Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (4) : 43204    https://doi.org/10.1007/s11467-023-1374-3
High performance photodetector based on few-layer MoTe2/CdS0.42Se0.58 flake heterojunction
Ran Ma1, Qiuhong Tan1,2,3(), Peizhi Yang3, Yingkai Liu1,2,3, Qianjin Wang1,2,3()
1. College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China
2. Yunnan Provincial Key Laboratory for Photoelectric Information Technology, Yunnan Normal University, Kunming 650500, China
3. Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China
 Download: PDF(5969 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two-dimensional (2D) transition metal dichalcogenides have been extensively studied due to their fascinating physical properties for constructing high-performance photodetectors. However, their relatively low responsivities, current on/off ratios and response speeds have hindered their widespread application. Herein, we fabricated a high-performance photodetector based on few-layer MoTe2 and CdS0.42Se0.58 flake heterojunctions. The photodetector exhibited a high responsivity of 7221 A/W, a large current on/off ratio of 1.73×104, a fast response speed of 90/120 μs, external quantum efficiency (EQE) reaching up to 1.52×106 % and detectivity (D*) reaching up to 1.67×1015 Jones. The excellent performance of the heterojunction photodetector was analyzed by a photocurrent mapping test and first-principle calculations. Notably, the visible light imaging function was successfully attained on the MoTe2/CdS0.42Se0.58 photodetectors, indicating that the device had practical imaging application prospects. Our findings provide a reference for the design of ultrahigh-performance MoTe2-based photodetectors.

Keywords photodetector      MoTe2      heterojunction      visible light imaging      first-principles calculations     
Corresponding Author(s): Qiuhong Tan,Qianjin Wang   
Issue Date: 24 January 2024
 Cite this article:   
Ran Ma,Qiuhong Tan,Peizhi Yang, et al. High performance photodetector based on few-layer MoTe2/CdS0.42Se0.58 flake heterojunction[J]. Front. Phys. , 2024, 19(4): 43204.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1374-3
https://academic.hep.com.cn/fop/EN/Y2024/V19/I4/43204
Fig.1  (a) XRD pattern, (b) PL, (c) EDS and (d) elemental mapping of CdS0.42Se0.58 flake. (e) Raman spectroscopy and (f) EDS of few-layer MoTe2 flake.
Fig.2  HRTEM images of (a) MoTe2 and (b) CdS0.42Se0.58. Insets are the corresponding FFT patterns. (c) AFM profile along the red line in the inset. The inset is the 2D AFM of the isolated MoTe2 region in the heterojunction device. (d) 3D AFM topographies of isolated MoTe2 and CdS0.42Se0.58 regions in the heterojunction device.
Fig.3  (a) IV curves of the single few-layer MoTe2 flake, single CdS0.42Se0.58 flake and MoTe2/CdS0.42Se0.58 flake heterojunction devices under white light of 1.5 mW/cm2. The inset is an optical image of the device, in which the black arrows point to the selected test electrodes. (b) Responsivity as a function of the illumination wavelength. (c) IV curves of the device with different light power densities. (d) Photocurrent as a function of light intensity. (e) Dependence of R, EQE and (f) D* with respect to power density under 560 nm light irradiation at a 5 V bias.
Fig.4  (a) Long-cycle stability measurement of the few-layer MoTe2/CdS0.42Se0.58 heterojunction photodetector. (b) Response speeds under a switching frequency of 1 kHz.
Device structure Bias voltage (V) R (A/W) EQE (%) D* (Jones) Ilight/Idark Rise/Decay time (ms) Ref.
MoTe2 nanosheet 0 4 × 10−4 1.07 × 108 0.043/0.043 [46]
MoTe2/GeSe sheet −5 28.4 73.5 6.0 × 109 0.003/0.012 [47]
MoTe2/Graphene −1 853 1.4 × 104 1.59 × 1010 0.012/0.005 [48]
CdS0.49Se0.51/CdS NW 1 118 3.1 × 104 105 0.068/0.137 [49]
MoTe2/Ge flake −2 12460 3.3 × 1012 5/5 [50]
CdS0.14Se0.86 flakes 5 703 1.94 × 105 3.41 × 1010 39/39 [51]
MoTe2/CdS0.42Se0.58 flake 5 7221 1.52 × 106 1.67 × 1015 1.73 × 104 0.09/0.12 This work
Tab.1  Comparison of the key parameters of the CdSxSe1−x and MoTe2-based photodetectors.
Fig.5  (a) Optical microscope image and (b) photocurrent mapping image of MoTe2/CdS0.42Se0.58 heterojunction device. (c) Calculated energy band diagram of the MoTe2/CdS0.42Se0.58 heterojunction.
Fig.6  (a) Schematic diagram of the imaging measurement system. (b) Imaging results of the “U” letter under visible light.
1 S. Novoselov K., K. Geim A., V. Morozov S., Jiang D., Zhang Y., V. Dubonos S., V. Grigorieva I., A. Firsov A.. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
https://doi.org/10.1126/science.1102896
2 Yao J., Zheng Z., Yang G.. All-layered 2D optoelectronics: A high-performance UV-Vis-NIR broadband SnSe photodetector with Bi2Te3 topological insulator electrodes. Adv. Funct. Mater., 2017, 27(33): 1701823
https://doi.org/10.1002/adfm.201701823
3 Castellanos-Gomez A., Poot M., A. Steele G., S. J. van der Zant H., Agraït N., Rubio-Bollinger G.. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater., 2012, 24(6): 772
https://doi.org/10.1002/adma.201103965
4 Yao J., Yang G.. Flexible and high-performance all-2D photodetector for wearable devices. Small, 2018, 14(21): 1704524
https://doi.org/10.1002/smll.201704524
5 Wu W., Wang L., Li Y., Zhang F., Lin L., Niu S., Chenet D., Zhang X., Hao Y., F. Heinz T., Hone J., L. Wang Z.. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature, 2014, 514(7523): 470
https://doi.org/10.1038/nature13792
6 Mouri S., Miyauchi Y., Matsuda K.. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett., 2013, 13(12): 5944
https://doi.org/10.1021/nl403036h
7 J. Čejka, M. Opanasenko, P. Nachtigall, G. Centi , S. Perathoner. C. J. Heard, 2D oxide nanomaterials to address the energy transition and catalysis, Adv. Mater. 31(3), 1801712 (2019)
8 Tang L., Meng X., Deng D., Bao X.. Confinement catalysis with 2D materials for energy conversion. Adv. Mater., 2019, 31(50): 1901996
https://doi.org/10.1002/adma.201901996
9 R. Fan F., Wang R., Zhang H., Wu W.. Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chem. Soc. Rev., 2021, 50(19): 10983
https://doi.org/10.1039/C9CS00821G
10 X. Chen L., W. Chen Z., Jiang M., Lu Z., Gao C., Cai G., V. Singh C.. Insights on the dual role of two-dimensional materials as catalysts and supports for energy and environmental catalysis. J. Mater. Chem. A, 2021, 9(4): 2018
https://doi.org/10.1039/D0TA08649E
11 Tao P., Yao S., Liu F., Wang B., Huang F., Wang M.. Recent advances in exfoliation techniques of layered and non-layered materials for energy conversion and storage. J. Mater. Chem. A, 2019, 7(41): 23512
https://doi.org/10.1039/C9TA06461C
12 Tian Y., Chen Y., Liu Y., Li H., Dai Z.. Elemental two‐dimensional materials for Li/Na‐ion battery anode applications. Chem. Rec., 2022, 22(10): e202200123
https://doi.org/10.1002/tcr.202200123
13 Li B., Xu H., Ma Y., Yang S.. Harnessing the unique properties of 2D materials for advanced lithium–sulfur batteries. Nanoscale Horiz., 2019, 4(1): 77
https://doi.org/10.1039/C8NH00170G
14 Deng N., Feng Y., Wang G., Wang X., Wang L., Li Q., Zhang L., Kang W., Cheng B., Liu Y.. Rational structure designs of 2D materials and their applications toward advanced lithium−sulfur battery and lithium−selenium battery. Chem. Eng. J., 2020, 401(20): 125976
https://doi.org/10.1016/j.cej.2020.125976
15 Gao G., Zheng F., Pan F., W. Wang L.. Theoretical investigation of 2D conductive microporous coordination polymers as Li–S battery cathode with ultrahigh energy density. Adv. Energy Mater., 2018, 8(25): 1801823
https://doi.org/10.1002/aenm.201801823
16 Rojaee R., Shahbazian-Yassar R.. Two-dimensional materials to address the lithium battery challenges. ACS Nano, 2020, 14(3): 2628
https://doi.org/10.1021/acsnano.9b08396
17 Dodda A., Jayachandran D., Pannone A., Trainor N., P. Stepanoff S., A. Steves M., S. Radhakrishnan S., Bachu S., W. Ordonez C., R. Shallenberger J., M. Redwing J., L. Knappenberger K., E. Wolfe D., Das S.. Active pixel sensor matrix based on monolayer MoS2 phototransistor array. Nat. Mater., 2022, 21(12): 1379
https://doi.org/10.1038/s41563-022-01398-9
18 Khan U., Luo Y., Tang L., Teng C., Liu J., Liu B., M. Cheng H.. Controlled vapor–solid deposition of millimeter-size single crystal 2D Bi2O2Se for high‐performance phototransistors. Adv. Funct. Mater., 2019, 29(14): 1807979
https://doi.org/10.1002/adfm.201807979
19 G. Kim S., H. Kim S., Park J., S. Kim G., H. Park J., C. Saraswat K., Kim J., Y. Yu H.. Infrared detectable MoS2 phototransistor and its application to artificial multilevel optic-neural synapse. ACS Nano, 2019, 13(9): 10294
https://doi.org/10.1021/acsnano.9b03683
20 Namgung S., Shaver J., H. Oh S., J. Koester S.. Multimodal photodiode and phototransistor device based on two-dimensional materials. ACS Nano, 2016, 10(11): 10500
https://doi.org/10.1021/acsnano.6b06468
21 Cai Y., Yang J., Wang F., Li S., Wang Y., Zhan X., Wang F., Cheng R., Wang Z., He J.. Ultrasensitive solar-blind ultraviolet detection and optoelectronic neuromorphic computing using α-In2Se3 phototransistors. Front. Phys., 2023, 18(3): 33308
https://doi.org/10.1007/s11467-022-1241-7
22 Q. Li Z., T. Yan T., S. Fang X.. Low-dimensional wide-bandgap semiconductors for UV photodetectors. Nat. Rev. Mater., 2023, 8(9): 587
https://doi.org/10.1038/s41578-023-00583-9
23 Zeng H., Wen Y., Yin L., Cheng R., Wang H., Liu C., He J.. Recent developments in CVD growth and applications of 2D transition metal dichalcogenides. Front. Phys., 2023, 18(5): 53603
https://doi.org/10.1007/s11467-023-1286-2
24 Zhang G., Shu Y., Yao J., Shu Q., Deng H., Jia G., Wang Z.. Characteristics and developments of quantum-dot infrared photodetectors. Front. Phys. China, 2006, 1(3): 334
https://doi.org/10.1007/s11467-006-0030-z
25 He K., Zhu J., Li Z., Chen Z., Zhang H., Liu C., Zhang X., Wang S., Zhao P., Zhou Y., Zhang S., Yin Y., Zheng X., Huang W., Wang L.. High-sensitive two-dimensional PbI2 photodetector with ultrashort channel. Front. Phys., 2023, 18(6): 63305
https://doi.org/10.1007/s11467-023-1323-1
26 H. An C., Nie F., Zhang R., Ma X., Wu D., Sun Y., Hu X., Sun D., Pan L., Liu J.. Two‐dimensional material‐enhanced flexible and self‐healable photodetector for large‐area photodetection. Adv. Funct. Mater., 2021, 31(22): 2100136
https://doi.org/10.1002/adfm.202100136
27 Maiti R., Patil C., A. S. R. Saadi M., Xie T., G. Azadani J., Uluutku B., Amin R., F. Briggs A., Miscuglio M., Van Thourhout D., D. Solares S., Low T., Agarwal R., R. Bank S., J. Sorger V.. Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits. Nat. Photonics, 2020, 14(9): 578
https://doi.org/10.1038/s41566-020-0647-4
28 Octon T., Nagareddy V., Russo S., F. Craciun M., D. Wright C.. Fast high-responsivity few-layer MoTe2 photodetectors. Adv. Opt. Mater., 2016, 4(11): 1750
https://doi.org/10.1002/adom.201600290
29 Yin L., Zhan X., Xu K., Wang F., Wang Z., Huang Y., Wang Q., Jiang C., He J.. Ultrahigh sensitive MoTe2 phototransistors driven by carrier tunneling. Appl. Phys. Lett., 2016, 108(4): 043503
https://doi.org/10.1063/1.4941001
30 Huang H., Wang J., Hu W., Liao L., Wang P., Wang X., Gong F., Chen Y., Wu G., Luo W., Shen H., Lin T., Sun J., Meng X., Chen X., Chu J.. Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology, 2016, 27(44): 445201
https://doi.org/10.1088/0957-4484/27/44/445201
31 Chen Y., Wang X., Wu G., Wang Z., Fang H., Lin T., Sun S., Shen H., Hu W., Wang J., Sun J., Meng X., Chu J.. High‐performance photovoltaic detector based on MoTe2/MoS2 van der Waals heterostructure. Small, 2018, 14(9): 1703293
https://doi.org/10.1002/smll.201703293
32 Y. Lu M., T. Chang Y., J. Chen H.. Efficient self-driven photodetectors featuring a mixed-dimensional van der Waals heterojunction formed from a CdS nanowire and a MoTe2 flake. Small, 2018, 14(40): 1802302
https://doi.org/10.1002/smll.201802302
33 Chen J.Shan Y.Wang Q.Zhu J.Liu R., P-type laser-doped WSe2/MoTe2 van der Waals heterostructure photodetector, Nanotechnology 31(29), 295201 (2020)
34 Lu Z., Xu Y., Yu Y., Xu K., Mao J., Xu G., Ma Y., Wu D., Jie J.. Ultrahigh speed and broadband few‐layer MoTe2/Si 2D–3D heterojunction‐based photodiodes fabricated by pulsed laser deposition. Adv. Funct. Mater., 2020, 30(9): 1907951
https://doi.org/10.1002/adfm.201907951
35 O. Loutfy R., S. Ng D.. Electrodeposited polycrystalline thin films of cadmium chalcogenides for backwall photoelectrochemical cells. Solar Energy Mater., 1984, 11(4): 319
https://doi.org/10.1016/0165-1633(84)90050-9
36 Smidstrup S., Stradi D., Wellendorff J., A. Khomyakov P., G. Vej-Hansen U., E. Lee M., Ghosh T., Jónsson E., Jónsson H., Stokbro K.. First-principles green’s-function method for surface calculations: A pseudopotential localized basis set approach. Phys. Rev. B, 2017, 96(19): 195309
https://doi.org/10.1103/PhysRevB.96.195309
37 Grimme S.. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 2006, 27(15): 1787
https://doi.org/10.1002/jcc.20495
38 A. Hossain M., R. Jennings J., Mathews N., Wang Q.. Band engineered ternary solid solution CdSxSe1−x sensitized mesoscopic TiO2 solar cells. Phys. Chem. Chem. Phys., 2012, 14(19): 7154
https://doi.org/10.1039/c2cp40277g
39 Yang S., Tongay S., Li Y., Yue Q., B. Xia J., S. Li S., Li J., H. Wei S.. Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale, 2014, 6(13): 7226
https://doi.org/10.1039/c4nr01741b
40 Chen G., Liu Z., Liang B., Yu G., Xie Z., Huang H., Liu B., Wang X., Chen D., Q. Zhu M., Shen G.. Single-crystalline p-type Zn3As2 nanowires for field-effect transistors and visible-light photodetectors on rigid and flexible substrates. Adv. Funct. Mater., 2013, 23(21): 2681
https://doi.org/10.1002/adfm.201202739
41 H. Chen Y., X. Su L., M. Jiang M., S. Fang X.. Switch type PANI/ZnO core-shell microwire heterojunction for UV photodetection. J. Mater. Sci. Technol., 2022, 105: 259
https://doi.org/10.1016/j.jmst.2021.07.031
42 Y. Li S.Zhang Y.Yang W.Liu H.Fang X., 2D Perovskite Sr2Nb3O10 for High‐Performance UV Photodetectors, Adv. Mater. 32(7), 1905443 (2020)
43 Zhang Y., Yao J., Zhang Z., Zhang R., Li L., Teng Y., J. Shen Z., X. Kang L., M. Wu L., S. Fang X.. Two-dimensional perovskite Pb2Nb3O10 photodetectors. J. Mater. Sci. Technol., 2023, 164: 95
https://doi.org/10.1016/j.jmst.2023.05.011
44 X. Liu B., Sun Y., Wu Y., Liu K., Ye H., Li F., Zhang L., Jiang Y., Wang R.. Enhanced photoresponse of TiO2/MoS2 heterostructure phototransistors by the coupling of interface charge transfer and photogating. Nano Res., 2021, 14(4): 982
https://doi.org/10.1007/s12274-020-3137-6
45 Yan J., Yang X., Liu X., Du C., Qin F., Yang M., Zheng Z., Li J.. Van der Waals heterostructures with built‐in Mie resonances for polarization‐sensitive photodetection. Adv. Sci., 2023, 10(9): 2207022
https://doi.org/10.1002/advs.202207022
46 Lai J., Liu X., Ma J., Wang Q., Zhang K., Ren X., Liu Y., Gu Q., Zhuo X., Lu W., Wu Y., Li Y., Feng J., Zhou S., H. Chen J., Sun D.. Anisotropic broadband photoresponse of layered type-II Weyl semimetal MoTe2. Adv. Mater., 2018, 30(22): 1707152
https://doi.org/10.1002/adma.201707152https://doi.org/10.1002/advs.202207022
47 Chen P., Pi L., Li Z., Wang H., Xu X., Li D., Zhou X., Zhai T.. GeSe/MoTe2 vdW heterostructure for UV-VIS-NIR photodetector with fast response. Appl. Phys. Lett., 2022, 121(2): 021103
https://doi.org/10.1063/5.0090426
48 W. Park J., S. Jung Y., H. Park S., J. Choi H., S. Cho Y.. High‐performance photoresponse in ferroelectric d1T‐MoTe2‐based vertical photodetectors. Adv. Opt. Mater., 2022, 10(21): 2200898
https://doi.org/10.1002/adom.202200898
49 Guo P., Xu J., Gong K., Shen X., Lu Y., Qiu Y., Xu J., Zou Z., Wang C., Yan H., Luo Y., Pan A., Zhang H., C. Ho J., M. Yu K.. On-nanowire axial heterojunction design for high-performance photodetectors. ACS Nano, 2016, 10(9): 8474
https://doi.org/10.1021/acsnano.6b03458
50 Chen W., Liang R., Zhang S., Liu Y., Cheng W., Sun C., Xu J.. Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure. Nano Res., 2020, 13(1): 127
https://doi.org/10.1007/s12274-019-2583-5
51 Xia J., X. Zhao Y., Wang L., Z. Li X., Y. Gu Y., Q. Cheng H., M. Meng X.. Van der Waals epitaxial two-dimensional CdSxSe1−x semiconductor alloys with tunable-composition and application to flexible optoelectronics. Nanoscale, 2017, 9(36): 13786
https://doi.org/10.1039/C7NR04968D
[1] Yu Guo, Yang Zhao, Qiao Ling, Si Zhou, Jijun Zhao. Strong ferroelectricity in one-dimensional materials self-assembled by superatomic metal halide clusters[J]. Front. Phys. , 2024, 19(6): 63210-.
[2] Jiangtong Su, Xiaoqi Hou, Ning Dai, Yang Li. Localized surface plasmon resonance enhanced photodetector: Physical model, enhanced mechanism and applications[J]. Front. Phys. , 2024, 19(6): 63501-.
[3] Chang Lu, Shunhui Zhang, Meili Chen, Haitao Chen, Mengjian Zhu, Zhengwei Zhang, Jun He, Lin Zhang, Xiaoming Yuan. Van der Waals epitaxy of type-II band alignment CsPbI3/TMDC heterostructure for optoelectronic applications[J]. Front. Phys. , 2024, 19(5): 53206-.
[4] Chaowei He, Jiantian Zhang, Li Gong, Peng Yu. Room-temperature ferroelectricity in van der Waals SnP2S6[J]. Front. Phys. , 2024, 19(4): 43202-.
[5] Bocheng Lei, Aolin Li, Wenzhe Zhou, Yunpeng Wang, Wei Xiong, Yu Chen, Fangping Ouyang. Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2[J]. Front. Phys. , 2024, 19(4): 43200-.
[6] Zheng Shu, Huifang Xu, Hejin Yan, Yongqing Cai. Strong anisotropy of thermal transport in the monolayer of a new puckered phase of PdSe[J]. Front. Phys. , 2024, 19(3): 33202-.
[7] Yun-Qin Li, Qi-Wen He, Dai-Song Tang, Xiao Shang, Xiao-Chun Wang. Intrinsically asymmetric atomic character regulates piezoelectricity in two-dimensional materials[J]. Front. Phys. , 2024, 19(3): 33201-.
[8] Xiulian Fan, Ruifeng Xin, Li Li, Bo Zhang, Cheng Li, Xilong Zhou, Huanzhi Chen, Hongyan Zhang, Fangping OuYang, Yu Zhou. Progress in the preparation and physical properties of two-dimensional Cr-based chalcogenide materials and heterojunctions[J]. Front. Phys. , 2024, 19(2): 23401-.
[9] Fahhad Alsubaie, Munirah Muraykhan, Lei Zhang, Dongchen Qi, Ting Liao, Liangzhi Kou, Aijun Du, Cheng Tang. Two-dimensional polarized MoSSe/MoTe2 van der Waals heterostructure: A polarization-tunable optoelectronic material[J]. Front. Phys. , 2024, 19(1): 13201-.
[10] Kaiyue He, Jijie Zhu, Zishun Li, Zhe Chen, Hehe Zhang, Chao Liu, Xu Zhang, Shuo Wang, Peiyi Zhao, Yu Zhou, Shizheng Zhang, Yao Yin, Xiaorui Zheng, Wei Huang, Lin Wang. High-sensitive two-dimensional PbI2 photodetector with ultrashort channel[J]. Front. Phys. , 2023, 18(6): 63305-.
[11] Mengting Song, Nan An, Yuke Zou, Yue Zhang, Wenjuan Huang, Huayi Hou, Xiangbai Chen. Epitaxial growth of 2D gallium selenide flakes for strong nonlinear optical response and visible-light photodetection[J]. Front. Phys. , 2023, 18(5): 52302-.
[12] Guibo Zheng, Shuixian Qu, Wenzhe Zhou, Fangping Ouyang. Janus monolayer TaNF: A new ferrovalley material with large valley splitting and tunable magnetic properties[J]. Front. Phys. , 2023, 18(5): 53302-.
[13] Shengshi Li, Weixiao Ji, Jianping Zhang, Yaping Wang, Changwen Zhang, Shishen Yan. Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator[J]. Front. Phys. , 2023, 18(4): 43301-.
[14] Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials[J]. Front. Phys. , 2023, 18(2): 23302-.
[15] Huili Zhu, Zifan Hong, Changjie Zhou, Qihui Wu, Tongchang Zheng, Lan Yang, Shuqiong Lan, Weifeng Yang. Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions[J]. Front. Phys. , 2023, 18(1): 13301-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed