Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (6) : 63501    https://doi.org/10.1007/s11467-024-1413-8
Localized surface plasmon resonance enhanced photodetector: Physical model, enhanced mechanism and applications
Jiangtong Su1,3, Xiaoqi Hou2,3, Ning Dai1,3,4,5(), Yang Li1,3,4()
1. School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
2. School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
4. Research Institute of Intelligent Sensing, Zhejiang Lab, Hangzhou 311100, China
5. Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
 Download: PDF(12280 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Localized surface plasmon resonance (LSPR) is an intriguing phenomenon that can break diffraction limitations and exhibit excellent light-confinement abilities, making it an attractive strategy for enhancing the light absorption capabilities of photodetectors. However, the complex mechanism behind this enhancement is still plaguing researchers, especially for hot-electron injection process, which inhibits further optimization and development. A clear guideline for basic physical model, enhancement mechanism, material selection and architectural design for LSPR photodetector are still required. This review firstly describes the mainstream understanding of fundamental physical modes of LSPR and related enhancement mechanism for LSPR photodetectors. Then, the universal strategies for tuning the LSPR frequency are introduced. Besides, the state-of-the-art progress in the development of LSPR photodetectors is briefly summarized. Finally, we highlight the remaining challenges and issues needed to be resolved in the future research.

Keywords localized surface plasmon resonance      photodetector      plasmonic nanomaterials      hot electron     
Corresponding Author(s): Ning Dai,Yang Li   
Issue Date: 28 June 2024
 Cite this article:   
Jiangtong Su,Xiaoqi Hou,Ning Dai, et al. Localized surface plasmon resonance enhanced photodetector: Physical model, enhanced mechanism and applications[J]. Front. Phys. , 2024, 19(6): 63501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1413-8
https://academic.hep.com.cn/fop/EN/Y2024/V19/I6/63501
Fig.1  Schematic, enhancement mechanism and applications of LSPR.
Fig.2  (a) Schematic of the physical model of surface plasmon polaritons (SPPs) at the interface of two medias. The electromagnetic wave propagates along the x direction of the surface. These vectors (Hy2, Ex2) represent the direction of the electric and magnetic field. The orange area illustrates the field intensity distribution, which reveals that the field is focused around the surface and decays exponentially along the z direction. (b) Schematic of the physical model of LSPRs in nanoparticles. Reproduced from Ref. [48].
Fig.3  (a) Dispersion relations for propagating photon (dashed navy line), bulk plasmons (top left blue branch) and SPPs on a metal-vacuum interface (bottom right blue branch) [49]. (b) Prism coupling of SPPs: Kretschmann configuration. (c) Illustration of momentum mismatch in Kretschmann configuration. (d) Schematic of a homogeneous nanosphere in an electrostaic field. (e) Extinction spectrum calculated via Eq. (12) for a sliver sphere (black curve) and a silica sphere (gray curve) in air [50]. (a) Reproduced from Ref. [49]. (b?e) Reproduced from Ref. [50].
Fig.4  (a) Extinction spectra of silver nanoparticles of 20 difference diameters (from 6 nm to beyond 70 nm). And the peak shift rapidly to longer wavelength as the particles size increases. (b−d) Optical extinction spectrum of Au NPs (nanospheres, nanotriangles and nanocubes). (e) The calculated absorption spectrum of elongated ellipsoids with varying aspect R which is defined as A/B. A and B are the long axis and short axis separately. Inset shows the function of resonance maximum wavelength λmax and aspect ratio R [63]. (f) Extinction cross section of a 20 nm Au NP in a non-absorbing media with the refractive index increasing from nm,i = 1 to nm,f = 2, calculated by Mie model [61]. (a) Reproduced from Ref. [59]. (b?d) Reproduced from Ref. [61]. (e) Reproduced from Ref. [63]. (f) Reproduced from Ref. [70].
Fig.5  (a) Fabrication process of Al nanoholes GaN UV photodetector. (b) Fabrication process of the broadband Ag-QNF absorber. (c) Fabrication process of Au-MoS2 photodetector. (d) Fabrication process of Au NP array graphene SWIR photodetector. (a) Reproduced from Ref. [79]. (b) Reproduced from Ref. [80]. (c) Reproduced from Ref. [81]. (d) Reproduced from Ref. [82].
Fig.6  (a) UV-Vis-NIR absorption spectra of ITO NPs doped with 3%?10% Sn. (b) FTIR transmission spectrum of ZnO NC with varying In doping concentrations (from 1% to 8%). (c) Absorbance spectrum of Cu2S nanorods. The stoichiometric Cu2S nanorods (black line) without NIR LSPR absorbance. (d) The top part illustrates the photodoped process in ITO nanocrystals. The bottom is the absorbance spectrum of In2O3 and 9% Sn-doped In2O3 before and after photodoping. The arrow reveals photodoping concentration increases with increasing UV exposure. (e) Extinction spectra of P-In2O3 nanocrystals with P:In ratio from 0.05 to 0.6. (f) Absorption spectra of ZnO NCs with 20 equiv Cp2Co. (a) Reproduced from Ref. [95]. (b) Reproduced from Ref. [94]. (c) Reproduced from Ref. [89]. (d) Reproduced from Ref. [98]. (e) Reproduced from Ref. [100]. (f) Reproduced from Ref. [101].
Fig.7  (a) Electric field enhancement distribution around a D = 20 nm Au NP irradiated at plasmon frequency (λ = 520 nm), a 75 nm outer radius/65 nm inner radius SiO2/Au NS at plasmon frequency (λ = 863 nm) and a 10 nm × 41 nm Au NR. (b) PINEM images of two close-by silver particles for two polarizations. The particles are separated by 70 nm (edge-to-edge). (c) FDTD simulation of Au NP arrays on CsPbBr3 layer in three planes. (a) Reproduced from Ref. [110]. (b) Reproduced from Ref. [111]. (c) Reproduced from Ref. [112].
Fig.8  (a) Two different decay mechanisms in during the surface plasmon. (b) Three steps in hot-electron injection process in a Schottky detector [120]. (c) Four steps in non-radiative decay process of surface plasmon. (d) Constant energy contours in metal (left)/barrier (right) region [121]. km is the hot electron momentum in the metal, Ω is the allowed maximum angle that still satisfied the conservation of momentum. (e) Band structure of a plasmonic metal−semiconductor Schottky junction. (f) Band structure of a plasmonic semiconductor−semiconductor Schottky junction. (g) Schematic of plasmon excitation process in Cu2−xSe−CdSe system. (b) Reproduced from Ref. [120]. (c) Reproduced from Ref. [117]. (d) Reproduced from Ref. [134]. (e?g) Reproduced from Ref. [142].
Fig.9  (a) Plasmon-induced hot electron production in a silver nanoparticle of diameter D as a finite potential well of depth V0 and radius to D/2. (b) Number of hot electrons generated per unit of time as a function of energy of incident photon for different carrier lifetime ranging from 0.05 to 1 ps. Top panel is the result for an Au NP D = 15 nm and bottom is for D = 20 nm. (c) FoM N e(ε) as the function of particle size for different carrier lifetime raging from 0.05 to 1 ps. Top panel is the result for ε = 0.2 ħωp and bottom for ε = 0.5 ħωp. (d) Hot-carrier energy and momentum-direction distribution in aluminum, silver, copper and gold spherical. Reproduced from Ref. [144].
Fig.10  (a) Scheme of localized surface plasmon resonance enhanced photodetector structure. Energy band diagrams of (b) metal−semiconductor−metal, (c) Schottky diode and (d) tunnel junction photodetectors.
Fig.11  (a) Responsivity spectrum of Ag-ZnO UV LSPR photodetector from 300 to 500 nm and structure. The buffer layer is ZnO and the substrate is sapphire. (b) Schematic of Au-ZnO UV LSPR photodetector with Pt electrode. (c) Responsivity spectrum of ZnO and Au-ZnO devices from 300 to 400 nm at 5 V. (d) Schematic of Ag NPs/ZnO nanowires (NW) @GaN UV photodetector. (e) High-magnification SEM image of 10 nm Ag NPs coated on ZnO NW arrays. (f) Darkcurrent and photocurrent as a function of applied voltage for pure ZnO and Ag-ZnO device. (g) Schematic of Au@ZnO nanoholes(HN) photodetector. (h) SEM images of the morphologies of the Au NP/ZnO HN for 40 min growth. (i) Detectivity and EQE of ZnO HN photodetector fabricated with a growth duration of 40 min as a function of light intensity. (a) Reproduced from Ref. [153]. (d?f) Reproduced from Ref. [157]. (b, c) Reproduced from Ref. [44]. (g?i) Reproduced from Ref. [162].
Fig.12  (a) Schematic of Al nanoholes GaN UV photodetector. (b) SEM of the periodic Al Nanoholes array with 220 nm diameter and 320 nm periodicity. (c) Responsivity and detectivity as the functions of illumination power under 355 nm. (d) Schematic of Au NP@GaN-nanoflowers (NF) photodetector. (e) Field emission scanning electron microscopy (FESEM) image of Au-NP@GaN-NFs, inset shows its higher magnification image. (f) Detectivity as a function of bias voltages of four kinds of photodetector device. (g) Schematic of the Au NPs/IGZO hybrid ferroelectric photodetector. (h) High resolution SEM image of the hybrid photodetector. The white bright spot are Au NPs and mean size is ~ 5 nm. (i) The transfer curves of the ferroelectric phototransistor at room temperature, both with (black line) and without (red line) Au NPs. The inset displays the transfer characteristic of the HfO2 gate. (a?c) Reproduced from Ref. [79]. (d?f) Reproduced from Ref. [164]. (g?i) Reproduced from Ref. [168].
Fig.13  (a) Schematic of gold antenna@graphene boardband photodetector. (b) SEM image of Au heptamer array. (c) Photocurrent polarization dependence for dimer antennas (green dots) and heptamer antennas (purple dots). (d) Schematic of pentacene/Au NPs/graphene photodetector. (e) Optical microscopy image (upper panel) and integrated PL intensity map (lower panel) of the pentacene films deposited on the SiO2 substrate and graphene. (f) Photoresponsivity and photodetectivity under a fix illumination wavelength of 520 nm as a function of optical power. (a?c) Reproduced from Ref. [172]. (d?f) Reproduced from Ref. [174].
Fig.14  (a) Schematic of Au NP grating/monolayer MoS2 hybrid photodetector. (b) SEM image of Au NP grating structure. The period is 4 μm and the duty ratio is 1:1. The diameter of larger nanoparticle is 10 nm, and the smaller one is 5 nm. (c) Photocurrent cycle of bare MoS2 PD, MoS2 with different size Au NPs, and MoS2 with Au gating photodetector. NP I: 5 nm. NP II: 10 nm. (d) Schematic of Au−MoS2−Au photodetector. (e) Electrical field distribution of Au−MoS2−Au structure through COMSOL simulation. (f) Specific detectivity of Au−MoS2 and Au−MoS2−Au devices as a function of light intensity upon 3V bias and 532 nm illumination. (g) Schematic of Au@MoS2 field-effect phototransistors. (h) Concept and structure of the Au@MoS2 core-shell structure. (i) Drain current as a function of bias voltage under 50 µW white light illumination. (a?c) Reproduced from Ref. [81]. (d?f) Reproduced from Ref. [177]. (g?i) Reproduced from Ref. [178].
Fig.15  (a) Schematic of graphene SWIR photodetector. (b) SEM image of Au NP array on graphene. (c) Photoresponse and photocurrent of device with and without Au NPs versus illumination power at a wavelength of 1550 nm. (d) Schematic of graphene nanodisk arrays. The graphene nanodisk arrays with 60 nm diameter and 30nm edge-to-edge gap was sandwiched between In-In2O3/BaF2 substrate and ion-gel layer. Ion-gel layer with high-capacitance was used to tune the Fermi level of graphene nanodisks. (e) FTIR measurement results of transmittance, reflectance, and absorbance under different Fermi energy (0.2?0.8 eV). (f) FTIR measurement results of transmittance, reflectance, and absorbance under different disk diameter (60−180 nm). (a?c) Reproduced from Ref. [181]. (d?f) Reproduced from Ref. [82].
Fig.16  (a) Schematic of ITONPs@SLG/GeNNs array NIRPD. (b) SEM image of ITONPs@SLG/GeNNs array NIRPD. The length of GeNN arrays is about 3 µm. (c) Photoresponse for devices with and without ITONPs modification under 1550 nm light illumination at Vbias = 0 V. (d) Schematic illustration of TiN-based visible-NIR photodetector. (e) AFM image of TiN surface morphology. (f) Photoresponsivity and specific detectivity of the device. (g) Structure of a Si-QD/graphene hybrid phototransistor. (h) Distribution of electric field (|E|2) around B-doped Si QDs under 3.0 μm illumination. (i) NEP and specific detectivity of the device from 0.5 to 4 μm. The UV-to-NIR and MIR measurements were conducted at room temperature and 77 K, respectively. (a?c) Reproduced from Ref. [102]. (d?f) Reproduced from Ref. [186]. (g?i) Reproduced from Ref. [103].
1 Poglitsch A., Waelkens C., Geis N., Feuchtgruber H., Vandenbussche B.. et al.. The photodetector array camera and spectrometer (PACS) on the Herschel space observatory. Astron. Astrophys., 2010, 518: L2
https://doi.org/10.1051/0004-6361/201014535
2 A. Yotter R.M. Wilson D., A review of photodetectors for sensing light-emitting reporters in biological systems, IEEE Sens. J. 3(3), 288 (2003)
3 Casas A.. Clinical uses of 5-aminolaevulinic acid in photodynamic treatment and photodetection of cancer: A review. Cancer Lett., 2020, 490: 165
https://doi.org/10.1016/j.canlet.2020.06.008
4 Chen W.Kan T.Ajiki Y.Matsumoto K.Shimoyama I., NIR spectrometer using a Schottky photodetector enhanced by grating-based SPR, Opt. Express 24(22), 25797 (2016)
5 Rutz F., Bächle A., Aidam R., Niemasz J., Bronner W., Zibold A., Rehm R.. InGaAs SWIR photodetectors for night vision. Infrared Technology and Applications XLV, 2019, 11002: 202
https://doi.org/10.1117/12.2518634
6 Rutz F., Aidam R., Bächle A., Heussen H., Bronner W., Rehm R., Benecke M., Brunner S., Göhler B., Lutzmann P., Sieck A.. InGaAs-based SWIR photodetectors for night vision and gated viewing. Electro-Optical and Infrared Systems: Technology and Applications XV, 2018, 10795: 1079503
https://doi.org/10.1117/12.2325665
7 Pospischil A.Humer M.M. Furchi M.Bachmann D.Guider R.Fromherz T. Mueller T., CMOS-compatible graphene photodetector covering all optical communication bands, Nat. Photonics 7(11), 892 (2013)
8 Bao C., Yang J., Bai S., Xu W., Yan Z., Xu Q., Liu J., Zhang W., Gao F.. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv. Mater., 2018, 30(38): 1803422
https://doi.org/10.1002/adma.201803422
9 Rogalski A.. Infrared detectors: Status and trends. Prog. Quantum Electron., 2003, 27(2−3): 59
https://doi.org/10.1016/S0079-6727(02)00024-1
10 Liu R., Wang F., Liu L., He X., Chen J., Li Y., Zhai T.. Band alignment engineering in two‐dimensional transition metal dichalcogenide‐based heterostructures for photodetectors. Small Struct., 2021, 2(3): 2000136
https://doi.org/10.1002/sstr.202000136
11 Li S.Zhang Y. Yang W.Liu H.Fang X., 2D perovskite Sr2Nb3O10 for high‐performance UV photodetectors, Adv. Mater. 32(7), 1905443 (2020)
12 Koppens F., Mueller T., Avouris P., Ferrari A., S. Vitiello M., Polini M.. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 2014, 9(10): 780
https://doi.org/10.1038/nnano.2014.215
13 Xie C., Mak C., Tao X., Yan F.. Photodetectors based on two‐dimensional layered materials beyond graphene. Adv. Funct. Mater., 2017, 27(19): 1603886
https://doi.org/10.1002/adfm.201603886
14 Wang X.Wang P.Wang J.Hu W.Zhou X. Guo N.Huang H.Sun S.Shen H.Lin T., Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics, arXiv: 1502.04439 (2015)
15 Zhai T., Li L., Wang X., Fang X., Bando Y., Golberg D.. Recent developments in one‐dimensional inorganic nanostructures for photodetectors. Adv. Funct. Mater., 2010, 20(24): 4233
https://doi.org/10.1002/adfm.201001259
16 Zhai T.Fang X.Liao M.Xu X.Zeng H. Yoshio B.Golberg D., A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors, Sensors (Basel) 9(8), 6504 (2009)
17 Zhai T., Li L., Ma Y., Liao M., Wang X., Fang X., Yao J., Bando Y., Golberg D.. One-dimensional inorganic nanostructures: Synthesis, field-emission and photodetection. Chem. Soc. Rev., 2011, 40(5): 2986
https://doi.org/10.1039/c0cs00126k
18 M. Asuo I., Gedamu D., Ka I., F. Gerlein L., X. Fortier F., Pignolet A., G. Cloutier S., Nechache R.. High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector. Nano Energy, 2018, 51: 324
https://doi.org/10.1016/j.nanoen.2018.06.057
19 X. Li S., S. Xu Y., L. Li C., Guo Q., Wang G., Xia H., H. Fang H., Shen L., B. Sun H.. Perovskite single‐crystal microwire‐array photodetectors with performance stability beyond 1 year. Adv. Mater., 2020, 32(28): 2001998
https://doi.org/10.1002/adma.202001998
20 Wang J., S. Gudiksen M., Duan X., Cui Y., M. Lieber C.. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science, 2001, 293(5534): 1455
https://doi.org/10.1126/science.1062340
21 Thunich S., Prechtel L., Spirkoska D., Abstreiter G., Fontcuberta i Morral A., W. Holleitner A.. Photocurrent and photoconductance properties of a GaAs nanowire. Appl. Phys. Lett., 2009, 95(8): 083111
https://doi.org/10.1063/1.3193540
22 Konstantatos G., Howard I., Fischer A., Hoogland S., Clifford J., Klem E., Levina L., H. Sargent E.. Ultrasensitive solution-cast quantum dot photodetectors. Nature, 2006, 442(7099): 180
https://doi.org/10.1038/nature04855
23 Livache C.Martinez B.Goubet N.Gréboval C.Qu J.Chu A.Royer S.Ithurria S. G. Silly M.Dubertret B.Lhuillier E., A colloidal quantum dot infrared photodetector and its use for intraband detection, Nat. Commun. 10(1), 2125 (2019)
24 Ren Z., Sun J., Li H., Mao P., Wei Y., Zhong X., Hu J., Yang S., Wang J.. Bilayer PbS quantum dots for high‐performance photodetectors. Adv. Mater., 2017, 29(33): 1702055
https://doi.org/10.1002/adma.201702055
25 Kim J.M. Kwon S.K. Kang Y.H. Kim Y.J. Lee M. Han K.Facchetti A.G. Kim M.K. Park S., A skin-like two-dimensionally pixelized full-color quantum dot photodetector, Sci. Adv. 5(11), eaax8801 (2019)
26 K. Gramotnev D., I. Bozhevolnyi S.. Plasmonics beyond the diffraction limit. Nat. Photonics, 2010, 4(2): 83
https://doi.org/10.1038/nphoton.2009.282
27 Zhang J., Wang Y., Li D., Sun Y., Jiang L.. Engineering surface plasmons in metal/nonmetal structures for highly desirable plasmonic photodetectors. ACS Mater. Lett., 2022, 4(2): 343
https://doi.org/10.1021/acsmaterialslett.1c00768
28 Wang H., Li S., Ai R., Huang H., Shao L., Wang J.. Plasmonically enabled two-dimensional material-based optoelectronic devices. Nanoscale, 2020, 12(15): 8095
https://doi.org/10.1039/C9NR10755J
29 Wang Y., Zhang J., Liang W., Yang H., Guan T., Zhao B., Sun Y., Chi L., Jiang L.. Rational design of plasmonic metal nanostructures for solar energy conversion. CCS Chem., 2022, 4(4): 1153
https://doi.org/10.31635/ccschem.021.202000732
30 Li J., Lou Z., Li B.. Engineering plasmonic semiconductors for enhanced photocatalysis. J. Mater. Chem. A, 2021, 9(35): 18818
https://doi.org/10.1039/D1TA04541E
31 Li S., Miao P., Zhang Y., Wu J., Zhang B., Du Y., Han X., Sun J., Xu P.. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv. Mater., 2021, 33(6): 2000086
https://doi.org/10.1002/adma.202000086
32 Hou W.B. Cronin S., A review of surface plasmon resonance‐enhanced photocatalysis, Adv. Funct. Mater. 23(13), 1612 (2013)
33 A. Willets K., P. Van Duyne R.. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 2007, 58(1): 267
https://doi.org/10.1146/annurev.physchem.58.032806.104607
34 J. Sherry L., H. Chang S., C. Schatz G., P. Van Duyne R., J. Wiley B., Xia Y.. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett., 2005, 5(10): 2034
https://doi.org/10.1021/nl0515753
35 M. E. M. M. Daniyal W., W. Fen Y., Abdullah J., R. Sadrolhosseini A., A. Mahdi M.. Design and optimization of surface plasmon resonance spectroscopy for optical constant characterization and potential sensing application: Theoretical and experimental approaches. MDPI Photonics 8, 2021, (9): 361
https://doi.org/10.3390/photonics8090361
36 M. Mayer K.Hao F.Lee S.Nordlander P.H. Hafner J., A single molecule immunoassay by localized surface plasmon resonance, Nanotechnology 21(25), 255503 (2010)
37 Zijlstra P., M. Paulo P., Orrit M.. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotechnol., 2012, 7(6): 379
https://doi.org/10.1038/nnano.2012.51
38 L. Zhou X., Yang Y., Wang S., W. Liu X.. Surface plasmon resonance microscopy: From single‐molecule sensing to single‐cell imaging. Angew. Chem. Int. Ed., 2020, 59(5): 1776
https://doi.org/10.1002/anie.201908806
39 Lan L., Gao Y., Fan X., Li M., Hao Q., Qiu T.. The origin of ultrasensitive SERS sensing beyond plasmonics. Front. Phys., 2021, 16(4): 43300
https://doi.org/10.1007/s11467-021-1047-z
40 Xu H.. Surface-enhanced Raman scattering beyond plasmonics. Front. Phys., 2022, 17(2): 23601
https://doi.org/10.1007/s11467-021-1112-7
41 Zhang Y., Zhang F., Du B., Chen H., Wageh S., A. Al-Hartomy O., G. Al-Sehemi A., Zhang B., Zhang H.. Au/MXene based ultrafast all-optical switching. Front. Phys., 2023, 18(3): 33301
https://doi.org/10.1007/s11467-022-1248-0
42 Butun S.A. Cinel N.Ozbay E., LSPR enhanced MSM UV photodetectors, Nanotechnology 23(44), 444010 (2012)
43 Patra N., Manikandan M., Singh V., Palani I.. Investigations on LSPR effect of Cu/Al nanostructures on ZnO nanorods towards photodetector applications. J. Lumin., 2021, 238: 118331
https://doi.org/10.1016/j.jlumin.2021.118331
44 Gogurla N., K. Sinha A., Santra S., Manna S., K. Ray S.. Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices. Sci. Rep., 2014, 4(1): 6483
https://doi.org/10.1038/srep06483
45 S. Camacho A.. Plasmon nanolasers and plasmon optical tweezers. J. Nano Sci. Tech., 2015, 3: 10
46 A. Maier S., Plasmonics: Fundamentals and Applications, Springer, 2007, Vol. 1
47 Wiederrecht G., Handbook of Nanoscale Optics and Electronics, Elsevier, 2010
48 A. Huang J., B. Luo L.. Low‐dimensional plasmonic photodetectors: Recent progress and future opportunities. Adv. Opt. Mater., 2018, 6(8): 1701282
https://doi.org/10.1002/adom.201701282
49 V. Boriskina S., A. Cooper T., Zeng L., Ni G., K. Tong J., Tsurimaki Y., Huang Y., Meroueh L., Mahan G., Chen G.. Losses in plasmonics: From mitigating energy dissipation to embracing loss-enabled functionalities. Adv. Opt. Photonics, 2017, 9(4): 775
https://doi.org/10.1364/AOP.9.000775
50 B. Johnson P., W. Christy R.. Optical constants of the noble metals. Phys. Rev. B, 1972, 6(12): 4370
https://doi.org/10.1103/PhysRevB.6.4370
51 Daboo C., Baird M., Hughes H., Apsley N., Jones G., Frost J., Peacock D., Ritchie D.. Surface-plasmon-enhanced photodetection in planar Au GaAs Schottky junctions. Thin Solid Films, 1990, 189(1): 27
https://doi.org/10.1016/0040-6090(90)90023-7
52 Echtermeyer T., Milana S., Sassi U., Eiden A., Wu M., Lidorikis E., Ferrari A.. Surface plasmon polariton graphene photodetectors. Nano Lett., 2016, 16(1): 8
https://doi.org/10.1021/acs.nanolett.5b02051
53 S. Ee H., S. No Y., Kim J., G. Park H., K. Seo M.. Long-range surface plasmon polariton detection with a graphene photodetector. Opt. Lett., 2018, 43(12): 2889
https://doi.org/10.1364/OL.43.002889
54 Zhang H., Ijaz M., J. Blaikie R.. Recent review of surface plasmons and plasmonic hot electron effects in metallic nanostructures. Front. Phys., 2023, 18(6): 63602
https://doi.org/10.1007/s11467-023-1328-9
55 D. Jackson J., Classical Electrodynamics, Wiley, 1999
56 H. Yang W., C. Schatz G., P. Van Duyne R.. Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. J. Chem. Phys., 1995, 103(3): 869
https://doi.org/10.1063/1.469787
57 Yee K.. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antenn. Propag., 1966, 14(3): 302
https://doi.org/10.1109/TAP.1966.1138693
58 M. Jin J., The Finite Element Method in Electromagnetics, John Wiley & Sons, 2015
59 G. Chumanov. Jr Evanoff. Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem, 2005, 6(7): 1221
https://doi.org/10.1002/cphc.200500113
60 Rycenga M., M. Cobley C., Zeng J., Li W., H. Moran C., Zhang Q., Qin D., Xia Y.. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev., 2011, 111(6): 3669
https://doi.org/10.1021/cr100275d
61 Amendola V., Pilot R., Frasconi M., M. Maragò O., A. Iatì M.. Surface plasmon resonance in gold nanoparticles: A review. J. Phys.: Condens. Matter, 2017, 29(20): 203002
https://doi.org/10.1088/1361-648X/aa60f3
62 J. Wiley B., H. Im S., Y. Li Z., McLellan J., Siekkinen A., Xia Y.. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B, 2006, 110(32): 15666
https://doi.org/10.1021/jp0608628
63 Link S., B. Mohamed M., El-Sayed M.. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B, 1999, 103(16): 3073
https://doi.org/10.1021/jp990183f
64 Zeng J., Roberts S., Xia Y.. Nanocrystal‐based time-temperature indicators. Chemistry, 2010, 16(42): 12559
https://doi.org/10.1002/chem.201002665
65 Sun Y., Wiley B., Y. Li Z., Xia Y.. Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys. J. Am. Chem. Soc., 2004, 126(30): 9399
https://doi.org/10.1021/ja048789r
66 He W., Wu X., Liu J., Zhang K., Chu W., Feng L., Hu X., Zhou W., Xie S.. Formation of AgPt alloy nanoislands via chemical etching with tunable optical and catalytic properties. Langmuir, 2010, 26(6): 4443
https://doi.org/10.1021/la9034968
67 Chen J., Wiley B., McLellan J., Xiong Y., Y. Li Z., Xia Y.. Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett., 2005, 5(10): 2058
https://doi.org/10.1021/nl051652u
68 Prathap Chandran S., Ghatak J., V. Satyam P., Sastry M.. Interfacial deposition of Ag on Au seeds leading to Aucore Ag shell in organic media. J. Colloid Interface Sci., 2007, 312(2): 498
https://doi.org/10.1016/j.jcis.2007.03.032
69 Liu M., Guyot-Sionnest P.. Synthesis and optical characterization of Au/Ag core/shell nanorods. J. Phys. Chem. B, 2004, 108(19): 5882
https://doi.org/10.1021/jp037644o
70 D. Arnold M., G. Blaber M.. Optical performance and metallic absorption in nanoplasmonic systems. Opt. Express, 2009, 17(5): 3835
https://doi.org/10.1364/OE.17.003835
71 Blaber M., Arnold M., Harris N., Ford M., Cortie M.. Plasmon absorption in nanospheres: A comparison of sodium, potassium, aluminium, silver and gold. Physica B, 2007, 394(2): 184
https://doi.org/10.1016/j.physb.2006.12.011
72 H. Chan G., Zhao J., C. Schatz G., P. Van Duyne R.. Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. J. Phys. Chem. C, 2008, 112(36): 13958
https://doi.org/10.1021/jp804088z
73 K. Jha S., Ahmed Z., Agio M., Ekinci Y., F. Löffler J.. Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays. J. Am. Chem. Soc., 2012, 134(4): 1966
https://doi.org/10.1021/ja210446w
74 Zorić I., Zach M., Kasemo B., Langhammer C.. Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms. ACS Nano, 2011, 5(4): 2535
https://doi.org/10.1021/nn102166t
75 Castro-Lopez M., Brinks D., Sapienza R., F. Van Hulst N., for nonlinear plasmonics: Resonance-driven polarized luminescence of Al Aluminum. Ag, and Au nanoantennas. Nano Lett., 2011, 11(11): 4674
https://doi.org/10.1021/nl202255g
76 Stöckli T. , Bonard J. M. , Stadelmann P. A., and Châtelain A. , EELS investigation of plasmon excitations in aluminum nanospheres and carbon nanotubes, Z. Phys. D At. Mol. Clust. 40(1–4), 1 (1997)
77 Taguchi A., Saito Y., Watanabe K., Yijian S., Kawata S.. Tailoring plasmon resonances in the deep-ultraviolet by size-tunable fabrication of aluminum nanostructures. Appl. Phys. Lett., 2012, 101(8): 081110
https://doi.org/10.1063/1.4747489
78 W. Knight M., Liu L., Wang Y., Brown L., Mukherjee S., S. King N., O. Everitt H., Nordlander P., J. Halas N.. Aluminum plasmonic nanoantennas. Nano Lett., 2012, 12(11): 6000
https://doi.org/10.1021/nl303517v
79 Dubey A., Mishra R., H. Hsieh Y., W. Cheng C., H. Wu B., J. Chen L., Gwo S., J. Yen T.. Aluminum plasmonics enriched ultraviolet GaN photodetector with ultrahigh responsivity, detectivity, and broad bandwidth. Adv. Sci. (Weinh.), 2020, 7(24): 2002274
https://doi.org/10.1002/advs.202002274
80 Li M., Shi M., Wang B., Zhang C., Yang S., Yang Y., Zhou N., Guo X., Chen D., Li S., Mao H., Xiong J.. Quasi‐ordered nanoforests with hybrid plasmon resonances for broadband absorption and photodetection. Adv. Funct. Mater., 2021, 31(38): 2102840
https://doi.org/10.1002/adfm.202102840
81 Li J., Nie C., Sun F., Tang L., Zhang Z., Zhang J., Zhao Y., Shen J., Feng S., Shi H., Wei X.. Enhancement of the photoresponse of monolayer MoS2 photodetectors induced by a nanoparticle grating. ACS Appl. Mater. Interfaces, 2020, 12(7): 8429
https://doi.org/10.1021/acsami.9b20506
82 Chen Z., Li X., Wang J., Tao L., Long M., J. Liang S., K. Ang L., Shu C., K. Tsang H., B. Xu J.. Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity. ACS Nano, 2017, 11(1): 430
https://doi.org/10.1021/acsnano.6b06172
83 L. Greenberg B., Ganguly S., T. Held J., J. Kramer N., A. Mkhoyan K., S. Aydil E., R. Kortshagen U.. Nonequilibrium-plasma-synthesized ZnO nanocrystals with plasmon resonance tunable via Al doping and quantum confinement. Nano Lett., 2015, 15(12): 8162
https://doi.org/10.1021/acs.nanolett.5b03600
84 M. Schimpf A., E. Gunthardt C., D. Rinehart J., M. Mayer J., R. Gamelin D.. Controlling carrier densities in photochemically reduced colloidal ZnO nanocrystals: Size dependence and role of the hole quencher. J. Am. Chem. Soc., 2013, 135(44): 16569
https://doi.org/10.1021/ja408030u
85 Garcia G., Buonsanti R., L. Runnerstrom E., J. Mendelsberg R., Llordes A., Anders A., J. Richardson T., J. Milliron D.. Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. Nano Lett., 2011, 11(10): 4415
https://doi.org/10.1021/nl202597n
86 R. Gordon T., Paik T., R. Klein D., V. Naik G., Caglayan H., Boltasseva A., B. Murray C.. Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO). Nano Lett., 2013, 13(6): 2857
https://doi.org/10.1021/nl4012003
87 Liu Q., Sun C., He Q., Liu D., Khalil A., Xiang T., Wu Z., Wang J., Song L.. Ultrathin carbon layer coated MoO2 nanoparticles for high-performance near-infrared photothermal cancer therapy. Chem. Commun. (Camb.), 2015, 51(49): 10054
https://doi.org/10.1039/C5CC02016F
88 M. Mattox T., Bergerud A., Agrawal A., J. Milliron D.. Influence of shape on the surface plasmon resonance of tungsten bronze nanocrystals. Chem. Mater., 2014, 26(5): 1779
https://doi.org/10.1021/cm4030638
89 M. Luther J., K. Jain P., Ewers T., P. Alivisatos A.. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater., 2011, 10(5): 361
https://doi.org/10.1038/nmat3004
90 Gurin V., Prokopenko V., Alexeenko A., Wang S., Yumashev K., Prokoshin P.. Sol–gel silica glasses with nanoparticles of copper selenide: Synthesis, optics and structure. Int. J. Inorg. Mater., 2001, 3(6): 493
https://doi.org/10.1016/S1466-6049(01)00061-7
91 C. Marin B., W. Hsu S., Chen L., Lo A., W. Zwissler D., Liu Z., R. Tao A.. Plasmon-enhanced two-photon absorption in photoluminescent semiconductor nanocrystals. ACS Photonics, 2016, 3(4): 526
https://doi.org/10.1021/acsphotonics.6b00037
92 J. Rowe D., S. Jeong J., A. Mkhoyan K., R. Kortshagen U.. Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance. Nano Lett., 2013, 13(3): 1317
https://doi.org/10.1021/nl4001184
93 Buonsanti R., Llordes A., Aloni S., A. Helms B., J. Milliron D.. Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. Nano Lett., 2011, 11(11): 4706
https://doi.org/10.1021/nl203030f
94 Ghosh S., Saha M., K. De S.. Tunable surface plasmon resonance and enhanced electrical conductivity of In doped ZnO colloidal nanocrystals. Nanoscale, 2014, 6(12): 7039
https://doi.org/10.1039/C3NR05608B
95 Kanehara M., Koike H., Yoshinaga T., Teranishi T.. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. J. Am. Chem. Soc., 2009, 131(49): 17736
https://doi.org/10.1021/ja9064415
96 Y. Su C., C. Lin H.. Direct route to tungsten oxide nanorod bundles: Microstructures and electro-optical properties. J. Phys. Chem. C, 2009, 113(10): 4042
https://doi.org/10.1021/jp809458j
97 H. Lee S., Nishi H., Tatsuma T.. Tunable plasmon resonance of molybdenum oxide nanoparticles synthesized in non-aqueous media. Chem. Commun. (Camb.), 2017, 53(94): 12680
https://doi.org/10.1039/C7CC08090E
98 M. Schimpf A., D. Lounis S., L. Runnerstrom E., J. Milliron D., R. Gamelin D.. Redox chemistries and plasmon energies of photodoped In2O3 and Sn-doped In2O3 (ITO) nanocrystals. J. Am. Chem. Soc., 2015, 137(1): 518
https://doi.org/10.1021/ja5116953
99 A. Faucheaux J., K. Jain P.. Plasmons in photocharged ZnO nanocrystals revealing the nature of charge dynamics. J. Phys. Chem. Lett., 2013, 4(18): 3024
https://doi.org/10.1021/jz401719u
100 Du H., Li Y., Zhou N., Pu C., Yin J., Kong X., Tian H., Jin Y.. Plasmonic metal oxide nanocrystals via surface anchoring of redox-active phosphorus species. Chem. Mater., 2021, 33(13): 5290
https://doi.org/10.1021/acs.chemmater.1c01393
101 N. Valdez C., Braten M., Soria A., R. Gamelin D., M. Mayer J.. Effect of protons on the redox chemistry of colloidal zinc oxide nanocrystals. J. Am. Chem. Soc., 2013, 135(23): 8492
https://doi.org/10.1021/ja4035945
102 Lu R.W. Ge C. F. Zou Y.Zheng K.D. Wang D.F. Zhang T.B. Luo L., A localized surface plasmon resonance and light confinement‐enhanced near‐infrared light photodetector, Laser Photonics Rev. 10(4), 595 (2016)
103 Ni Z., Ma L., Du S., Xu Y., Yuan M., Fang H., Wang Z., Xu M., Li D., Yang J., Hu W., Pi X., Yang D.. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors. ACS Nano, 2017, 11(10): 9854
https://doi.org/10.1021/acsnano.7b03569
104 Abb M., Wang Y., Papasimakis N., De Groot C., L. Muskens O.. Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays. Nano Lett., 2014, 14(1): 346
https://doi.org/10.1021/nl404115g
105 Agrawal A., Kriegel I., J. Milliron D.. Shape-dependent field enhancement and plasmon resonance of oxide nanocrystals. J. Phys. Chem. C, 2015, 119(11): 6227
https://doi.org/10.1021/acs.jpcc.5b01648
106 L. Runnerstrom E., Bergerud A., Agrawal A., W. Johns R., J. Dahlman C., Singh A., M. Selbach S., J. Milliron D.. Defect engineering in plasmonic metal oxide nanocrystals. Nano Lett., 2016, 16(5): 3390
https://doi.org/10.1021/acs.nanolett.6b01171
107 Kim J., Agrawal A., Krieg F., Bergerud A., J. Milliron D.. The interplay of shape and crystalline anisotropies in plasmonic semiconductor nanocrystals. Nano Lett., 2016, 16(6): 3879
https://doi.org/10.1021/acs.nanolett.6b01390
108 Auguié B., L. Barnes W.. Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett., 2008, 101(14): 143902
https://doi.org/10.1103/PhysRevLett.101.143902
109 A. Urzhumov Y., Shvets G., Fan J., Capasso F., Brandl D., Nordlander P.. Plasmonic nanoclusters: A path towards negative-index metafluids. Opt. Express, 2007, 15(21): 14129
https://doi.org/10.1364/OE.15.014129
110 Boulais E., Lachaine R., Hatef A., Meunier M.. Plasmonics for pulsed-laser cell nanosurgery: Fundamentals and applications. J. Photochem. Photobiol. Photochem. Rev., 2013, 17: 26
https://doi.org/10.1016/j.jphotochemrev.2013.06.001
111 Yurtsever A., H. Zewail A.. Direct visualization of near-fields in nanoplasmonics and nanophotonics. Nano Lett., 2012, 12(6): 3334
https://doi.org/10.1021/nl301643k
112 Dong Y., Gu Y., Zou Y., Song J., Xu L., Li J., Xue J., Li X., Zeng H.. Improving all‐inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small, 2016, 12(40): 5622
https://doi.org/10.1002/smll.201602366
113 A. Atwater H., Polman A.. Plasmonics for improved photovoltaic devices. Nat. Mater., 2010, 9(3): 205
https://doi.org/10.1038/nmat2629
114 Furube A., Yoshinaga T., Kanehara M., Eguchi M., Teranishi T.. Electric-field enhancement inducing near-infrared two-photon absorption in an indium-tin oxide nanoparticle film. Angew. Chem. Int. Ed., 2012, 51(11): 2640
https://doi.org/10.1002/anie.201107450
115 Agrawal A., Singh A., Yazdi S., Singh A., K. Ong G., Bustillo K., W. Johns R., Ringe E., J. Milliron D.. Resonant coupling between molecular vibrations and localized surface plasmon resonance of faceted metal oxide nanocrystals. Nano Lett., 2017, 17(4): 2611
https://doi.org/10.1021/acs.nanolett.7b00404
116 Sönnichsen C., Franzl T., Wilk T., von Plessen G., Feldmann J., Wilson O., Mulvaney P.. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett., 2002, 88(7): 077402
https://doi.org/10.1103/PhysRevLett.88.077402
117 L. Brongersma M., J. Halas N., Nordlander P.. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol., 2015, 10(1): 25
https://doi.org/10.1038/nnano.2014.311
118 W. Knight M., Wang Y., S. Urban A., Sobhani A., Y. Zheng B., Nordlander P., J. Halas N.. Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett., 2013, 13(4): 1687
https://doi.org/10.1021/nl400196z
119 Lehmann J., Merschdorf M., Pfeiffer W., Thon A., Voll S., Gerber G.. Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission. Phys. Rev. Lett., 2000, 85(14): 2921
https://doi.org/10.1103/PhysRevLett.85.2921
120 W. Knight M., Sobhani H., Nordlander P., J. Halas N.. Photodetection with active optical antennas. Science, 2011, 332(6030): 702
https://doi.org/10.1126/science.1203056
121 Chalabi H., Schoen D., L. Brongersma M.. Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett., 2014, 14(3): 1374
https://doi.org/10.1021/nl4044373
122 Zhao G., Kozuka H., Yoko T.. Sol‒gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles. Thin Solid Films, 1996, 277(1-2): 147
https://doi.org/10.1016/0040-6090(95)08006-6
123 Tian Y., Tatsuma T.. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. (Camb.), 2004, (16): 1810
https://doi.org/10.1039/b405061d
124 Tian Y., Tatsuma T.. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc., 2005, 127(20): 7632
https://doi.org/10.1021/ja042192u
125 Linic S., Christopher P., B. Ingram D.. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater., 2011, 10(12): 911
https://doi.org/10.1038/nmat3151
126 Mubeen S., Lee J., Singh N., Krämer S., D. Stucky G., Moskovits M.. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol., 2013, 8(4): 247
https://doi.org/10.1038/nnano.2013.18
127 Peters D.. An infrared detector utilizing internal photoemission. Proc. IEEE, 1967, 55(5): 704
https://doi.org/10.1109/PROC.1967.5648
128 Akbari A., Berini P.. Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide. Appl. Phys. Lett., 2009, 95(2): 021104
https://doi.org/10.1063/1.3171937
129 Goykhman I., Desiatov B., Khurgin J., Shappir J., Levy U.. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano Lett., 2011, 11(6): 2219
https://doi.org/10.1021/nl200187v
130 Scales C., Berini P.. Thin-film Schottky barrier photodetector models. IEEE J. Quantum Electron., 2010, 46(5): 633
https://doi.org/10.1109/JQE.2010.2046720
131 Faris S., Gustafson T., Wiesner J.. Detection of optical and infrared radiation with DC-biased electron-tunneling metal−barrier−metal diodes. IEEE J. Quantum Electron., 1973, 9(7): 737
https://doi.org/10.1109/JQE.1973.1077721
132 Heiblum M., Wang S., Whinnery J., Gustafson T.. Characteristics of integrated MOM junctions at dc and at optical frequencies. IEEE J. Quantum Electron., 1978, 14(3): 159
https://doi.org/10.1109/JQE.1978.1069765
133 Li X., Xiao D., Zhang Z.. Landau damping of quantum plasmons in metal nanostructures. New J. Phys., 2013, 15(2): 023011
https://doi.org/10.1088/1367-2630/15/2/023011
134 Watanabe K., Menzel D., Nilius N., J. Freund H.. Photochemistry on metal nanoparticles. Chem. Rev., 2006, 106(10): 4301
https://doi.org/10.1021/cr050167g
135 B. Khurgin J.. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol., 2015, 10(1): 2
https://doi.org/10.1038/nnano.2014.310
136 Ben‐Shahar Y., Scotognella F., Waiskopf N., Kriegel I., Dal Conte S., Cerullo G., Banin U.. Effect of surface coating on the photocatalytic function of hybrid CdS–Au nanorods. Small, 2015, 11(4): 462
https://doi.org/10.1002/smll.201402262
137 Ben-Shahar Y., Scotognella F., Kriegel I., Moretti L., Cerullo G., Rabani E., Banin U.. Optimal metal domain size for photocatalysis with hybrid semiconductor−metal nanorods. Nat. Commun., 2016, 7(1): 10413
https://doi.org/10.1038/ncomms10413
138 Du L., Furube A., Hara K., Katoh R., Tachiya M.. Ultrafast plasmon induced electron injection mechanism in gold–TiO2 nanoparticle system. J. Photochem. Photobiol. Photochem. Rev., 2013, 15: 21
https://doi.org/10.1016/j.jphotochemrev.2012.11.001
139 Furube A., Du L., Hara K., Katoh R., Tachiya M.. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc., 2007, 129(48): 14852
https://doi.org/10.1021/ja076134v
140 Du L., Furube A., Yamamoto K., Hara K., Katoh R., Tachiya M.. Plasmon-induced charge separation and recombination dynamics in gold−TiO2 nanoparticle systems: dependence on TiO2 particle size. J. Phys. Chem. C, 2009, 113(16): 6454
https://doi.org/10.1021/jp810576s
141 Liu T., Wang Q., Zhang C., Li X., Hu J.. High performance of hot-carrier generation, transport and injection in TiN/TiO2 junction. Front. Phys., 2022, 17(5): 53509
https://doi.org/10.1007/s11467-022-1171-4
142 Yang W., Liu Y., A. Cullen D., R. McBride J., Lian T.. Harvesting sub-bandgap IR photons by photothermionic hot electron transfer in a plasmonic p–n junction. Nano Lett., 2021, 21(9): 4036
https://doi.org/10.1021/acs.nanolett.1c00932
143 O. Govorov A., Zhang H., K. Gun’ko Y.. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J. Phys. Chem. C, 2013, 117(32): 16616
https://doi.org/10.1021/jp405430m
144 Manjavacas A., G. Liu J., Kulkarni V., Nordlander P.. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano, 2014, 8(8): 7630
https://doi.org/10.1021/nn502445f
145 Sundararaman R., Narang P., S. Jermyn A., Goddard III, A. Atwater H.. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun., 2014, 5(1): 5788
https://doi.org/10.1038/ncomms6788
146 Ranno L., D. Forno S., Lischner J.. Computational design of bimetallic core−shell nanoparticles for hot-carrier photocatalysis. npj Comput, Mater., 2018, 4(1): 31
https://doi.org/10.1038/s41524-018-0088-5
147 Bernardi M.Vigil-Fowler D.S. Ong C.B. Neaton J.G. Louie S., Ab initio study of hot electrons in GaAs, Proc. Natl. Acad. Sci. USA 112(17), 5291 (2015)
148 Lian Z., Sakamoto M., Matsunaga H., J. M. Vequizo J., Yamakata A., Haruta M., Kurata H., Ota W., Sato T., Teranishi T.. Near infrared light induced plasmonic hot hole transfer at a nano-heterointerface. Nat. Commun., 2018, 9(1): 2314
https://doi.org/10.1038/s41467-018-04630-w
149 Hao F., Sonnefraud Y., V. Dorpe P., A. Maier S., J. Halas N., Nordlander P.. Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance. Nano Lett., 2008, 8(11): 3983
https://doi.org/10.1021/nl802509r
150 Zhang Y.. Theory of plasmonic hot-carrier generation and relaxation. J. Phys. Chem. A, 2021, 125(41): 9201
https://doi.org/10.1021/acs.jpca.1c05837
151 A. Butt M.. Metal−insulator−metal waveguide-based plasmonic sensors: Fantasy or truth — A critical review. Appl. Res., 2023, 2: e202200099
https://doi.org/10.1002/appl.202200099
152 Y. Kong W., A. Wu G., Y. Wang K., F. Zhang T., F. Zou Y., D. Wang D., B. Luo L.. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv. Mater., 2016, 28(48): 10725
https://doi.org/10.1002/adma.201604049
153 Wang X., Liu K., Chen X., Li B., Jiang M., Zhang Z., Zhao H., Shen D.. Highly wavelength-selective enhancement of responsivity in Ag nanoparticle-modified ZnO UV photodetector. ACS Appl. Mater. Interfaces, 2017, 9(6): 5574
https://doi.org/10.1021/acsami.6b14430
154 Ouyang W., Teng F., Jiang M., Fang X.. ZnO film UV photodetector with enhanced performance: Heterojunction with CdMoO4 microplates and the hot electron injection effect of Au nanoparticles. Small, 2017, 13(39): 1702177
https://doi.org/10.1002/smll.201702177
155 Liu S., Y. Li M., Su D., Yu M., Kan H., Liu H., Wang X., Jiang S.. Broad-band high-sensitivity ZnO colloidal quantum dots/self-assembled Au nanoantennas heterostructures photodetectors. ACS Appl. Mater. Interfaces, 2018, 10(38): 32516
https://doi.org/10.1021/acsami.8b09442
156 Li M., Zhao M., Jiang D., Yang M., Li Q., Shan C., Zhou X., Duan Y., Wang N., Sun J.. Optimizing the spacing of Ag nanoparticle layers to enhance the performance of ZnO/Ag/ZnO/Ag/ZnO multilayer-structured UV photodetectors. Sens. Actuators A Phys., 2019, 297: 111501
https://doi.org/10.1016/j.sna.2019.07.025
157 Liu Y., Zhang X., Su J., Li H., Zhang Q., Gao Y.. Ag nanoparticles@ ZnO nanowire composite arrays: An absorption enhanced UV photodetector. Opt. Express, 2014, 22(24): 30148
https://doi.org/10.1364/OE.22.030148
158 Lu J., Xu C., Dai J., Li J., Wang Y., Lin Y., Li P.. Improved UV photoresponse of ZnO nanorod arrays by resonant coupling with surface plasmons of Al nanoparticles. Nanoscale, 2015, 7(8): 3396
https://doi.org/10.1039/C4NR07114J
159 C. Yang C., C. Yu H., K. Su Y., Y. Chuang M., H. Hsiao C., H. Kao T.. Noise properties of ag nanoparticle-decorated ZnO nanorod UV photodetectors. IEEE Photonics Technol. Lett., 2016, 28(4): 379
https://doi.org/10.1109/LPT.2015.2494065
160 L. Hsu C., C. Wang Y., P. Chang S., J. Chang S.. Ultraviolet/visible photodetectors based on p–n NiO/ZnO nanowires decorated with Pd nanoparticles. ACS Appl. Nano Mater., 2019, 2(10): 6343
https://doi.org/10.1021/acsanm.9b01333
161 Noh Y., Shin J., Lee H., Y. Kim G., Kumar M., Lee D.. Decoration of Ag nanoparticle on ZnO nanowire by intense pulsed light and enhanced UV photodetector. Chemosensors (Basel), 2021, 9(11): 321
https://doi.org/10.3390/chemosensors9110321
162 Y. Li M., Liu S., Huang Z., Ai Y., Shen K., Lu H., Li M., Wu J.. Facile fabrication of ultrasensitive honeycomb nano-mesh ultraviolet photodetectors based on self-assembled plasmonic architectures. ACS Appl. Mater. Interfaces, 2021, 13(30): 35972
https://doi.org/10.1021/acsami.1c08739
163 Li Q., Huang J., Meng J., Li Z.. Enhanced performance of a self-powered ZnO photodetector by coupling LSPR-inspired pyro-phototronic effect and piezo-phototronic effect. Adv. Opt. Mater., 2022, 10(7): 2102468
https://doi.org/10.1002/adom.202102468
164 Goswami L., Aggarwal N., Krishna S., Singh M., Vashishtha P., P. Singh S., Husale S., Pandey R., Gupta G.. Au-nanoplasmonics-mediated surface plasmon-enhanced GaN nanostructured UV photodetectors. ACS Omega, 2020, 5(24): 14535
https://doi.org/10.1021/acsomega.0c01239
165 Kunwar S., Pandit S., H. Jeong J., Lee J.. Improved photoresponse of UV photodetectors by the incorporation of plasmonic nanoparticles on GaN through the resonant coupling of localized surface plasmon resonance. Nano-Micro Lett., 2020, 12(1): 91
https://doi.org/10.1007/s40820-020-00437-x
166 Lin S., Kulkarni R., Mandavkar R., A. Habib M., Burse S., Kunwar S., Lee J.. Surmounting the interband threshold limit by the hot electron excitation of multi-metallic plasmonic AgAuCu NPs for UV photodetector application. CrystEngComm, 2022, 24(22): 4134
https://doi.org/10.1039/D2CE00367H
167 Arora K., P. Singh D., Fischer P., Kumar M.. Spectrally selective and highly sensitive UV photodetection with UV-A, C band specific polarity switching in silver plasmonic nanoparticle enhanced gallium oxide thin-film. Adv. Opt. Mater., 2020, 8(16): 2000212
https://doi.org/10.1002/adom.202000212
168 Liu Y., Chen W., Zhao L., Guo J., Yang C., Wang X., Huang W., Ren T., Xu J.. Plasmon‐enhanced InGaZnO ultraviolet photodetectors tuned by ferroelectric HfZrO. Adv. Electron. Mater., 2019, 5(12): 1900588
https://doi.org/10.1002/aelm.201900588
169 Han S., Xia H., Lu Y., Hu S., Zhang D., Xu W., Fang M., Liu W., Cao P., Zhu D.. Great enhancement effect of 20–40 nm Ag NPs on solar-blind UV response of the mixed-phase MgZnO detector. ACS Omega, 2021, 6(10): 6699
https://doi.org/10.1021/acsomega.0c05555
170 Shi X., Yang Z., Yin S., Zeng H.. Al plasmon-enhanced diamond solar-blind UV photodetector by coupling of plasmon and excitons. Mater. Technol., 2016, 31(9): 544
https://doi.org/10.1080/10667857.2016.1204511
171 Mondal S., Dalal A., Mondal A.. Al nanoparticles decorated Er: TiO2 thin film based plasmonic photodetector. Ceram. Int., 2023, 49(4): 6289
https://doi.org/10.1016/j.ceramint.2022.10.133
172 Fang Z., Liu Z., Wang Y., M. Ajayan P., Nordlander P., J. Halas N.. Graphene-antenna sandwich photodetector. Nano Lett., 2012, 12(7): 3808
https://doi.org/10.1021/nl301774e
173 Lee S., Lee M., Shin H., Choi D.. Control of density and LSPR of Au nanoparticles on graphene. Nanotechnology, 2013, 24(27): 275702
https://doi.org/10.1088/0957-4484/24/27/275702
174 Jang S., Hwang E., Lee Y., Lee S., H. Cho J.. Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals. Nano Lett., 2015, 15(4): 2542
https://doi.org/10.1021/acs.nanolett.5b00105
175 Miao J., Hu W., Jing Y., Luo W., Liao L., Pan A., Wu S., Cheng J., Chen X., Lu W.. Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays. Small, 2015, 11(20): 2392
https://doi.org/10.1002/smll.201403422
176 Selamneni V., Raghavan H., Hazra A., Sahatiya P.. MoS2/paper decorated with metal nanoparticles (Au, Pt, and Pd) based plasmonic‐enhanced broadband (visible‐NIR) flexible photodetectors. Adv. Mater. Interfaces, 2021, 8(6): 2001988
https://doi.org/10.1002/admi.202001988
177 Li G., Song Y., Feng S., Feng L., Liu Z., Leng B., Fu Z., Li J., Jiang X., Liu B., Zhang X.. Improved optoelectronic performance of MoS2 photodetector via localized surface plasmon resonance coupling of double-layered Au nanoparticles with sandwich structure. ACS Appl. Electron. Mater., 2022, 4(4): 1626
https://doi.org/10.1021/acsaelm.1c01300
178 Li Y., G. DiStefano J., A. Murthy A., D. Cain J., D. Hanson E., Li Q., C. Castro F., Chen X., P. Dravid V.. Superior plasmonic photodetectors based on Au@MoS2 core–shell heterostructures. ACS Nano, 2017, 11(10): 10321
https://doi.org/10.1021/acsnano.7b05071
179 Zhang J., Zhang X., Li J., Ma Z., Leng B., Xia Q., Shen L., Song Y., Fu Z., Feng S., Feng L., Liu Z., Yuldashev S., Jiang X., Liu B.. Simultaneous visible and ultraviolet photoresponse improvement of MoS2/ZnO heterostructure photodetector via direct resonant coupling of Au nanoparticles localized surface plasmon resonance. Opt. Mater., 2022, 124: 111997
https://doi.org/10.1016/j.optmat.2022.111997
180 J. Hoffman A., Alekseyev L., S. Howard S., J. Franz K., Wasserman D., A. Podolskiy V., E. Narimanov E., L. Sivco D., Gmachl C.. Negative refraction in semiconductor metamaterials. Nat. Mater., 2007, 6(12): 946
https://doi.org/10.1038/nmat2033
181 Fang Z., Wang Y., E. Schlather A., Liu Z., M. Ajayan P., J. García de Abajo F., Nordlander P., Zhu X., J. Halas N.. Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett., 2014, 14(1): 299
https://doi.org/10.1021/nl404042h
182 Xia Z., Li P., Wang Y., Song T., Zhang Q., Sun B.. Solution-processed gold nanorods integrated with graphene for near-infrared photodetection via hot carrier injection. ACS Appl. Mater. Interfaces, 2015, 7(43): 24136
https://doi.org/10.1021/acsami.5b07299
183 Deng B., Guo Q., Li C., Wang H., Ling X., B. Farmer D., Han S., Kong J., Xia F.. Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures. ACS Nano, 2016, 10(12): 11172
https://doi.org/10.1021/acsnano.6b06203
184 S. Rohizat N., H. A. Ripain A., S. Lim C., L. Tan C., Zakaria R.. Plasmon-enhanced reduced graphene oxide photodetector with monometallic of Au and Ag nanoparticles at VIS–NIR region. Sci. Rep., 2021, 11(1): 19688
https://doi.org/10.1038/s41598-021-99189-w
185 B. Dai Z., Cen G., Zhang Z., Lv X., Liu K., Li Z.. Near-field infrared response of graphene on copper substrate. Front. Phys., 2022, 17(4): 43502
https://doi.org/10.1007/s11467-021-1140-3
186 Podder S., R. Pal A.. Plasmonic visible-NIR photodetector based on hot electrons extracted from nanostructured titanium nitride. J. Appl. Phys., 2019, 126(8): 083108
https://doi.org/10.1063/1.5101009
187 Lesuffleur A., Im H., C. Lindquist N., H. Oh S.. Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors. Appl. Phys. Lett., 2007, 90(24): 243110
https://doi.org/10.1063/1.2747668
188 C. Chuang P.C. Liao P.F. Chen Y., Enhancing the sensitivity of localized surface plasmon resonance (LSPR) biosensors using nanorods and DNA aptamers, Plasmonics in Biology and Medicine XII 2015, 98
189 Takei H., Bessho N., Ishii A., Okamoto T., Beyer A., Vieker H., Gölzhäuser A.. Enhanced infrared LSPR sensitivity of cap-shaped gold nanoparticles coupled to a metallic film. Langmuir, 2014, 30(8): 2297
https://doi.org/10.1021/la403407g
190 Bauch M., Toma K., Toma M., Zhang Q., Dostalek J.. Plasmon-enhanced fluorescence biosensors: A review. Plasmonics, 2014, 9(4): 781
https://doi.org/10.1007/s11468-013-9660-5
191 Campion A., Kambhampati P.. Surface-enhanced Raman scattering. Chem. Soc. Rev., 1998, 27(4): 241
https://doi.org/10.1039/a827241z
192 Tang L., Li J.. Plasmon-based colorimetric nanosensors for ultrasensitive molecular diagnostics. ACS Sens., 2017, 2(7): 857
https://doi.org/10.1021/acssensors.7b00282
193 Chen S., Svedendahl M., P. Van Duyne R., Käll M.. Plasmon-enhanced colorimetric ELISA with single molecule sensitivity. Nano Lett., 2011, 11(4): 1826
https://doi.org/10.1021/nl2006092
194 Liang Y., Zhang H., Zhu W., Agrawal A., Lezec H., Li L., Peng W., Zou Y., Lu Y., Xu T.. Subradiant dipolar interactions in plasmonic nanoring resonator array for integrated label-free biosensing. ACS Sens., 2017, 2(12): 1796
https://doi.org/10.1021/acssensors.7b00607
195 Wang X.Zhu J.Tong H.Yang X.Wu X. Pang Z.Yang H.Qi Y., A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer, Chin. Phys. B 28(4), 044201 (2019)
196 Chen T., Li S., Sun H.. Metamaterials application in sensing. Sensors (Basel), 2012, 12(3): 2742
https://doi.org/10.3390/s120302742
197 Wu C., B. Khanikaev A., Adato R., Arju N., A. Yanik A., Altug H., Shvets G.. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater., 2012, 11(1): 69
https://doi.org/10.1038/nmat3161
198 Zhu J., Wang Z., Lin S., Jiang S., Liu X., Guo S.. Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker. Biosens. Bioelectron., 2020, 150: 111905
https://doi.org/10.1016/j.bios.2019.111905
199 I. Park Y., Im H., Weissleder R., Lee H.. Nanostar clustering improves the sensitivity of plasmonic assays. Bioconjug. Chem., 2015, 26(8): 1470
https://doi.org/10.1021/acs.bioconjchem.5b00343
200 Cheng H., Kamegawa T., Mori K., Yamashita H.. Surfactant‐free nonaqueous synthesis of plasmonic molybdenum oxide nanosheets with enhanced catalytic activity for hydrogen generation from ammonia borane under visible light. Angew. Chem. Int. Ed., 2014, 53(11): 2910
https://doi.org/10.1002/anie.201309759
201 Zhang Z.Huang J.Fang Y.Zhang M.Liu K. Dong B., A nonmetal plasmonic Z‐scheme photocatalyst with UV‐ to NIR‐driven photocatalytic protons reduction, Adv. Mater. 29(18), 1606688 (2017)
202 Lou Z., Zhu M., Yang X., Zhang Y., H. Whangbo M., Li B., Huang B.. Continual injection of photoinduced electrons stabilizing surface plasmon resonance of non-elemental-metal plasmonic photocatalyst CdS/WO3−x for efficient hydrogen generation. Appl. Catal. B, 2018, 226: 10
https://doi.org/10.1016/j.apcatb.2017.12.023
203 Mikac L., Ivanda M., Gotić M., Mihelj T., Horvat L.. Synthesis and characterization of silver colloidal nanoparticles with different coatings for SERS application. J. Nanopart. Res., 2014, 16(12): 2748
https://doi.org/10.1007/s11051-014-2748-9
204 Y. Chen H., H. Lin M., Y. Wang C., M. Chang Y., Gwo S.. Large-scale hot spot engineering for quantitative SERS at the single-molecule scale. J. Am. Chem. Soc., 2015, 137(42): 13698
https://doi.org/10.1021/jacs.5b09111
205 Zhou Y., Ding R., Joshi P., Zhang P.. Quantitative surface-enhanced Raman measurements with embedded internal reference. Anal. Chim. Acta, 2015, 874: 49
https://doi.org/10.1016/j.aca.2015.03.016
[1] Chang Lu, Shunhui Zhang, Meili Chen, Haitao Chen, Mengjian Zhu, Zhengwei Zhang, Jun He, Lin Zhang, Xiaoming Yuan. Van der Waals epitaxy of type-II band alignment CsPbI3/TMDC heterostructure for optoelectronic applications[J]. Front. Phys. , 2024, 19(5): 53206-.
[2] Chaowei He, Jiantian Zhang, Li Gong, Peng Yu. Room-temperature ferroelectricity in van der Waals SnP2S6[J]. Front. Phys. , 2024, 19(4): 43202-.
[3] Ran Ma, Qiuhong Tan, Peizhi Yang, Yingkai Liu, Qianjin Wang. High performance photodetector based on few-layer MoTe2/CdS0.42Se0.58 flake heterojunction[J]. Front. Phys. , 2024, 19(4): 43204-.
[4] Hao Zhang, Mohsin Ijaz, Richard J. Blaikie. Recent review of surface plasmons and plasmonic hot electron effects in metallic nanostructures[J]. Front. Phys. , 2023, 18(6): 63602-.
[5] Kaiyue He, Jijie Zhu, Zishun Li, Zhe Chen, Hehe Zhang, Chao Liu, Xu Zhang, Shuo Wang, Peiyi Zhao, Yu Zhou, Shizheng Zhang, Yao Yin, Xiaorui Zheng, Wei Huang, Lin Wang. High-sensitive two-dimensional PbI2 photodetector with ultrashort channel[J]. Front. Phys. , 2023, 18(6): 63305-.
[6] Mengting Song, Nan An, Yuke Zou, Yue Zhang, Wenjuan Huang, Huayi Hou, Xiangbai Chen. Epitaxial growth of 2D gallium selenide flakes for strong nonlinear optical response and visible-light photodetection[J]. Front. Phys. , 2023, 18(5): 52302-.
[7] Xiao-Hui Li, Yi-Xuan Guo, Yujie Ren, Jia-Jun Peng, Ji-Shu Liu, Cong Wang, Han Zhang. Narrow-bandgap materials for optoelectronics applications[J]. Front. Phys. , 2022, 17(1): 13304-.
[8] Changbin Zhao, Muhammad Umair Ali, Jiaoyi Ning, Hong Meng. Organic single crystal phototransistors: Recent approaches and achievements[J]. Front. Phys. , 2021, 16(4): 43202-.
[9] Hong-Yan Liang,Hong Wei,Hong-Xing Xu. Deviating from the nanorod shape: Shape-dependent plasmonic properties of silver nanorice and nanocarrot structures[J]. Front. Phys. , 2016, 11(2): 117301-.
[10] Mai Takase,Satoshi Yasuda,Kei Murakoshi. Single-site surface-enhanced Raman scattering beyond spectroscopy[J]. Front. Phys. , 2016, 11(2): 117803-.
[11] Arash Ahmadivand, Saeed Golmohammadi. Fano resonances in complex plasmonic super-nanoclusters: The effect of environmental modifications on the LSPR sensitivity[J]. Front. Phys. , 2015, 10(2): 104203-.
[12] Yizhuo He, Junxue Fu, Yiping Zhao. Oblique angle deposition and its applications in plasmonics[J]. Front. Phys. , 2014, 9(1): 47-59.
[13] Er-jia GUO, Hui-bin Lü, Kui-juan JIN, Guo-zhen YANG. Ultrafast photoelectric effects and high-sensitive photovoltages in perovskite oxides and heterojunctions[J]. Front Phys Chin, 2010, 5(2): 176-182.
[14] ZHANG Guan-jie, SHU Yong-chun, YAO Jiang-hong, SHU Qiang, DENG Hao-liang, JIA Guo-zhi, WANG Zhan-guo. Characteristics and developments of quantum-dot infrared photodetectors[J]. Front. Phys. , 2006, 1(3): 334-338.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed