|
|
Pure quantum gradient descent algorithm and full quantum variational eigensolver |
Ronghang Chen1,2, Zhou Guang3, Cong Guo2, Guanru Feng2, Shi-Yao Hou1,2( ) |
1. College of Physics and Electronic Engineering, Center for Computational Sciences, Sichuan Normal University, Chengdu 610068, China 2. Shenzhen SpinQ Technology Co., Ltd., Shenzhen 518045, China 3. DEEPROUTE.AI |
|
|
Abstract Optimization problems are prevalent in various fields, and the gradient-based gradient descent algorithm is a widely adopted optimization method. However, in classical computing, computing the numerical gradient for a function with variables necessitates at least function evaluations, resulting in a computational complexity of . As the number of variables increases, the classical gradient estimation methods require substantial resources, ultimately surpassing the capabilities of classical computers. Fortunately, leveraging the principles of superposition and entanglement in quantum mechanics, quantum computers can achieve genuine parallel computing, leading to exponential acceleration over classical algorithms in some cases. In this paper, we propose a novel quantum-based gradient calculation method that requires only a single oracle calculation to obtain the numerical gradient result for a multivariate function. The complexity of this algorithm is just . Building upon this approach, we successfully implemented the quantum gradient descent algorithm and applied it to the variational quantum eigensolver (VQE), creating a pure quantum variational optimization algorithm. Compared with classical gradient-based optimization algorithm, this quantum optimization algorithm has remarkable complexity advantages, providing an efficient solution to optimization problems.The proposed quantum-based method shows promise in enhancing the performance of optimization algorithms, highlighting the potential of quantum computing in this field.
|
Keywords
quantum algorithm
gradient descent
variational quantum algorithm
|
Corresponding Author(s):
Shi-Yao Hou
|
Issue Date: 17 October 2023
|
|
1 |
Farhi E.Goldstone J., A quantum approximate optimization algorithm, arXiv: 1411.4028 (2014)
|
2 |
Farhi E.Goldstone J.Gutmann S.Sipser M., Quantum computation by adiabatic evolution, arXiv: quant-ph/0001106 (2000)
|
3 |
G. Guerreschi G., Y. Matsuura A.. Qaoa for max-cut requires hundreds of qubits for quantum speed-up. Sci. Rep., 2019, 6(1): 6903
https://doi.org/10.1038/s41598-019-43176-9
|
4 |
A. Nielsen M., Neural Networks and Deep Learning, Determination Press, 2015
|
5 |
Schuld M.Sinayskiy I., The quest for a quantum neural network, arXiv: 1408.7005 (2014)
|
6 |
Dunjko V., M. Taylor J., J. Briegel H.. Quantumenhanced machine learning. Phys. Rev. Lett., 2016, 117(13): 130501
https://doi.org/10.1103/PhysRevLett.117.130501
|
7 |
Sakuma T., Application of deep quantum neural networks to finance, arXiv: 2011.07319 (2020)
|
8 |
Orus R.Mugel S.Lizaso E., Quantum computing for finance: Overview and prospects, arXiv: 1807.03890v2 (2018)
|
9 |
J. Egger D., Gambella C., Marecek J., McFaddin S., Mevissen M., Raymond R., Simonetto A., Woerner S., Yndurain E.. Quantum computing for finance: State-of-the-art and future prospects. IEEE Trans. Quant. Eng., 2020, 1: 3101724
https://doi.org/10.1109/TQE.2020.3030314
|
10 |
P. Feynmen R.. Forces in molecules. Phys. Rev. Lett., 1939, 56: 340
https://doi.org/10.1103/PhysRev.56.340
|
11 |
A. Fedorov D., J. Otten M., K. Gray S., Alexeev Y.. Ab initio molecular dynamics on quantum computers. J. Chem. Phys., 2021, 154(16): 164103
https://doi.org/10.1063/5.0046930
|
12 |
Gandhi V., Prasad G., Coyle D., Behera L., M. McGinnity T.. Quantum neural network-based EEG filtering for a brain–computer interface. IEEE Trans. Neural Netw. Learn. Syst., 2014, 25(2): 278
https://doi.org/10.1109/TNNLS.2013.2274436
|
13 |
Peruzzo A.McClean J.Shadbolt P., et al.., A variational eigenvalue solver on a quantum processor, arXiv: 1304.3061 (2013)
|
14 |
Wei S., Li H., Long G.. A full quantum eigensolver for quantum chemistry simulations. Research, 2020, 2020: 1486935
https://doi.org/10.34133/2020/1486935
|
15 |
Ruder S., An overview of gradient descent optimization algorithms, arXiv: 1609.04747 (2016)
|
16 |
R. McClean J., Romero J., Babbush R., Aspuru-Guzik A.. The theory of variational hybrid quantumclassical algorithms. New J. Phys., 2016, 18(2): 023023
https://doi.org/10.1088/1367-2630/18/2/023023
|
17 |
Cerezo M.Arrasmith A.Babbush R.C. Benjamin S.Endo S. Fujii K.R. McClean J.Mitarai K.Yuan X.Cincio L. J. Coles P., Variational quantum algorithms, arXiv: 2012.09265 (2020)
|
18 |
Y. Hou S., Feng G., Wu Z., Zou H., Shi W., Zeng J., Cao C., Yu S., Sheng Z., Rao X., Ren B., Lu D., Zou J., Miao G., Xiang J., Zeng B.. Spinq gemini: A desktop quantum computing platform for education and research. EPJ Quantum Technol., 2021, 8(1): 20
https://doi.org/10.1140/epjqt/s40507-021-00109-8
|
19 |
Yuan G., Li T., Hu W.. A conjugate gradient algorithm and its application in large-scale optimization problems and image restoration. J. Inequal. Appl., 2019, 2019(1): 247
https://doi.org/10.1186/s13660-019-2192-6
|
20 |
G. Broyden C.. The convergence of a class of double-rank minimization algorithms (1): General considerations. IMA J. Appl. Math., 1970, 6(1): 76
https://doi.org/10.1093/imamat/6.1.76
|
21 |
Fletcher R.. A new approach to variable metric algorithms. Comput. J., 1970, 13(3): 317
https://doi.org/10.1093/comjnl/13.3.317
|
22 |
Goldfarb D.. A family of variable-metric methods derived by variational means. Math. Comput., 1970, 24(109): 23
https://doi.org/10.1090/S0025-5718-1970-0258249-6
|
23 |
F. Shanno D.. Conditioning of quasi-Newton methods for function minimization. Math. Comput., 1970, 24(111): 647
https://doi.org/10.1090/S0025-5718-1970-0274029-X
|
24 |
Gao P., Li K., Wei S., Gao J., Long G.. Quantum gradient algorithm for general polynomials. Phys. Rev. A, 2021, 103(4): 042403
https://doi.org/10.1103/PhysRevA.103.042403
|
25 |
Nielsen M.Chuang I., Quantum Computation and Quantum Information, Cambridge University Press, 2010
|
26 |
P. DiVincenzo D.. Quantum computation. Science, 1995, 270(5234): 255
https://doi.org/10.1126/science.270.5234.255
|
27 |
Preskill J.. Quantum computing in the NISQ era and beyond. Quantum, 2018, 2: 79
https://doi.org/10.22331/q-2018-08-06-79
|
28 |
W. Shor P., Algorithms for quantum computation: Discrete logarithms and factoring, in: Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994, pp 124–134
|
29 |
Monz T., Nigg D., A. Martinez E., F. Brandl M., Schindler P., Rines R., X. Wang S., L. Chuang I., Blatt R.. Realization of a scalable Shor algorithm. Science, 2016, 351(6277): 1068
https://doi.org/10.1126/science.aad9480
|
30 |
K. Grover L.. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 1997, 79(2): 325
https://doi.org/10.1103/PhysRevLett.79.325
|
31 |
L. Long G.. Grover algorithm with zero theoretical failure rate. Phys. Rev. A, 2001, 64(2): 022307
https://doi.org/10.1103/PhysRevA.64.022307
|
32 |
W. Harrow A., Hassidim A., Lloyd S.. Quantum algorithm for linear systems of equations. Phys. Rev. Lett., 2009, 103(15): 150502
https://doi.org/10.1103/PhysRevLett.103.150502
|
33 |
Duan B., Yuan J., H. Yu C., Huang J., Y. Hsieh C.. A survey on HHLalgorithm: From theory to application in quantum machine learning. Phys. Lett. A, 2020, 384(24): 126595
https://doi.org/10.1016/j.physleta.2020.126595
|
34 |
P. Jordan S.. Fast quantum algorithm for numerical gradient estimation. Phys. Rev. Lett., 2005, 95(5): 050501
https://doi.org/10.1103/PhysRevLett.95.050501
|
35 |
Wiersema R.Lewis D.Wierichs D.Carrasquilla J.Killoran N., Here comes the SU(n): multivariate quantum gates and gradients, arXiv: 2303.11355 (2023)
|
36 |
Gilyén A.Arunachalam S.Wiebe N., Optimizing quantum optimization algorithms via faster quantum gradient computation, in: Proceedings of the 2019 Annual ACM-SIAM Symposium on Discrete Algorithms, 2019, pp 1425–1444
|
37 |
Li J.. General explicit difference formulas for numerical differentiation. J. Comput. Appl. Math., 2005, 183(1): 29
https://doi.org/10.1016/j.cam.2004.12.026
|
38 |
H. Press W.A. Teukolsky S.T. Vetterling W., Numerical Recipes in C, Cambridge University Press, 1992
|
39 |
Li Y.Dou M., A quantum addition operation method, device, electronic device and storage medium, Origin Quantum (2021)
|
40 |
Zhu C., H. Byrd R., Lu P., Nocedal J.. Algorithm 778: L-BFGS-B. ACM Trans. Math. Softw., 1997, 23(4): 550
https://doi.org/10.1145/279232.279236
|
41 |
Aleksandrowicz G., et al.., Qiskit: An open-source framework for quantum computing, 2019
|
42 |
M. Parrish R., G. Hohenstein E., L. McMahon P., J. Martínez T.. Quantum computation of electronic transitions using a variational quantum eigensolver. Phys. Rev. Lett., 2019, 122(23): 230401
https://doi.org/10.1103/PhysRevLett.122.230401
|
43 |
Kandala A., Mezzacapo A., Temme K., Takita M., Brink M., M. Chow J., M. Gambetta J.. Hardwareefficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 2017, 549(7671): 242
https://doi.org/10.1038/nature23879
|
44 |
Hempel C., Maier C., Romero J., McClean J., Monz T., Shen H., Jurcevic P., P. Lanyon B., Love P., Babbush R., Aspuru-Guzik A., Blatt R., F. Roos C.. Quantum chemistry calculations on a trapped-ion quantum simulator. Phys. Rev. X, 2018, 8(3): 031022
https://doi.org/10.1103/PhysRevX.8.031022
|
45 |
Mitarai K., Negoro M., Kitagawa M., Fujii K.. Quantum circuit learning. Phys. Rev. A, 2018, 98(3): 032309
https://doi.org/10.1103/PhysRevA.98.032309
|
46 |
Schuld M., Bergholm V., Gogolin C., Izaac J., Killoran N.. Evaluating analytic gradients on quantum hardware. Phys. Rev. A, 2019, 99(3): 032331
https://doi.org/10.1103/PhysRevA.99.032331
|
47 |
Lee J., J. Huggins W., Head-Gordon M., B. Whaley K.. Generalized unitary coupled cluster wave functions for quantum computation. J. Chem. Theory Comput., 2019, 15(1): 311
https://doi.org/10.1021/acs.jctc.8b01004
|
48 |
Wecker D., B. Hastings M., Troyer M.. Progress towards practical quantum variational algorithms. Phys. Rev. A, 2015, 92(4): 042303
https://doi.org/10.1103/PhysRevA.92.042303
|
49 |
Wiersema R., Zhou C., de Sereville Y., F. Carrasquilla J., B. Kim Y., Yuen H.. Exploring entanglement and optimization within the hamiltonian variational ansatz. PRX Quantum, 2020, 1(2): 020319
https://doi.org/10.1103/PRXQuantum.1.020319
|
50 |
Gilyén A.Su Y.H. Low G. Wiebe N., Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics, arXiv: 1806.01838 (2018)
|
51 |
H. Low G.L. Chuang I., Hamiltonian simulation by qubitization, arXiv: 1610.06546 (2016)
|
52 |
M. Childs A.Wiebe N., Hamiltonian simulation using linear combinations of unitary operations, arXiv: 1202.5822 (2012)
|
53 |
Bottou L., Large-scale machine learning with stochastic gradient descent, in: Proceedings of COMPSTAT’2010, edited by Y. Lechevallier and G. Saporta, Physica-Verlag HD, Heidelberg, 2010, pp 177–186
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|