|
|
High performance photodetector based on few-layer MoTe2/CdS0.42Se0.58 flake heterojunction |
Ran Ma1, Qiuhong Tan1,2,3( ), Peizhi Yang3, Yingkai Liu1,2,3, Qianjin Wang1,2,3( ) |
1. College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China 2. Yunnan Provincial Key Laboratory for Photoelectric Information Technology, Yunnan Normal University, Kunming 650500, China 3. Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China |
|
|
Abstract Two-dimensional (2D) transition metal dichalcogenides have been extensively studied due to their fascinating physical properties for constructing high-performance photodetectors. However, their relatively low responsivities, current on/off ratios and response speeds have hindered their widespread application. Herein, we fabricated a high-performance photodetector based on few-layer MoTe2 and CdS0.42Se0.58 flake heterojunctions. The photodetector exhibited a high responsivity of 7221 A/W, a large current on/off ratio of 1.73×104, a fast response speed of 90/120 μs, external quantum efficiency (EQE) reaching up to 1.52×106 % and detectivity (D*) reaching up to 1.67×1015 Jones. The excellent performance of the heterojunction photodetector was analyzed by a photocurrent mapping test and first-principle calculations. Notably, the visible light imaging function was successfully attained on the MoTe2/CdS0.42Se0.58 photodetectors, indicating that the device had practical imaging application prospects. Our findings provide a reference for the design of ultrahigh-performance MoTe2-based photodetectors.
|
Keywords
photodetector
MoTe2
heterojunction
visible light imaging
first-principles calculations
|
Corresponding Author(s):
Qiuhong Tan,Qianjin Wang
|
Issue Date: 24 January 2024
|
|
1 |
S. Novoselov K., K. Geim A., V. Morozov S., Jiang D., Zhang Y., V. Dubonos S., V. Grigorieva I., A. Firsov A.. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
https://doi.org/10.1126/science.1102896
|
2 |
Yao J., Zheng Z., Yang G.. All-layered 2D optoelectronics: A high-performance UV-Vis-NIR broadband SnSe photodetector with Bi2Te3 topological insulator electrodes. Adv. Funct. Mater., 2017, 27(33): 1701823
https://doi.org/10.1002/adfm.201701823
|
3 |
Castellanos-Gomez A., Poot M., A. Steele G., S. J. van der Zant H., Agraït N., Rubio-Bollinger G.. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater., 2012, 24(6): 772
https://doi.org/10.1002/adma.201103965
|
4 |
Yao J., Yang G.. Flexible and high-performance all-2D photodetector for wearable devices. Small, 2018, 14(21): 1704524
https://doi.org/10.1002/smll.201704524
|
5 |
Wu W., Wang L., Li Y., Zhang F., Lin L., Niu S., Chenet D., Zhang X., Hao Y., F. Heinz T., Hone J., L. Wang Z.. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature, 2014, 514(7523): 470
https://doi.org/10.1038/nature13792
|
6 |
Mouri S., Miyauchi Y., Matsuda K.. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett., 2013, 13(12): 5944
https://doi.org/10.1021/nl403036h
|
7 |
J. Čejka, M. Opanasenko, P. Nachtigall, G. Centi , S. Perathoner. C. J. Heard, 2D oxide nanomaterials to address the energy transition and catalysis, Adv. Mater. 31(3), 1801712 (2019)
|
8 |
Tang L., Meng X., Deng D., Bao X.. Confinement catalysis with 2D materials for energy conversion. Adv. Mater., 2019, 31(50): 1901996
https://doi.org/10.1002/adma.201901996
|
9 |
R. Fan F., Wang R., Zhang H., Wu W.. Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chem. Soc. Rev., 2021, 50(19): 10983
https://doi.org/10.1039/C9CS00821G
|
10 |
X. Chen L., W. Chen Z., Jiang M., Lu Z., Gao C., Cai G., V. Singh C.. Insights on the dual role of two-dimensional materials as catalysts and supports for energy and environmental catalysis. J. Mater. Chem. A, 2021, 9(4): 2018
https://doi.org/10.1039/D0TA08649E
|
11 |
Tao P., Yao S., Liu F., Wang B., Huang F., Wang M.. Recent advances in exfoliation techniques of layered and non-layered materials for energy conversion and storage. J. Mater. Chem. A, 2019, 7(41): 23512
https://doi.org/10.1039/C9TA06461C
|
12 |
Tian Y., Chen Y., Liu Y., Li H., Dai Z.. Elemental two‐dimensional materials for Li/Na‐ion battery anode applications. Chem. Rec., 2022, 22(10): e202200123
https://doi.org/10.1002/tcr.202200123
|
13 |
Li B., Xu H., Ma Y., Yang S.. Harnessing the unique properties of 2D materials for advanced lithium–sulfur batteries. Nanoscale Horiz., 2019, 4(1): 77
https://doi.org/10.1039/C8NH00170G
|
14 |
Deng N., Feng Y., Wang G., Wang X., Wang L., Li Q., Zhang L., Kang W., Cheng B., Liu Y.. Rational structure designs of 2D materials and their applications toward advanced lithium−sulfur battery and lithium−selenium battery. Chem. Eng. J., 2020, 401(20): 125976
https://doi.org/10.1016/j.cej.2020.125976
|
15 |
Gao G., Zheng F., Pan F., W. Wang L.. Theoretical investigation of 2D conductive microporous coordination polymers as Li–S battery cathode with ultrahigh energy density. Adv. Energy Mater., 2018, 8(25): 1801823
https://doi.org/10.1002/aenm.201801823
|
16 |
Rojaee R., Shahbazian-Yassar R.. Two-dimensional materials to address the lithium battery challenges. ACS Nano, 2020, 14(3): 2628
https://doi.org/10.1021/acsnano.9b08396
|
17 |
Dodda A., Jayachandran D., Pannone A., Trainor N., P. Stepanoff S., A. Steves M., S. Radhakrishnan S., Bachu S., W. Ordonez C., R. Shallenberger J., M. Redwing J., L. Knappenberger K., E. Wolfe D., Das S.. Active pixel sensor matrix based on monolayer MoS2 phototransistor array. Nat. Mater., 2022, 21(12): 1379
https://doi.org/10.1038/s41563-022-01398-9
|
18 |
Khan U., Luo Y., Tang L., Teng C., Liu J., Liu B., M. Cheng H.. Controlled vapor–solid deposition of millimeter-size single crystal 2D Bi2O2Se for high‐performance phototransistors. Adv. Funct. Mater., 2019, 29(14): 1807979
https://doi.org/10.1002/adfm.201807979
|
19 |
G. Kim S., H. Kim S., Park J., S. Kim G., H. Park J., C. Saraswat K., Kim J., Y. Yu H.. Infrared detectable MoS2 phototransistor and its application to artificial multilevel optic-neural synapse. ACS Nano, 2019, 13(9): 10294
https://doi.org/10.1021/acsnano.9b03683
|
20 |
Namgung S., Shaver J., H. Oh S., J. Koester S.. Multimodal photodiode and phototransistor device based on two-dimensional materials. ACS Nano, 2016, 10(11): 10500
https://doi.org/10.1021/acsnano.6b06468
|
21 |
Cai Y., Yang J., Wang F., Li S., Wang Y., Zhan X., Wang F., Cheng R., Wang Z., He J.. Ultrasensitive solar-blind ultraviolet detection and optoelectronic neuromorphic computing using α-In2Se3 phototransistors. Front. Phys., 2023, 18(3): 33308
https://doi.org/10.1007/s11467-022-1241-7
|
22 |
Q. Li Z., T. Yan T., S. Fang X.. Low-dimensional wide-bandgap semiconductors for UV photodetectors. Nat. Rev. Mater., 2023, 8(9): 587
https://doi.org/10.1038/s41578-023-00583-9
|
23 |
Zeng H., Wen Y., Yin L., Cheng R., Wang H., Liu C., He J.. Recent developments in CVD growth and applications of 2D transition metal dichalcogenides. Front. Phys., 2023, 18(5): 53603
https://doi.org/10.1007/s11467-023-1286-2
|
24 |
Zhang G., Shu Y., Yao J., Shu Q., Deng H., Jia G., Wang Z.. Characteristics and developments of quantum-dot infrared photodetectors. Front. Phys. China, 2006, 1(3): 334
https://doi.org/10.1007/s11467-006-0030-z
|
25 |
He K., Zhu J., Li Z., Chen Z., Zhang H., Liu C., Zhang X., Wang S., Zhao P., Zhou Y., Zhang S., Yin Y., Zheng X., Huang W., Wang L.. High-sensitive two-dimensional PbI2 photodetector with ultrashort channel. Front. Phys., 2023, 18(6): 63305
https://doi.org/10.1007/s11467-023-1323-1
|
26 |
H. An C., Nie F., Zhang R., Ma X., Wu D., Sun Y., Hu X., Sun D., Pan L., Liu J.. Two‐dimensional material‐enhanced flexible and self‐healable photodetector for large‐area photodetection. Adv. Funct. Mater., 2021, 31(22): 2100136
https://doi.org/10.1002/adfm.202100136
|
27 |
Maiti R., Patil C., A. S. R. Saadi M., Xie T., G. Azadani J., Uluutku B., Amin R., F. Briggs A., Miscuglio M., Van Thourhout D., D. Solares S., Low T., Agarwal R., R. Bank S., J. Sorger V.. Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits. Nat. Photonics, 2020, 14(9): 578
https://doi.org/10.1038/s41566-020-0647-4
|
28 |
Octon T., Nagareddy V., Russo S., F. Craciun M., D. Wright C.. Fast high-responsivity few-layer MoTe2 photodetectors. Adv. Opt. Mater., 2016, 4(11): 1750
https://doi.org/10.1002/adom.201600290
|
29 |
Yin L., Zhan X., Xu K., Wang F., Wang Z., Huang Y., Wang Q., Jiang C., He J.. Ultrahigh sensitive MoTe2 phototransistors driven by carrier tunneling. Appl. Phys. Lett., 2016, 108(4): 043503
https://doi.org/10.1063/1.4941001
|
30 |
Huang H., Wang J., Hu W., Liao L., Wang P., Wang X., Gong F., Chen Y., Wu G., Luo W., Shen H., Lin T., Sun J., Meng X., Chen X., Chu J.. Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology, 2016, 27(44): 445201
https://doi.org/10.1088/0957-4484/27/44/445201
|
31 |
Chen Y., Wang X., Wu G., Wang Z., Fang H., Lin T., Sun S., Shen H., Hu W., Wang J., Sun J., Meng X., Chu J.. High‐performance photovoltaic detector based on MoTe2/MoS2 van der Waals heterostructure. Small, 2018, 14(9): 1703293
https://doi.org/10.1002/smll.201703293
|
32 |
Y. Lu M., T. Chang Y., J. Chen H.. Efficient self-driven photodetectors featuring a mixed-dimensional van der Waals heterojunction formed from a CdS nanowire and a MoTe2 flake. Small, 2018, 14(40): 1802302
https://doi.org/10.1002/smll.201802302
|
33 |
Chen J.Shan Y.Wang Q.Zhu J.Liu R., P-type laser-doped WSe2/MoTe2 van der Waals heterostructure photodetector, Nanotechnology 31(29), 295201 (2020)
|
34 |
Lu Z., Xu Y., Yu Y., Xu K., Mao J., Xu G., Ma Y., Wu D., Jie J.. Ultrahigh speed and broadband few‐layer MoTe2/Si 2D–3D heterojunction‐based photodiodes fabricated by pulsed laser deposition. Adv. Funct. Mater., 2020, 30(9): 1907951
https://doi.org/10.1002/adfm.201907951
|
35 |
O. Loutfy R., S. Ng D.. Electrodeposited polycrystalline thin films of cadmium chalcogenides for backwall photoelectrochemical cells. Solar Energy Mater., 1984, 11(4): 319
https://doi.org/10.1016/0165-1633(84)90050-9
|
36 |
Smidstrup S., Stradi D., Wellendorff J., A. Khomyakov P., G. Vej-Hansen U., E. Lee M., Ghosh T., Jónsson E., Jónsson H., Stokbro K.. First-principles green’s-function method for surface calculations: A pseudopotential localized basis set approach. Phys. Rev. B, 2017, 96(19): 195309
https://doi.org/10.1103/PhysRevB.96.195309
|
37 |
Grimme S.. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 2006, 27(15): 1787
https://doi.org/10.1002/jcc.20495
|
38 |
A. Hossain M., R. Jennings J., Mathews N., Wang Q.. Band engineered ternary solid solution CdSxSe1−x sensitized mesoscopic TiO2 solar cells. Phys. Chem. Chem. Phys., 2012, 14(19): 7154
https://doi.org/10.1039/c2cp40277g
|
39 |
Yang S., Tongay S., Li Y., Yue Q., B. Xia J., S. Li S., Li J., H. Wei S.. Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale, 2014, 6(13): 7226
https://doi.org/10.1039/c4nr01741b
|
40 |
Chen G., Liu Z., Liang B., Yu G., Xie Z., Huang H., Liu B., Wang X., Chen D., Q. Zhu M., Shen G.. Single-crystalline p-type Zn3As2 nanowires for field-effect transistors and visible-light photodetectors on rigid and flexible substrates. Adv. Funct. Mater., 2013, 23(21): 2681
https://doi.org/10.1002/adfm.201202739
|
41 |
H. Chen Y., X. Su L., M. Jiang M., S. Fang X.. Switch type PANI/ZnO core-shell microwire heterojunction for UV photodetection. J. Mater. Sci. Technol., 2022, 105: 259
https://doi.org/10.1016/j.jmst.2021.07.031
|
42 |
Y. Li S.Zhang Y.Yang W.Liu H.Fang X., 2D Perovskite Sr2Nb3O10 for High‐Performance UV Photodetectors, Adv. Mater. 32(7), 1905443 (2020)
|
43 |
Zhang Y., Yao J., Zhang Z., Zhang R., Li L., Teng Y., J. Shen Z., X. Kang L., M. Wu L., S. Fang X.. Two-dimensional perovskite Pb2Nb3O10 photodetectors. J. Mater. Sci. Technol., 2023, 164: 95
https://doi.org/10.1016/j.jmst.2023.05.011
|
44 |
X. Liu B., Sun Y., Wu Y., Liu K., Ye H., Li F., Zhang L., Jiang Y., Wang R.. Enhanced photoresponse of TiO2/MoS2 heterostructure phototransistors by the coupling of interface charge transfer and photogating. Nano Res., 2021, 14(4): 982
https://doi.org/10.1007/s12274-020-3137-6
|
45 |
Yan J., Yang X., Liu X., Du C., Qin F., Yang M., Zheng Z., Li J.. Van der Waals heterostructures with built‐in Mie resonances for polarization‐sensitive photodetection. Adv. Sci., 2023, 10(9): 2207022
https://doi.org/10.1002/advs.202207022
|
46 |
Lai J., Liu X., Ma J., Wang Q., Zhang K., Ren X., Liu Y., Gu Q., Zhuo X., Lu W., Wu Y., Li Y., Feng J., Zhou S., H. Chen J., Sun D.. Anisotropic broadband photoresponse of layered type-II Weyl semimetal MoTe2. Adv. Mater., 2018, 30(22): 1707152
https://doi.org/10.1002/adma.201707152https://doi.org/10.1002/advs.202207022
|
47 |
Chen P., Pi L., Li Z., Wang H., Xu X., Li D., Zhou X., Zhai T.. GeSe/MoTe2 vdW heterostructure for UV-VIS-NIR photodetector with fast response. Appl. Phys. Lett., 2022, 121(2): 021103
https://doi.org/10.1063/5.0090426
|
48 |
W. Park J., S. Jung Y., H. Park S., J. Choi H., S. Cho Y.. High‐performance photoresponse in ferroelectric d1T‐MoTe2‐based vertical photodetectors. Adv. Opt. Mater., 2022, 10(21): 2200898
https://doi.org/10.1002/adom.202200898
|
49 |
Guo P., Xu J., Gong K., Shen X., Lu Y., Qiu Y., Xu J., Zou Z., Wang C., Yan H., Luo Y., Pan A., Zhang H., C. Ho J., M. Yu K.. On-nanowire axial heterojunction design for high-performance photodetectors. ACS Nano, 2016, 10(9): 8474
https://doi.org/10.1021/acsnano.6b03458
|
50 |
Chen W., Liang R., Zhang S., Liu Y., Cheng W., Sun C., Xu J.. Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure. Nano Res., 2020, 13(1): 127
https://doi.org/10.1007/s12274-019-2583-5
|
51 |
Xia J., X. Zhao Y., Wang L., Z. Li X., Y. Gu Y., Q. Cheng H., M. Meng X.. Van der Waals epitaxial two-dimensional CdSxSe1−x semiconductor alloys with tunable-composition and application to flexible optoelectronics. Nanoscale, 2017, 9(36): 13786
https://doi.org/10.1039/C7NR04968D
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|