhang L. , Y. Yue S. , B. Yan Q. , Hu M. , Su G. . Diverse anisotropy of phonon transport in two-dimensional group IV–VI compounds: A comparative study. Nanoscale, 2016, 8(21): 11306
https://doi.org/10.1039/C6NR01349J
51 Tong Z. , Dumitrică T. , Frauenheim T. . Ultralow thermal conductivity in two-dimensional MoO3. Nano Lett., 2021, 21(10): 4351
https://doi.org/10.1021/acs.nanolett.1c00935
52 V. Thanh V. , V. Truong D. , T. Hung N. . Janus γ-GeSSe monolayer as a high-performance material for photocatalysis and thermoelectricity. ACS Appl. Energy Mater., 2023, 6(2): 910
https://doi.org/10.1021/acsaem.2c03316
53 Y. Lv H. , J. Lu W. , F. Shao D. , Y. Lu H. , P. Sun Y. . Strain-induced enhancement in the thermoelectric performance of a ZrS2 monolayer. J. Mater. Chem. C, 2016, 4(20): 4538
https://doi.org/10.1039/C6TC01135G
54 Cui X. , Yan X. , Wang B. , Cai Y. . Phononic transport in 1T′-MoTe2: Anisotropic structure with an isotropic lattice thermal conductivity. Appl. Surf. Sci., 2023, 608: 155238
https://doi.org/10.1016/j.apsusc.2022.155238
55 Su Y. , Deng C. , Liu J. , Zheng X. , Wei Y. , Chen Y. , Yu W. , Guo X. , Cai W. , Peng G. , Huang H. , Zhang X. . Highly in-plane anisotropy of thermal transport in suspended ternary chalcogenide Ta2NiS5. Nano Res., 2022, 15(7): 6601
https://doi.org/10.1007/s12274-022-4317-3
56 Yan X. , Wang B. , Hai Y. , R. Kripalani D. , Ke Q. , Cai Y. . Phonon anharmonicity and thermal conductivity of two-dimensional van der Waals materials: A review. Sci. China Phys. Mech. Astron., 2022, 65(11): 117004
https://doi.org/10.1007/s11433-022-1949-9
[1] fop-21354-OF-caiyongqing_suppl_1 Download
[1] Ran Ma, Qiuhong Tan, Peizhi Yang, Yingkai Liu, Qianjin Wang. High performance photodetector based on few-layer MoTe2/CdS0.42Se0.58 flake heterojunction[J]. Front. Phys. , 2024, 19(4): 43204-.
[2] Bocheng Lei, Aolin Li, Wenzhe Zhou, Yunpeng Wang, Wei Xiong, Yu Chen, Fangping Ouyang. Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2[J]. Front. Phys. , 2024, 19(4): 43200-.
[3] Meilin Li, Huanhuan Sun, Jun Zhou, Yunshan Zhao. Engineering phonon thermal transport in few-layer PdSe2[J]. Front. Phys. , 2024, 19(3): 33203-.
[4] Yun-Qin Li, Qi-Wen He, Dai-Song Tang, Xiao Shang, Xiao-Chun Wang. Intrinsically asymmetric atomic character regulates piezoelectricity in two-dimensional materials[J]. Front. Phys. , 2024, 19(3): 33201-.
[5] Ye-Jun Xu, Hong Xie. Phonon-blockade-based multiple-photon bundle emission in a quadratically coupled optomechanical system[J]. Front. Phys. , 2024, 19(3): 32202-.
[6] Jian Zhang, Haochun Zhang, Gang Zhang. Nanophononic metamaterials induced proximity effect in heat flux regulation[J]. Front. Phys. , 2024, 19(2): 23204-.
[7] Zihan Wang, Yan Yang, Bin Hua, Qingqing Ji. Synthetic two-dimensional electronics for transistor scaling[J]. Front. Phys. , 2023, 18(6): 63601-.
[8] Mengting Song, Nan An, Yuke Zou, Yue Zhang, Wenjuan Huang, Huayi Hou, Xiangbai Chen. Epitaxial growth of 2D gallium selenide flakes for strong nonlinear optical response and visible-light photodetection[J]. Front. Phys. , 2023, 18(5): 52302-.
[9] Guibo Zheng, Shuixian Qu, Wenzhe Zhou, Fangping Ouyang. Janus monolayer TaNF: A new ferrovalley material with large valley splitting and tunable magnetic properties[J]. Front. Phys. , 2023, 18(5): 53302-.
[10] Shengshi Li, Weixiao Ji, Jianping Zhang, Yaping Wang, Changwen Zhang, Shishen Yan. Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator[J]. Front. Phys. , 2023, 18(4): 43301-.
[11] Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials[J]. Front. Phys. , 2023, 18(2): 23302-.
[12] Huili Zhu, Zifan Hong, Changjie Zhou, Qihui Wu, Tongchang Zheng, Lan Yang, Shuqiong Lan, Weifeng Yang. Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions[J]. Front. Phys. , 2023, 18(1): 13301-.
[13] Jia-En Yang, Hang Xie. Energy-resolved spin filtering effect and thermoelectric effect in topological-insulator junctions with anisotropic chiral edge states[J]. Front. Phys. , 2022, 17(6): 63504-.
[14] Cuiqian Yu, Yulou Ouyang, Jie Chen. Enhancing thermal transport in multilayer structures: A molecular dynamics study on Lennard−Jones solids[J]. Front. Phys. , 2022, 17(5): 53507-.
[15] Changjie Zhou, Huili Zhu, Weifeng Yang, Qiubao Lin, Tongchang Zheng, Lan Yang, Shuqiong Lan. Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations[J]. Front. Phys. , 2022, 17(5): 53500-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed