|
|
Localized surface plasmon resonance enhanced photodetector: Physical model, enhanced mechanism and applications |
Jiangtong Su1,3, Xiaoqi Hou2,3, Ning Dai1,3,4,5( ), Yang Li1,3,4( ) |
1. School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China 2. School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China 3. University of Chinese Academy of Sciences, Beijing 100049, China 4. Research Institute of Intelligent Sensing, Zhejiang Lab, Hangzhou 311100, China 5. Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China |
|
|
Abstract Localized surface plasmon resonance (LSPR) is an intriguing phenomenon that can break diffraction limitations and exhibit excellent light-confinement abilities, making it an attractive strategy for enhancing the light absorption capabilities of photodetectors. However, the complex mechanism behind this enhancement is still plaguing researchers, especially for hot-electron injection process, which inhibits further optimization and development. A clear guideline for basic physical model, enhancement mechanism, material selection and architectural design for LSPR photodetector are still required. This review firstly describes the mainstream understanding of fundamental physical modes of LSPR and related enhancement mechanism for LSPR photodetectors. Then, the universal strategies for tuning the LSPR frequency are introduced. Besides, the state-of-the-art progress in the development of LSPR photodetectors is briefly summarized. Finally, we highlight the remaining challenges and issues needed to be resolved in the future research.
|
Keywords
localized surface plasmon resonance
photodetector
plasmonic nanomaterials
hot electron
|
Corresponding Author(s):
Ning Dai,Yang Li
|
Issue Date: 28 June 2024
|
|
1 |
Poglitsch A., Waelkens C., Geis N., Feuchtgruber H., Vandenbussche B.. et al.. The photodetector array camera and spectrometer (PACS) on the Herschel space observatory. Astron. Astrophys., 2010, 518: L2
https://doi.org/10.1051/0004-6361/201014535
|
2 |
A. Yotter R.M. Wilson D., A review of photodetectors for sensing light-emitting reporters in biological systems, IEEE Sens. J. 3(3), 288 (2003)
|
3 |
Casas A.. Clinical uses of 5-aminolaevulinic acid in photodynamic treatment and photodetection of cancer: A review. Cancer Lett., 2020, 490: 165
https://doi.org/10.1016/j.canlet.2020.06.008
|
4 |
Chen W.Kan T.Ajiki Y.Matsumoto K.Shimoyama I., NIR spectrometer using a Schottky photodetector enhanced by grating-based SPR, Opt. Express 24(22), 25797 (2016)
|
5 |
Rutz F., Bächle A., Aidam R., Niemasz J., Bronner W., Zibold A., Rehm R.. InGaAs SWIR photodetectors for night vision. Infrared Technology and Applications XLV, 2019, 11002: 202
https://doi.org/10.1117/12.2518634
|
6 |
Rutz F., Aidam R., Bächle A., Heussen H., Bronner W., Rehm R., Benecke M., Brunner S., Göhler B., Lutzmann P., Sieck A.. InGaAs-based SWIR photodetectors for night vision and gated viewing. Electro-Optical and Infrared Systems: Technology and Applications XV, 2018, 10795: 1079503
https://doi.org/10.1117/12.2325665
|
7 |
Pospischil A.Humer M.M. Furchi M.Bachmann D.Guider R.Fromherz T. Mueller T., CMOS-compatible graphene photodetector covering all optical communication bands, Nat. Photonics 7(11), 892 (2013)
|
8 |
Bao C., Yang J., Bai S., Xu W., Yan Z., Xu Q., Liu J., Zhang W., Gao F.. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv. Mater., 2018, 30(38): 1803422
https://doi.org/10.1002/adma.201803422
|
9 |
Rogalski A.. Infrared detectors: Status and trends. Prog. Quantum Electron., 2003, 27(2−3): 59
https://doi.org/10.1016/S0079-6727(02)00024-1
|
10 |
Liu R., Wang F., Liu L., He X., Chen J., Li Y., Zhai T.. Band alignment engineering in two‐dimensional transition metal dichalcogenide‐based heterostructures for photodetectors. Small Struct., 2021, 2(3): 2000136
https://doi.org/10.1002/sstr.202000136
|
11 |
Li S.Zhang Y. Yang W.Liu H.Fang X., 2D perovskite Sr2Nb3O10 for high‐performance UV photodetectors, Adv. Mater. 32(7), 1905443 (2020)
|
12 |
Koppens F., Mueller T., Avouris P., Ferrari A., S. Vitiello M., Polini M.. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 2014, 9(10): 780
https://doi.org/10.1038/nnano.2014.215
|
13 |
Xie C., Mak C., Tao X., Yan F.. Photodetectors based on two‐dimensional layered materials beyond graphene. Adv. Funct. Mater., 2017, 27(19): 1603886
https://doi.org/10.1002/adfm.201603886
|
14 |
Wang X.Wang P.Wang J.Hu W.Zhou X. Guo N.Huang H.Sun S.Shen H.Lin T., Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics, arXiv: 1502.04439 (2015)
|
15 |
Zhai T., Li L., Wang X., Fang X., Bando Y., Golberg D.. Recent developments in one‐dimensional inorganic nanostructures for photodetectors. Adv. Funct. Mater., 2010, 20(24): 4233
https://doi.org/10.1002/adfm.201001259
|
16 |
Zhai T.Fang X.Liao M.Xu X.Zeng H. Yoshio B.Golberg D., A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors, Sensors (Basel) 9(8), 6504 (2009)
|
17 |
Zhai T., Li L., Ma Y., Liao M., Wang X., Fang X., Yao J., Bando Y., Golberg D.. One-dimensional inorganic nanostructures: Synthesis, field-emission and photodetection. Chem. Soc. Rev., 2011, 40(5): 2986
https://doi.org/10.1039/c0cs00126k
|
18 |
M. Asuo I., Gedamu D., Ka I., F. Gerlein L., X. Fortier F., Pignolet A., G. Cloutier S., Nechache R.. High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector. Nano Energy, 2018, 51: 324
https://doi.org/10.1016/j.nanoen.2018.06.057
|
19 |
X. Li S., S. Xu Y., L. Li C., Guo Q., Wang G., Xia H., H. Fang H., Shen L., B. Sun H.. Perovskite single‐crystal microwire‐array photodetectors with performance stability beyond 1 year. Adv. Mater., 2020, 32(28): 2001998
https://doi.org/10.1002/adma.202001998
|
20 |
Wang J., S. Gudiksen M., Duan X., Cui Y., M. Lieber C.. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science, 2001, 293(5534): 1455
https://doi.org/10.1126/science.1062340
|
21 |
Thunich S., Prechtel L., Spirkoska D., Abstreiter G., Fontcuberta i Morral A., W. Holleitner A.. Photocurrent and photoconductance properties of a GaAs nanowire. Appl. Phys. Lett., 2009, 95(8): 083111
https://doi.org/10.1063/1.3193540
|
22 |
Konstantatos G., Howard I., Fischer A., Hoogland S., Clifford J., Klem E., Levina L., H. Sargent E.. Ultrasensitive solution-cast quantum dot photodetectors. Nature, 2006, 442(7099): 180
https://doi.org/10.1038/nature04855
|
23 |
Livache C.Martinez B.Goubet N.Gréboval C.Qu J.Chu A.Royer S.Ithurria S. G. Silly M.Dubertret B.Lhuillier E., A colloidal quantum dot infrared photodetector and its use for intraband detection, Nat. Commun. 10(1), 2125 (2019)
|
24 |
Ren Z., Sun J., Li H., Mao P., Wei Y., Zhong X., Hu J., Yang S., Wang J.. Bilayer PbS quantum dots for high‐performance photodetectors. Adv. Mater., 2017, 29(33): 1702055
https://doi.org/10.1002/adma.201702055
|
25 |
Kim J.M. Kwon S.K. Kang Y.H. Kim Y.J. Lee M. Han K.Facchetti A.G. Kim M.K. Park S., A skin-like two-dimensionally pixelized full-color quantum dot photodetector, Sci. Adv. 5(11), eaax8801 (2019)
|
26 |
K. Gramotnev D., I. Bozhevolnyi S.. Plasmonics beyond the diffraction limit. Nat. Photonics, 2010, 4(2): 83
https://doi.org/10.1038/nphoton.2009.282
|
27 |
Zhang J., Wang Y., Li D., Sun Y., Jiang L.. Engineering surface plasmons in metal/nonmetal structures for highly desirable plasmonic photodetectors. ACS Mater. Lett., 2022, 4(2): 343
https://doi.org/10.1021/acsmaterialslett.1c00768
|
28 |
Wang H., Li S., Ai R., Huang H., Shao L., Wang J.. Plasmonically enabled two-dimensional material-based optoelectronic devices. Nanoscale, 2020, 12(15): 8095
https://doi.org/10.1039/C9NR10755J
|
29 |
Wang Y., Zhang J., Liang W., Yang H., Guan T., Zhao B., Sun Y., Chi L., Jiang L.. Rational design of plasmonic metal nanostructures for solar energy conversion. CCS Chem., 2022, 4(4): 1153
https://doi.org/10.31635/ccschem.021.202000732
|
30 |
Li J., Lou Z., Li B.. Engineering plasmonic semiconductors for enhanced photocatalysis. J. Mater. Chem. A, 2021, 9(35): 18818
https://doi.org/10.1039/D1TA04541E
|
31 |
Li S., Miao P., Zhang Y., Wu J., Zhang B., Du Y., Han X., Sun J., Xu P.. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv. Mater., 2021, 33(6): 2000086
https://doi.org/10.1002/adma.202000086
|
32 |
Hou W.B. Cronin S., A review of surface plasmon resonance‐enhanced photocatalysis, Adv. Funct. Mater. 23(13), 1612 (2013)
|
33 |
A. Willets K., P. Van Duyne R.. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 2007, 58(1): 267
https://doi.org/10.1146/annurev.physchem.58.032806.104607
|
34 |
J. Sherry L., H. Chang S., C. Schatz G., P. Van Duyne R., J. Wiley B., Xia Y.. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett., 2005, 5(10): 2034
https://doi.org/10.1021/nl0515753
|
35 |
M. E. M. M. Daniyal W., W. Fen Y., Abdullah J., R. Sadrolhosseini A., A. Mahdi M.. Design and optimization of surface plasmon resonance spectroscopy for optical constant characterization and potential sensing application: Theoretical and experimental approaches. MDPI Photonics 8, 2021, (9): 361
https://doi.org/10.3390/photonics8090361
|
36 |
M. Mayer K.Hao F.Lee S.Nordlander P.H. Hafner J., A single molecule immunoassay by localized surface plasmon resonance, Nanotechnology 21(25), 255503 (2010)
|
37 |
Zijlstra P., M. Paulo P., Orrit M.. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotechnol., 2012, 7(6): 379
https://doi.org/10.1038/nnano.2012.51
|
38 |
L. Zhou X., Yang Y., Wang S., W. Liu X.. Surface plasmon resonance microscopy: From single‐molecule sensing to single‐cell imaging. Angew. Chem. Int. Ed., 2020, 59(5): 1776
https://doi.org/10.1002/anie.201908806
|
39 |
Lan L., Gao Y., Fan X., Li M., Hao Q., Qiu T.. The origin of ultrasensitive SERS sensing beyond plasmonics. Front. Phys., 2021, 16(4): 43300
https://doi.org/10.1007/s11467-021-1047-z
|
40 |
Xu H.. Surface-enhanced Raman scattering beyond plasmonics. Front. Phys., 2022, 17(2): 23601
https://doi.org/10.1007/s11467-021-1112-7
|
41 |
Zhang Y., Zhang F., Du B., Chen H., Wageh S., A. Al-Hartomy O., G. Al-Sehemi A., Zhang B., Zhang H.. Au/MXene based ultrafast all-optical switching. Front. Phys., 2023, 18(3): 33301
https://doi.org/10.1007/s11467-022-1248-0
|
42 |
Butun S.A. Cinel N.Ozbay E., LSPR enhanced MSM UV photodetectors, Nanotechnology 23(44), 444010 (2012)
|
43 |
Patra N., Manikandan M., Singh V., Palani I.. Investigations on LSPR effect of Cu/Al nanostructures on ZnO nanorods towards photodetector applications. J. Lumin., 2021, 238: 118331
https://doi.org/10.1016/j.jlumin.2021.118331
|
44 |
Gogurla N., K. Sinha A., Santra S., Manna S., K. Ray S.. Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices. Sci. Rep., 2014, 4(1): 6483
https://doi.org/10.1038/srep06483
|
45 |
S. Camacho A.. Plasmon nanolasers and plasmon optical tweezers. J. Nano Sci. Tech., 2015, 3: 10
|
46 |
A. Maier S., Plasmonics: Fundamentals and Applications, Springer, 2007, Vol. 1
|
47 |
Wiederrecht G., Handbook of Nanoscale Optics and Electronics, Elsevier, 2010
|
48 |
A. Huang J., B. Luo L.. Low‐dimensional plasmonic photodetectors: Recent progress and future opportunities. Adv. Opt. Mater., 2018, 6(8): 1701282
https://doi.org/10.1002/adom.201701282
|
49 |
V. Boriskina S., A. Cooper T., Zeng L., Ni G., K. Tong J., Tsurimaki Y., Huang Y., Meroueh L., Mahan G., Chen G.. Losses in plasmonics: From mitigating energy dissipation to embracing loss-enabled functionalities. Adv. Opt. Photonics, 2017, 9(4): 775
https://doi.org/10.1364/AOP.9.000775
|
50 |
B. Johnson P., W. Christy R.. Optical constants of the noble metals. Phys. Rev. B, 1972, 6(12): 4370
https://doi.org/10.1103/PhysRevB.6.4370
|
51 |
Daboo C., Baird M., Hughes H., Apsley N., Jones G., Frost J., Peacock D., Ritchie D.. Surface-plasmon-enhanced photodetection in planar Au GaAs Schottky junctions. Thin Solid Films, 1990, 189(1): 27
https://doi.org/10.1016/0040-6090(90)90023-7
|
52 |
Echtermeyer T., Milana S., Sassi U., Eiden A., Wu M., Lidorikis E., Ferrari A.. Surface plasmon polariton graphene photodetectors. Nano Lett., 2016, 16(1): 8
https://doi.org/10.1021/acs.nanolett.5b02051
|
53 |
S. Ee H., S. No Y., Kim J., G. Park H., K. Seo M.. Long-range surface plasmon polariton detection with a graphene photodetector. Opt. Lett., 2018, 43(12): 2889
https://doi.org/10.1364/OL.43.002889
|
54 |
Zhang H., Ijaz M., J. Blaikie R.. Recent review of surface plasmons and plasmonic hot electron effects in metallic nanostructures. Front. Phys., 2023, 18(6): 63602
https://doi.org/10.1007/s11467-023-1328-9
|
55 |
D. Jackson J., Classical Electrodynamics, Wiley, 1999
|
56 |
H. Yang W., C. Schatz G., P. Van Duyne R.. Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. J. Chem. Phys., 1995, 103(3): 869
https://doi.org/10.1063/1.469787
|
57 |
Yee K.. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antenn. Propag., 1966, 14(3): 302
https://doi.org/10.1109/TAP.1966.1138693
|
58 |
M. Jin J., The Finite Element Method in Electromagnetics, John Wiley & Sons, 2015
|
59 |
G. Chumanov. Jr Evanoff. Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem, 2005, 6(7): 1221
https://doi.org/10.1002/cphc.200500113
|
60 |
Rycenga M., M. Cobley C., Zeng J., Li W., H. Moran C., Zhang Q., Qin D., Xia Y.. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev., 2011, 111(6): 3669
https://doi.org/10.1021/cr100275d
|
61 |
Amendola V., Pilot R., Frasconi M., M. Maragò O., A. Iatì M.. Surface plasmon resonance in gold nanoparticles: A review. J. Phys.: Condens. Matter, 2017, 29(20): 203002
https://doi.org/10.1088/1361-648X/aa60f3
|
62 |
J. Wiley B., H. Im S., Y. Li Z., McLellan J., Siekkinen A., Xia Y.. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B, 2006, 110(32): 15666
https://doi.org/10.1021/jp0608628
|
63 |
Link S., B. Mohamed M., El-Sayed M.. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B, 1999, 103(16): 3073
https://doi.org/10.1021/jp990183f
|
64 |
Zeng J., Roberts S., Xia Y.. Nanocrystal‐based time-temperature indicators. Chemistry, 2010, 16(42): 12559
https://doi.org/10.1002/chem.201002665
|
65 |
Sun Y., Wiley B., Y. Li Z., Xia Y.. Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys. J. Am. Chem. Soc., 2004, 126(30): 9399
https://doi.org/10.1021/ja048789r
|
66 |
He W., Wu X., Liu J., Zhang K., Chu W., Feng L., Hu X., Zhou W., Xie S.. Formation of AgPt alloy nanoislands via chemical etching with tunable optical and catalytic properties. Langmuir, 2010, 26(6): 4443
https://doi.org/10.1021/la9034968
|
67 |
Chen J., Wiley B., McLellan J., Xiong Y., Y. Li Z., Xia Y.. Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett., 2005, 5(10): 2058
https://doi.org/10.1021/nl051652u
|
68 |
Prathap Chandran S., Ghatak J., V. Satyam P., Sastry M.. Interfacial deposition of Ag on Au seeds leading to Aucore Ag shell in organic media. J. Colloid Interface Sci., 2007, 312(2): 498
https://doi.org/10.1016/j.jcis.2007.03.032
|
69 |
Liu M., Guyot-Sionnest P.. Synthesis and optical characterization of Au/Ag core/shell nanorods. J. Phys. Chem. B, 2004, 108(19): 5882
https://doi.org/10.1021/jp037644o
|
70 |
D. Arnold M., G. Blaber M.. Optical performance and metallic absorption in nanoplasmonic systems. Opt. Express, 2009, 17(5): 3835
https://doi.org/10.1364/OE.17.003835
|
71 |
Blaber M., Arnold M., Harris N., Ford M., Cortie M.. Plasmon absorption in nanospheres: A comparison of sodium, potassium, aluminium, silver and gold. Physica B, 2007, 394(2): 184
https://doi.org/10.1016/j.physb.2006.12.011
|
72 |
H. Chan G., Zhao J., C. Schatz G., P. Van Duyne R.. Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. J. Phys. Chem. C, 2008, 112(36): 13958
https://doi.org/10.1021/jp804088z
|
73 |
K. Jha S., Ahmed Z., Agio M., Ekinci Y., F. Löffler J.. Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays. J. Am. Chem. Soc., 2012, 134(4): 1966
https://doi.org/10.1021/ja210446w
|
74 |
Zorić I., Zach M., Kasemo B., Langhammer C.. Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms. ACS Nano, 2011, 5(4): 2535
https://doi.org/10.1021/nn102166t
|
75 |
Castro-Lopez M., Brinks D., Sapienza R., F. Van Hulst N., for nonlinear plasmonics: Resonance-driven polarized luminescence of Al Aluminum. Ag, and Au nanoantennas. Nano Lett., 2011, 11(11): 4674
https://doi.org/10.1021/nl202255g
|
76 |
Stöckli T. , Bonard J. M. , Stadelmann P. A., and Châtelain A. , EELS investigation of plasmon excitations in aluminum nanospheres and carbon nanotubes, Z. Phys. D At. Mol. Clust. 40(1–4), 1 (1997)
|
77 |
Taguchi A., Saito Y., Watanabe K., Yijian S., Kawata S.. Tailoring plasmon resonances in the deep-ultraviolet by size-tunable fabrication of aluminum nanostructures. Appl. Phys. Lett., 2012, 101(8): 081110
https://doi.org/10.1063/1.4747489
|
78 |
W. Knight M., Liu L., Wang Y., Brown L., Mukherjee S., S. King N., O. Everitt H., Nordlander P., J. Halas N.. Aluminum plasmonic nanoantennas. Nano Lett., 2012, 12(11): 6000
https://doi.org/10.1021/nl303517v
|
79 |
Dubey A., Mishra R., H. Hsieh Y., W. Cheng C., H. Wu B., J. Chen L., Gwo S., J. Yen T.. Aluminum plasmonics enriched ultraviolet GaN photodetector with ultrahigh responsivity, detectivity, and broad bandwidth. Adv. Sci. (Weinh.), 2020, 7(24): 2002274
https://doi.org/10.1002/advs.202002274
|
80 |
Li M., Shi M., Wang B., Zhang C., Yang S., Yang Y., Zhou N., Guo X., Chen D., Li S., Mao H., Xiong J.. Quasi‐ordered nanoforests with hybrid plasmon resonances for broadband absorption and photodetection. Adv. Funct. Mater., 2021, 31(38): 2102840
https://doi.org/10.1002/adfm.202102840
|
81 |
Li J., Nie C., Sun F., Tang L., Zhang Z., Zhang J., Zhao Y., Shen J., Feng S., Shi H., Wei X.. Enhancement of the photoresponse of monolayer MoS2 photodetectors induced by a nanoparticle grating. ACS Appl. Mater. Interfaces, 2020, 12(7): 8429
https://doi.org/10.1021/acsami.9b20506
|
82 |
Chen Z., Li X., Wang J., Tao L., Long M., J. Liang S., K. Ang L., Shu C., K. Tsang H., B. Xu J.. Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity. ACS Nano, 2017, 11(1): 430
https://doi.org/10.1021/acsnano.6b06172
|
83 |
L. Greenberg B., Ganguly S., T. Held J., J. Kramer N., A. Mkhoyan K., S. Aydil E., R. Kortshagen U.. Nonequilibrium-plasma-synthesized ZnO nanocrystals with plasmon resonance tunable via Al doping and quantum confinement. Nano Lett., 2015, 15(12): 8162
https://doi.org/10.1021/acs.nanolett.5b03600
|
84 |
M. Schimpf A., E. Gunthardt C., D. Rinehart J., M. Mayer J., R. Gamelin D.. Controlling carrier densities in photochemically reduced colloidal ZnO nanocrystals: Size dependence and role of the hole quencher. J. Am. Chem. Soc., 2013, 135(44): 16569
https://doi.org/10.1021/ja408030u
|
85 |
Garcia G., Buonsanti R., L. Runnerstrom E., J. Mendelsberg R., Llordes A., Anders A., J. Richardson T., J. Milliron D.. Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. Nano Lett., 2011, 11(10): 4415
https://doi.org/10.1021/nl202597n
|
86 |
R. Gordon T., Paik T., R. Klein D., V. Naik G., Caglayan H., Boltasseva A., B. Murray C.. Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO). Nano Lett., 2013, 13(6): 2857
https://doi.org/10.1021/nl4012003
|
87 |
Liu Q., Sun C., He Q., Liu D., Khalil A., Xiang T., Wu Z., Wang J., Song L.. Ultrathin carbon layer coated MoO2 nanoparticles for high-performance near-infrared photothermal cancer therapy. Chem. Commun. (Camb.), 2015, 51(49): 10054
https://doi.org/10.1039/C5CC02016F
|
88 |
M. Mattox T., Bergerud A., Agrawal A., J. Milliron D.. Influence of shape on the surface plasmon resonance of tungsten bronze nanocrystals. Chem. Mater., 2014, 26(5): 1779
https://doi.org/10.1021/cm4030638
|
89 |
M. Luther J., K. Jain P., Ewers T., P. Alivisatos A.. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater., 2011, 10(5): 361
https://doi.org/10.1038/nmat3004
|
90 |
Gurin V., Prokopenko V., Alexeenko A., Wang S., Yumashev K., Prokoshin P.. Sol–gel silica glasses with nanoparticles of copper selenide: Synthesis, optics and structure. Int. J. Inorg. Mater., 2001, 3(6): 493
https://doi.org/10.1016/S1466-6049(01)00061-7
|
91 |
C. Marin B., W. Hsu S., Chen L., Lo A., W. Zwissler D., Liu Z., R. Tao A.. Plasmon-enhanced two-photon absorption in photoluminescent semiconductor nanocrystals. ACS Photonics, 2016, 3(4): 526
https://doi.org/10.1021/acsphotonics.6b00037
|
92 |
J. Rowe D., S. Jeong J., A. Mkhoyan K., R. Kortshagen U.. Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance. Nano Lett., 2013, 13(3): 1317
https://doi.org/10.1021/nl4001184
|
93 |
Buonsanti R., Llordes A., Aloni S., A. Helms B., J. Milliron D.. Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. Nano Lett., 2011, 11(11): 4706
https://doi.org/10.1021/nl203030f
|
94 |
Ghosh S., Saha M., K. De S.. Tunable surface plasmon resonance and enhanced electrical conductivity of In doped ZnO colloidal nanocrystals. Nanoscale, 2014, 6(12): 7039
https://doi.org/10.1039/C3NR05608B
|
95 |
Kanehara M., Koike H., Yoshinaga T., Teranishi T.. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. J. Am. Chem. Soc., 2009, 131(49): 17736
https://doi.org/10.1021/ja9064415
|
96 |
Y. Su C., C. Lin H.. Direct route to tungsten oxide nanorod bundles: Microstructures and electro-optical properties. J. Phys. Chem. C, 2009, 113(10): 4042
https://doi.org/10.1021/jp809458j
|
97 |
H. Lee S., Nishi H., Tatsuma T.. Tunable plasmon resonance of molybdenum oxide nanoparticles synthesized in non-aqueous media. Chem. Commun. (Camb.), 2017, 53(94): 12680
https://doi.org/10.1039/C7CC08090E
|
98 |
M. Schimpf A., D. Lounis S., L. Runnerstrom E., J. Milliron D., R. Gamelin D.. Redox chemistries and plasmon energies of photodoped In2O3 and Sn-doped In2O3 (ITO) nanocrystals. J. Am. Chem. Soc., 2015, 137(1): 518
https://doi.org/10.1021/ja5116953
|
99 |
A. Faucheaux J., K. Jain P.. Plasmons in photocharged ZnO nanocrystals revealing the nature of charge dynamics. J. Phys. Chem. Lett., 2013, 4(18): 3024
https://doi.org/10.1021/jz401719u
|
100 |
Du H., Li Y., Zhou N., Pu C., Yin J., Kong X., Tian H., Jin Y.. Plasmonic metal oxide nanocrystals via surface anchoring of redox-active phosphorus species. Chem. Mater., 2021, 33(13): 5290
https://doi.org/10.1021/acs.chemmater.1c01393
|
101 |
N. Valdez C., Braten M., Soria A., R. Gamelin D., M. Mayer J.. Effect of protons on the redox chemistry of colloidal zinc oxide nanocrystals. J. Am. Chem. Soc., 2013, 135(23): 8492
https://doi.org/10.1021/ja4035945
|
102 |
Lu R.W. Ge C. F. Zou Y.Zheng K.D. Wang D.F. Zhang T.B. Luo L., A localized surface plasmon resonance and light confinement‐enhanced near‐infrared light photodetector, Laser Photonics Rev. 10(4), 595 (2016)
|
103 |
Ni Z., Ma L., Du S., Xu Y., Yuan M., Fang H., Wang Z., Xu M., Li D., Yang J., Hu W., Pi X., Yang D.. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors. ACS Nano, 2017, 11(10): 9854
https://doi.org/10.1021/acsnano.7b03569
|
104 |
Abb M., Wang Y., Papasimakis N., De Groot C., L. Muskens O.. Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays. Nano Lett., 2014, 14(1): 346
https://doi.org/10.1021/nl404115g
|
105 |
Agrawal A., Kriegel I., J. Milliron D.. Shape-dependent field enhancement and plasmon resonance of oxide nanocrystals. J. Phys. Chem. C, 2015, 119(11): 6227
https://doi.org/10.1021/acs.jpcc.5b01648
|
106 |
L. Runnerstrom E., Bergerud A., Agrawal A., W. Johns R., J. Dahlman C., Singh A., M. Selbach S., J. Milliron D.. Defect engineering in plasmonic metal oxide nanocrystals. Nano Lett., 2016, 16(5): 3390
https://doi.org/10.1021/acs.nanolett.6b01171
|
107 |
Kim J., Agrawal A., Krieg F., Bergerud A., J. Milliron D.. The interplay of shape and crystalline anisotropies in plasmonic semiconductor nanocrystals. Nano Lett., 2016, 16(6): 3879
https://doi.org/10.1021/acs.nanolett.6b01390
|
108 |
Auguié B., L. Barnes W.. Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett., 2008, 101(14): 143902
https://doi.org/10.1103/PhysRevLett.101.143902
|
109 |
A. Urzhumov Y., Shvets G., Fan J., Capasso F., Brandl D., Nordlander P.. Plasmonic nanoclusters: A path towards negative-index metafluids. Opt. Express, 2007, 15(21): 14129
https://doi.org/10.1364/OE.15.014129
|
110 |
Boulais E., Lachaine R., Hatef A., Meunier M.. Plasmonics for pulsed-laser cell nanosurgery: Fundamentals and applications. J. Photochem. Photobiol. Photochem. Rev., 2013, 17: 26
https://doi.org/10.1016/j.jphotochemrev.2013.06.001
|
111 |
Yurtsever A., H. Zewail A.. Direct visualization of near-fields in nanoplasmonics and nanophotonics. Nano Lett., 2012, 12(6): 3334
https://doi.org/10.1021/nl301643k
|
112 |
Dong Y., Gu Y., Zou Y., Song J., Xu L., Li J., Xue J., Li X., Zeng H.. Improving all‐inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small, 2016, 12(40): 5622
https://doi.org/10.1002/smll.201602366
|
113 |
A. Atwater H., Polman A.. Plasmonics for improved photovoltaic devices. Nat. Mater., 2010, 9(3): 205
https://doi.org/10.1038/nmat2629
|
114 |
Furube A., Yoshinaga T., Kanehara M., Eguchi M., Teranishi T.. Electric-field enhancement inducing near-infrared two-photon absorption in an indium-tin oxide nanoparticle film. Angew. Chem. Int. Ed., 2012, 51(11): 2640
https://doi.org/10.1002/anie.201107450
|
115 |
Agrawal A., Singh A., Yazdi S., Singh A., K. Ong G., Bustillo K., W. Johns R., Ringe E., J. Milliron D.. Resonant coupling between molecular vibrations and localized surface plasmon resonance of faceted metal oxide nanocrystals. Nano Lett., 2017, 17(4): 2611
https://doi.org/10.1021/acs.nanolett.7b00404
|
116 |
Sönnichsen C., Franzl T., Wilk T., von Plessen G., Feldmann J., Wilson O., Mulvaney P.. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett., 2002, 88(7): 077402
https://doi.org/10.1103/PhysRevLett.88.077402
|
117 |
L. Brongersma M., J. Halas N., Nordlander P.. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol., 2015, 10(1): 25
https://doi.org/10.1038/nnano.2014.311
|
118 |
W. Knight M., Wang Y., S. Urban A., Sobhani A., Y. Zheng B., Nordlander P., J. Halas N.. Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett., 2013, 13(4): 1687
https://doi.org/10.1021/nl400196z
|
119 |
Lehmann J., Merschdorf M., Pfeiffer W., Thon A., Voll S., Gerber G.. Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission. Phys. Rev. Lett., 2000, 85(14): 2921
https://doi.org/10.1103/PhysRevLett.85.2921
|
120 |
W. Knight M., Sobhani H., Nordlander P., J. Halas N.. Photodetection with active optical antennas. Science, 2011, 332(6030): 702
https://doi.org/10.1126/science.1203056
|
121 |
Chalabi H., Schoen D., L. Brongersma M.. Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett., 2014, 14(3): 1374
https://doi.org/10.1021/nl4044373
|
122 |
Zhao G., Kozuka H., Yoko T.. Sol‒gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles. Thin Solid Films, 1996, 277(1-2): 147
https://doi.org/10.1016/0040-6090(95)08006-6
|
123 |
Tian Y., Tatsuma T.. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. (Camb.), 2004, (16): 1810
https://doi.org/10.1039/b405061d
|
124 |
Tian Y., Tatsuma T.. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc., 2005, 127(20): 7632
https://doi.org/10.1021/ja042192u
|
125 |
Linic S., Christopher P., B. Ingram D.. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater., 2011, 10(12): 911
https://doi.org/10.1038/nmat3151
|
126 |
Mubeen S., Lee J., Singh N., Krämer S., D. Stucky G., Moskovits M.. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol., 2013, 8(4): 247
https://doi.org/10.1038/nnano.2013.18
|
127 |
Peters D.. An infrared detector utilizing internal photoemission. Proc. IEEE, 1967, 55(5): 704
https://doi.org/10.1109/PROC.1967.5648
|
128 |
Akbari A., Berini P.. Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide. Appl. Phys. Lett., 2009, 95(2): 021104
https://doi.org/10.1063/1.3171937
|
129 |
Goykhman I., Desiatov B., Khurgin J., Shappir J., Levy U.. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano Lett., 2011, 11(6): 2219
https://doi.org/10.1021/nl200187v
|
130 |
Scales C., Berini P.. Thin-film Schottky barrier photodetector models. IEEE J. Quantum Electron., 2010, 46(5): 633
https://doi.org/10.1109/JQE.2010.2046720
|
131 |
Faris S., Gustafson T., Wiesner J.. Detection of optical and infrared radiation with DC-biased electron-tunneling metal−barrier−metal diodes. IEEE J. Quantum Electron., 1973, 9(7): 737
https://doi.org/10.1109/JQE.1973.1077721
|
132 |
Heiblum M., Wang S., Whinnery J., Gustafson T.. Characteristics of integrated MOM junctions at dc and at optical frequencies. IEEE J. Quantum Electron., 1978, 14(3): 159
https://doi.org/10.1109/JQE.1978.1069765
|
133 |
Li X., Xiao D., Zhang Z.. Landau damping of quantum plasmons in metal nanostructures. New J. Phys., 2013, 15(2): 023011
https://doi.org/10.1088/1367-2630/15/2/023011
|
134 |
Watanabe K., Menzel D., Nilius N., J. Freund H.. Photochemistry on metal nanoparticles. Chem. Rev., 2006, 106(10): 4301
https://doi.org/10.1021/cr050167g
|
135 |
B. Khurgin J.. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol., 2015, 10(1): 2
https://doi.org/10.1038/nnano.2014.310
|
136 |
Ben‐Shahar Y., Scotognella F., Waiskopf N., Kriegel I., Dal Conte S., Cerullo G., Banin U.. Effect of surface coating on the photocatalytic function of hybrid CdS–Au nanorods. Small, 2015, 11(4): 462
https://doi.org/10.1002/smll.201402262
|
137 |
Ben-Shahar Y., Scotognella F., Kriegel I., Moretti L., Cerullo G., Rabani E., Banin U.. Optimal metal domain size for photocatalysis with hybrid semiconductor−metal nanorods. Nat. Commun., 2016, 7(1): 10413
https://doi.org/10.1038/ncomms10413
|
138 |
Du L., Furube A., Hara K., Katoh R., Tachiya M.. Ultrafast plasmon induced electron injection mechanism in gold–TiO2 nanoparticle system. J. Photochem. Photobiol. Photochem. Rev., 2013, 15: 21
https://doi.org/10.1016/j.jphotochemrev.2012.11.001
|
139 |
Furube A., Du L., Hara K., Katoh R., Tachiya M.. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc., 2007, 129(48): 14852
https://doi.org/10.1021/ja076134v
|
140 |
Du L., Furube A., Yamamoto K., Hara K., Katoh R., Tachiya M.. Plasmon-induced charge separation and recombination dynamics in gold−TiO2 nanoparticle systems: dependence on TiO2 particle size. J. Phys. Chem. C, 2009, 113(16): 6454
https://doi.org/10.1021/jp810576s
|
141 |
Liu T., Wang Q., Zhang C., Li X., Hu J.. High performance of hot-carrier generation, transport and injection in TiN/TiO2 junction. Front. Phys., 2022, 17(5): 53509
https://doi.org/10.1007/s11467-022-1171-4
|
142 |
Yang W., Liu Y., A. Cullen D., R. McBride J., Lian T.. Harvesting sub-bandgap IR photons by photothermionic hot electron transfer in a plasmonic p–n junction. Nano Lett., 2021, 21(9): 4036
https://doi.org/10.1021/acs.nanolett.1c00932
|
143 |
O. Govorov A., Zhang H., K. Gun’ko Y.. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J. Phys. Chem. C, 2013, 117(32): 16616
https://doi.org/10.1021/jp405430m
|
144 |
Manjavacas A., G. Liu J., Kulkarni V., Nordlander P.. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano, 2014, 8(8): 7630
https://doi.org/10.1021/nn502445f
|
145 |
Sundararaman R., Narang P., S. Jermyn A., Goddard III, A. Atwater H.. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun., 2014, 5(1): 5788
https://doi.org/10.1038/ncomms6788
|
146 |
Ranno L., D. Forno S., Lischner J.. Computational design of bimetallic core−shell nanoparticles for hot-carrier photocatalysis. npj Comput, Mater., 2018, 4(1): 31
https://doi.org/10.1038/s41524-018-0088-5
|
147 |
Bernardi M.Vigil-Fowler D.S. Ong C.B. Neaton J.G. Louie S., Ab initio study of hot electrons in GaAs, Proc. Natl. Acad. Sci. USA 112(17), 5291 (2015)
|
148 |
Lian Z., Sakamoto M., Matsunaga H., J. M. Vequizo J., Yamakata A., Haruta M., Kurata H., Ota W., Sato T., Teranishi T.. Near infrared light induced plasmonic hot hole transfer at a nano-heterointerface. Nat. Commun., 2018, 9(1): 2314
https://doi.org/10.1038/s41467-018-04630-w
|
149 |
Hao F., Sonnefraud Y., V. Dorpe P., A. Maier S., J. Halas N., Nordlander P.. Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance. Nano Lett., 2008, 8(11): 3983
https://doi.org/10.1021/nl802509r
|
150 |
Zhang Y.. Theory of plasmonic hot-carrier generation and relaxation. J. Phys. Chem. A, 2021, 125(41): 9201
https://doi.org/10.1021/acs.jpca.1c05837
|
151 |
A. Butt M.. Metal−insulator−metal waveguide-based plasmonic sensors: Fantasy or truth — A critical review. Appl. Res., 2023, 2: e202200099
https://doi.org/10.1002/appl.202200099
|
152 |
Y. Kong W., A. Wu G., Y. Wang K., F. Zhang T., F. Zou Y., D. Wang D., B. Luo L.. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv. Mater., 2016, 28(48): 10725
https://doi.org/10.1002/adma.201604049
|
153 |
Wang X., Liu K., Chen X., Li B., Jiang M., Zhang Z., Zhao H., Shen D.. Highly wavelength-selective enhancement of responsivity in Ag nanoparticle-modified ZnO UV photodetector. ACS Appl. Mater. Interfaces, 2017, 9(6): 5574
https://doi.org/10.1021/acsami.6b14430
|
154 |
Ouyang W., Teng F., Jiang M., Fang X.. ZnO film UV photodetector with enhanced performance: Heterojunction with CdMoO4 microplates and the hot electron injection effect of Au nanoparticles. Small, 2017, 13(39): 1702177
https://doi.org/10.1002/smll.201702177
|
155 |
Liu S., Y. Li M., Su D., Yu M., Kan H., Liu H., Wang X., Jiang S.. Broad-band high-sensitivity ZnO colloidal quantum dots/self-assembled Au nanoantennas heterostructures photodetectors. ACS Appl. Mater. Interfaces, 2018, 10(38): 32516
https://doi.org/10.1021/acsami.8b09442
|
156 |
Li M., Zhao M., Jiang D., Yang M., Li Q., Shan C., Zhou X., Duan Y., Wang N., Sun J.. Optimizing the spacing of Ag nanoparticle layers to enhance the performance of ZnO/Ag/ZnO/Ag/ZnO multilayer-structured UV photodetectors. Sens. Actuators A Phys., 2019, 297: 111501
https://doi.org/10.1016/j.sna.2019.07.025
|
157 |
Liu Y., Zhang X., Su J., Li H., Zhang Q., Gao Y.. Ag nanoparticles@ ZnO nanowire composite arrays: An absorption enhanced UV photodetector. Opt. Express, 2014, 22(24): 30148
https://doi.org/10.1364/OE.22.030148
|
158 |
Lu J., Xu C., Dai J., Li J., Wang Y., Lin Y., Li P.. Improved UV photoresponse of ZnO nanorod arrays by resonant coupling with surface plasmons of Al nanoparticles. Nanoscale, 2015, 7(8): 3396
https://doi.org/10.1039/C4NR07114J
|
159 |
C. Yang C., C. Yu H., K. Su Y., Y. Chuang M., H. Hsiao C., H. Kao T.. Noise properties of ag nanoparticle-decorated ZnO nanorod UV photodetectors. IEEE Photonics Technol. Lett., 2016, 28(4): 379
https://doi.org/10.1109/LPT.2015.2494065
|
160 |
L. Hsu C., C. Wang Y., P. Chang S., J. Chang S.. Ultraviolet/visible photodetectors based on p–n NiO/ZnO nanowires decorated with Pd nanoparticles. ACS Appl. Nano Mater., 2019, 2(10): 6343
https://doi.org/10.1021/acsanm.9b01333
|
161 |
Noh Y., Shin J., Lee H., Y. Kim G., Kumar M., Lee D.. Decoration of Ag nanoparticle on ZnO nanowire by intense pulsed light and enhanced UV photodetector. Chemosensors (Basel), 2021, 9(11): 321
https://doi.org/10.3390/chemosensors9110321
|
162 |
Y. Li M., Liu S., Huang Z., Ai Y., Shen K., Lu H., Li M., Wu J.. Facile fabrication of ultrasensitive honeycomb nano-mesh ultraviolet photodetectors based on self-assembled plasmonic architectures. ACS Appl. Mater. Interfaces, 2021, 13(30): 35972
https://doi.org/10.1021/acsami.1c08739
|
163 |
Li Q., Huang J., Meng J., Li Z.. Enhanced performance of a self-powered ZnO photodetector by coupling LSPR-inspired pyro-phototronic effect and piezo-phototronic effect. Adv. Opt. Mater., 2022, 10(7): 2102468
https://doi.org/10.1002/adom.202102468
|
164 |
Goswami L., Aggarwal N., Krishna S., Singh M., Vashishtha P., P. Singh S., Husale S., Pandey R., Gupta G.. Au-nanoplasmonics-mediated surface plasmon-enhanced GaN nanostructured UV photodetectors. ACS Omega, 2020, 5(24): 14535
https://doi.org/10.1021/acsomega.0c01239
|
165 |
Kunwar S., Pandit S., H. Jeong J., Lee J.. Improved photoresponse of UV photodetectors by the incorporation of plasmonic nanoparticles on GaN through the resonant coupling of localized surface plasmon resonance. Nano-Micro Lett., 2020, 12(1): 91
https://doi.org/10.1007/s40820-020-00437-x
|
166 |
Lin S., Kulkarni R., Mandavkar R., A. Habib M., Burse S., Kunwar S., Lee J.. Surmounting the interband threshold limit by the hot electron excitation of multi-metallic plasmonic AgAuCu NPs for UV photodetector application. CrystEngComm, 2022, 24(22): 4134
https://doi.org/10.1039/D2CE00367H
|
167 |
Arora K., P. Singh D., Fischer P., Kumar M.. Spectrally selective and highly sensitive UV photodetection with UV-A, C band specific polarity switching in silver plasmonic nanoparticle enhanced gallium oxide thin-film. Adv. Opt. Mater., 2020, 8(16): 2000212
https://doi.org/10.1002/adom.202000212
|
168 |
Liu Y., Chen W., Zhao L., Guo J., Yang C., Wang X., Huang W., Ren T., Xu J.. Plasmon‐enhanced InGaZnO ultraviolet photodetectors tuned by ferroelectric HfZrO. Adv. Electron. Mater., 2019, 5(12): 1900588
https://doi.org/10.1002/aelm.201900588
|
169 |
Han S., Xia H., Lu Y., Hu S., Zhang D., Xu W., Fang M., Liu W., Cao P., Zhu D.. Great enhancement effect of 20–40 nm Ag NPs on solar-blind UV response of the mixed-phase MgZnO detector. ACS Omega, 2021, 6(10): 6699
https://doi.org/10.1021/acsomega.0c05555
|
170 |
Shi X., Yang Z., Yin S., Zeng H.. Al plasmon-enhanced diamond solar-blind UV photodetector by coupling of plasmon and excitons. Mater. Technol., 2016, 31(9): 544
https://doi.org/10.1080/10667857.2016.1204511
|
171 |
Mondal S., Dalal A., Mondal A.. Al nanoparticles decorated Er: TiO2 thin film based plasmonic photodetector. Ceram. Int., 2023, 49(4): 6289
https://doi.org/10.1016/j.ceramint.2022.10.133
|
172 |
Fang Z., Liu Z., Wang Y., M. Ajayan P., Nordlander P., J. Halas N.. Graphene-antenna sandwich photodetector. Nano Lett., 2012, 12(7): 3808
https://doi.org/10.1021/nl301774e
|
173 |
Lee S., Lee M., Shin H., Choi D.. Control of density and LSPR of Au nanoparticles on graphene. Nanotechnology, 2013, 24(27): 275702
https://doi.org/10.1088/0957-4484/24/27/275702
|
174 |
Jang S., Hwang E., Lee Y., Lee S., H. Cho J.. Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals. Nano Lett., 2015, 15(4): 2542
https://doi.org/10.1021/acs.nanolett.5b00105
|
175 |
Miao J., Hu W., Jing Y., Luo W., Liao L., Pan A., Wu S., Cheng J., Chen X., Lu W.. Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays. Small, 2015, 11(20): 2392
https://doi.org/10.1002/smll.201403422
|
176 |
Selamneni V., Raghavan H., Hazra A., Sahatiya P.. MoS2/paper decorated with metal nanoparticles (Au, Pt, and Pd) based plasmonic‐enhanced broadband (visible‐NIR) flexible photodetectors. Adv. Mater. Interfaces, 2021, 8(6): 2001988
https://doi.org/10.1002/admi.202001988
|
177 |
Li G., Song Y., Feng S., Feng L., Liu Z., Leng B., Fu Z., Li J., Jiang X., Liu B., Zhang X.. Improved optoelectronic performance of MoS2 photodetector via localized surface plasmon resonance coupling of double-layered Au nanoparticles with sandwich structure. ACS Appl. Electron. Mater., 2022, 4(4): 1626
https://doi.org/10.1021/acsaelm.1c01300
|
178 |
Li Y., G. DiStefano J., A. Murthy A., D. Cain J., D. Hanson E., Li Q., C. Castro F., Chen X., P. Dravid V.. Superior plasmonic photodetectors based on Au@MoS2 core–shell heterostructures. ACS Nano, 2017, 11(10): 10321
https://doi.org/10.1021/acsnano.7b05071
|
179 |
Zhang J., Zhang X., Li J., Ma Z., Leng B., Xia Q., Shen L., Song Y., Fu Z., Feng S., Feng L., Liu Z., Yuldashev S., Jiang X., Liu B.. Simultaneous visible and ultraviolet photoresponse improvement of MoS2/ZnO heterostructure photodetector via direct resonant coupling of Au nanoparticles localized surface plasmon resonance. Opt. Mater., 2022, 124: 111997
https://doi.org/10.1016/j.optmat.2022.111997
|
180 |
J. Hoffman A., Alekseyev L., S. Howard S., J. Franz K., Wasserman D., A. Podolskiy V., E. Narimanov E., L. Sivco D., Gmachl C.. Negative refraction in semiconductor metamaterials. Nat. Mater., 2007, 6(12): 946
https://doi.org/10.1038/nmat2033
|
181 |
Fang Z., Wang Y., E. Schlather A., Liu Z., M. Ajayan P., J. García de Abajo F., Nordlander P., Zhu X., J. Halas N.. Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett., 2014, 14(1): 299
https://doi.org/10.1021/nl404042h
|
182 |
Xia Z., Li P., Wang Y., Song T., Zhang Q., Sun B.. Solution-processed gold nanorods integrated with graphene for near-infrared photodetection via hot carrier injection. ACS Appl. Mater. Interfaces, 2015, 7(43): 24136
https://doi.org/10.1021/acsami.5b07299
|
183 |
Deng B., Guo Q., Li C., Wang H., Ling X., B. Farmer D., Han S., Kong J., Xia F.. Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures. ACS Nano, 2016, 10(12): 11172
https://doi.org/10.1021/acsnano.6b06203
|
184 |
S. Rohizat N., H. A. Ripain A., S. Lim C., L. Tan C., Zakaria R.. Plasmon-enhanced reduced graphene oxide photodetector with monometallic of Au and Ag nanoparticles at VIS–NIR region. Sci. Rep., 2021, 11(1): 19688
https://doi.org/10.1038/s41598-021-99189-w
|
185 |
B. Dai Z., Cen G., Zhang Z., Lv X., Liu K., Li Z.. Near-field infrared response of graphene on copper substrate. Front. Phys., 2022, 17(4): 43502
https://doi.org/10.1007/s11467-021-1140-3
|
186 |
Podder S., R. Pal A.. Plasmonic visible-NIR photodetector based on hot electrons extracted from nanostructured titanium nitride. J. Appl. Phys., 2019, 126(8): 083108
https://doi.org/10.1063/1.5101009
|
187 |
Lesuffleur A., Im H., C. Lindquist N., H. Oh S.. Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors. Appl. Phys. Lett., 2007, 90(24): 243110
https://doi.org/10.1063/1.2747668
|
188 |
C. Chuang P.C. Liao P.F. Chen Y., Enhancing the sensitivity of localized surface plasmon resonance (LSPR) biosensors using nanorods and DNA aptamers, Plasmonics in Biology and Medicine XII 2015, 98
|
189 |
Takei H., Bessho N., Ishii A., Okamoto T., Beyer A., Vieker H., Gölzhäuser A.. Enhanced infrared LSPR sensitivity of cap-shaped gold nanoparticles coupled to a metallic film. Langmuir, 2014, 30(8): 2297
https://doi.org/10.1021/la403407g
|
190 |
Bauch M., Toma K., Toma M., Zhang Q., Dostalek J.. Plasmon-enhanced fluorescence biosensors: A review. Plasmonics, 2014, 9(4): 781
https://doi.org/10.1007/s11468-013-9660-5
|
191 |
Campion A., Kambhampati P.. Surface-enhanced Raman scattering. Chem. Soc. Rev., 1998, 27(4): 241
https://doi.org/10.1039/a827241z
|
192 |
Tang L., Li J.. Plasmon-based colorimetric nanosensors for ultrasensitive molecular diagnostics. ACS Sens., 2017, 2(7): 857
https://doi.org/10.1021/acssensors.7b00282
|
193 |
Chen S., Svedendahl M., P. Van Duyne R., Käll M.. Plasmon-enhanced colorimetric ELISA with single molecule sensitivity. Nano Lett., 2011, 11(4): 1826
https://doi.org/10.1021/nl2006092
|
194 |
Liang Y., Zhang H., Zhu W., Agrawal A., Lezec H., Li L., Peng W., Zou Y., Lu Y., Xu T.. Subradiant dipolar interactions in plasmonic nanoring resonator array for integrated label-free biosensing. ACS Sens., 2017, 2(12): 1796
https://doi.org/10.1021/acssensors.7b00607
|
195 |
Wang X.Zhu J.Tong H.Yang X.Wu X. Pang Z.Yang H.Qi Y., A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer, Chin. Phys. B 28(4), 044201 (2019)
|
196 |
Chen T., Li S., Sun H.. Metamaterials application in sensing. Sensors (Basel), 2012, 12(3): 2742
https://doi.org/10.3390/s120302742
|
197 |
Wu C., B. Khanikaev A., Adato R., Arju N., A. Yanik A., Altug H., Shvets G.. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater., 2012, 11(1): 69
https://doi.org/10.1038/nmat3161
|
198 |
Zhu J., Wang Z., Lin S., Jiang S., Liu X., Guo S.. Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker. Biosens. Bioelectron., 2020, 150: 111905
https://doi.org/10.1016/j.bios.2019.111905
|
199 |
I. Park Y., Im H., Weissleder R., Lee H.. Nanostar clustering improves the sensitivity of plasmonic assays. Bioconjug. Chem., 2015, 26(8): 1470
https://doi.org/10.1021/acs.bioconjchem.5b00343
|
200 |
Cheng H., Kamegawa T., Mori K., Yamashita H.. Surfactant‐free nonaqueous synthesis of plasmonic molybdenum oxide nanosheets with enhanced catalytic activity for hydrogen generation from ammonia borane under visible light. Angew. Chem. Int. Ed., 2014, 53(11): 2910
https://doi.org/10.1002/anie.201309759
|
201 |
Zhang Z.Huang J.Fang Y.Zhang M.Liu K. Dong B., A nonmetal plasmonic Z‐scheme photocatalyst with UV‐ to NIR‐driven photocatalytic protons reduction, Adv. Mater. 29(18), 1606688 (2017)
|
202 |
Lou Z., Zhu M., Yang X., Zhang Y., H. Whangbo M., Li B., Huang B.. Continual injection of photoinduced electrons stabilizing surface plasmon resonance of non-elemental-metal plasmonic photocatalyst CdS/WO3−x for efficient hydrogen generation. Appl. Catal. B, 2018, 226: 10
https://doi.org/10.1016/j.apcatb.2017.12.023
|
203 |
Mikac L., Ivanda M., Gotić M., Mihelj T., Horvat L.. Synthesis and characterization of silver colloidal nanoparticles with different coatings for SERS application. J. Nanopart. Res., 2014, 16(12): 2748
https://doi.org/10.1007/s11051-014-2748-9
|
204 |
Y. Chen H., H. Lin M., Y. Wang C., M. Chang Y., Gwo S.. Large-scale hot spot engineering for quantitative SERS at the single-molecule scale. J. Am. Chem. Soc., 2015, 137(42): 13698
https://doi.org/10.1021/jacs.5b09111
|
205 |
Zhou Y., Ding R., Joshi P., Zhang P.. Quantitative surface-enhanced Raman measurements with embedded internal reference. Anal. Chim. Acta, 2015, 874: 49
https://doi.org/10.1016/j.aca.2015.03.016
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|