Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (4) : 41202    https://doi.org/10.1007/s11467-023-1382-3
Variational quantum algorithms for scanning the complex spectrum of non-Hermitian systems
Xu-Dan Xie1, Zheng-Yuan Xue1,2(), Dan-Bo Zhang1,2()
1. Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, and School of Physics, South China Normal University, Guangzhou 510006, China
2. Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong−Hong Kong Joint Laboratory of Quantum Matter, and Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
 Download: PDF(5280 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Solving non-Hermitian quantum many-body systems on a quantum computer by minimizing the variational energy is challenging as the energy can be complex. Here, we propose a variational quantum algorithm for solving the non-Hermitian Hamiltonian by minimizing a type of energy variance, where zero variance can naturally determine the eigenvalues and the associated left and right eigenstates. Moreover, the energy is set as a parameter in the cost function and can be tuned to scan the whole spectrum efficiently by using a two-step optimization scheme. Through numerical simulations, we demonstrate the algorithm for preparing the left and right eigenstates, verifying the biorthogonal relations, as well as evaluating the observables. We also investigate the impact of quantum noise on our algorithm and show that its performance can be largely improved using error mitigation techniques. Therefore, our work suggests an avenue for solving non-Hermitian quantum many-body systems with variational quantum algorithms on near-term noisy quantum computers.

Keywords quantum algorithm      non-Hermitian physics      quantum many-body systems     
Corresponding Author(s): Zheng-Yuan Xue,Dan-Bo Zhang   
Issue Date: 05 February 2024
 Cite this article:   
Xu-Dan Xie,Zheng-Yuan Xue,Dan-Bo Zhang. Variational quantum algorithms for scanning the complex spectrum of non-Hermitian systems[J]. Front. Phys. , 2024, 19(4): 41202.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1382-3
https://academic.hep.com.cn/fop/EN/Y2024/V19/I4/41202
Fig.1  Illustration of the variational quantum algorithm, which can prepare the eigenstates and compute the corresponding eigenenergies. The quantum circuit U(θ) is parameterized by θ and should be performed on a quantum computer. The variable parameters (E,θ) are updated and optimized with classical computing in order to minimize the cost function.
  
Fig.2  (a) The quantum circuit diagram for the real part of ?0|U?(θml)O^U(θnr)|0? by the Hadamard test, in which H denotes the Hadamard gate. (b) The quantum circuit diagram for the imaginary part of ?0|U?(θml)O^U(θnr)|0? by the Hadamard test, in which S denotes the π2 phase gate.
Fig.3  The logarithm of the cost function L(E,θ) as a function of the circuit depth P, for various system sizes L. Here, λ=1,κ=0.8.
Fig.4  The variability of iterations in proportion to system size. As the system size expands, there is a corresponding increase in the requisite number of iterations for the loss function to converge to its minimum value. For various system sizes L, we set the depth of the quantum circuit P equal to L in order to ensure the convergence of the loss function to zero. Here, λ=1,κ=0.8.
Fig.5  The energy levels of Hλ,κ as a function of κ, in the case L=4,λ=1. (a) Illustrates the real component of the energy levels, while (b) depicts the imaginary part of the energy levels. Those lines denoted by E0, E1, E2 and E3 are obtained by exact diagonalization.
n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7
VQA (κ=0.4) 0.7988 0.7988 0.9165 0.7719 0.7719 0.9165 0.7978 0.7994
Exact 0.7988 0.7988 0.9165 0.7719 0.7719 0.9165 0.7979 0.7994
VQA (κ=0.2) 0.1680 0.1680 0.9798 0.5822 0.5821 0.9798 0.9537 0.9541
Exact 0.1681 0.1681 0.9798 0.5821 0.5821 0.9798 0.9537 0.9541
Tab.1  Fidelity between the right eigenstates |ψnr? and the left eigenstates |ψnl?, with κ=0.4 and κ=0.2, respectively. Here L=3,P=3,λ=1.
Fig.6  The fidelity between |ψnr? and |ψnl? for κ=0.4 in (a) and κ=0.2 in (b). Here L=3,λ=1.
Fig.7  The expected value of the Hamiltonian operator Hλ,κ according to Eq. (14) for κ=0.4 in (a) and κ=0.2 in (b). Here L=3,λ=1.
Fig.8  Illustration of effects of quantum noises on the landscapes for the real and imaginary part of the energy parameter. The left and right plots depict the landscape without noise and under the depolarization noise, respectively. The red star in the figure is the minimum value of the loss function, which corresponds to the optimal energy parameter. A comparison shows that noise will lead to a shift of the optimized energy.
Fig.9  Comparison of optimization processes for ideal, depolarizing noisy and mitigated variational quantum algorithm. The figure illustrates the impact of depolarization noise on quantum algorithms and the effectiveness of noise mitigation techniques. (a) The cost function as a function of the number of iterations. (b) The fidelity respect to target ground state as a function of the number of iterations. (c) The real component of the energy E as a function of the number of iterations. (d) The imaginary component of the energy E as a function of the number of iterations. In all cases L=4,P=4,λ=1,κ=0.4.
  
  Fig.A1 Bit-flip noise and its error mitigation. In (a?d) the dependence of the cost function, the fidelity, the real and the imaginary components of the energy with the iteration count are shown respectively. In all cases L=4,P=4,λ=1,κ=0.4.
  Fig.A2 Phase-flip noise and its error mitigation. All other setups are the same as .
1 Ashida Y. , Gong Z. , Ueda M. . Non-Hermitian physics. Adv. Phys., 2020, 69(3): 249
https://doi.org/10.1080/00018732.2021.1876991
2 Guo A. , J. Salamo G. , Duchesne D. , Morandotti R. , Volatier-Ravat M. , Aimez V. , A. Siviloglou G. , N. Christodoulides D. . Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett., 2009, 103(9): 093902
https://doi.org/10.1103/PhysRevLett.103.093902
3 M. Bender C. . Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys., 2007, 70(6): 947
https://doi.org/10.1088/0034-4885/70/6/R03
4 Dorey P. , Dunning C. , Tateo R. , equivalences Spectral . Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics. J. Phys. Math. Gen., 2001, 34(28): 5679
https://doi.org/10.1088/0305-4470/34/28/305
5 K. Özdemir Ş. , Rotter S. , Nori F. , Yang L. . Parity‒time symmetry and exceptional points in photonics. Nat. Mater., 2019, 18: 783
https://doi.org/10.1038/s41563-019-0304-9
6 Yao S. , Wang Z. . Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett., 2018, 121(8): 086803
https://doi.org/10.1103/PhysRevLett.121.086803
7 Wang Z. , J. Lang L. , He L. . Emergent Mott insulators and non-Hermitian conservation laws in an interacting bosonic chain with noninteger filling and nonreciprocal hopping. Phys. Rev. B, 2022, 105(5): 054315
https://doi.org/10.1103/PhysRevB.105.054315
8 Jiang H. , J. Lang L. , Yang C. , L. Zhu S. , Chen S. . Interplay of non-Hermitian skin effects and Anderson localization in nonreciprocal quasiperiodic lattices. Phys. Rev. B, 2019, 100(5): 054301
https://doi.org/10.1103/PhysRevB.100.054301
9 J. Lang L. , Cai X. , Chen S. . Edge states and topological phases in one-dimensional optical superlattices. Phys. Rev. Lett., 2012, 108(22): 220401
https://doi.org/10.1103/PhysRevLett.108.220401
10 W. Zhang D. , Z. Tang L. , J. Lang L. , Yan H. , L. Zhu S. . Non-Hermitian topological Anderson insulators. Sci. China Phys. Mech. Astron., 2020, 63(6): 267062
https://doi.org/10.1007/s11433-020-1521-9
11 Z. Tang L. , Q. Zhang G. , F. Zhang L. , W. Zhang D. . Localization and topological transitions in non-Hermitian quasiperiodic lattices. Phys. Rev. A, 2021, 103(3): 033325
https://doi.org/10.1103/PhysRevA.103.033325
12 Z. Tang L. , F. Zhang L. , Q. Zhang G. , W. Zhang D. . Topological Anderson insulators in two-dimensional non-Hermitian disordered systems. Phys. Rev. A, 2020, 101(6): 063612
https://doi.org/10.1103/PhysRevA.101.063612
13 Heiss W. . Exceptional points of non-Hermitian operators. J. Phys. Math. Gen., 2004, 37(6): 2455
https://doi.org/10.1088/0305-4470/37/6/034
14 Song F. , Yao S. , Wang Z. . Non-Hermitian skin effect and chiral damping in open quantum systems. Phys. Rev. Lett., 2019, 123(17): 170401
https://doi.org/10.1103/PhysRevLett.123.170401
15 Feinberg J. , Zee A. . Non-Hermitian localization and delocalization. Phys. Rev. E, 1999, 59(6): 6433
https://doi.org/10.1103/PhysRevE.59.6433
16 del Campo A. , L. Egusquiza I. , B. Plenio M. , F. Huelga S. . Quantum speed limits in open system dynamics. Phys. Rev. Lett., 2013, 110(5): 050403
https://doi.org/10.1103/PhysRevLett.110.050403
17 Barahona F. . On the computational complexity of Ising spin glass models. J. Phys. Math. Gen., 1982, 15(10): 3241
https://doi.org/10.1088/0305-4470/15/10/028
18 Chen G. , Song F. , L. Lado J. . Topological spin excitations in non-Hermitian spin chains with a generalized kernel polynomial algorithm. Phys. Rev. Lett., 2023, 130(10): 100401
https://doi.org/10.1103/PhysRevLett.130.100401
19 Jaschke D. , Montangero S. , D. Carr L. . One-dimensional many-body entangled open quantum systems with tensor network methods. Quantum Sci. Technol., 2018, 4(1): 013001
https://doi.org/10.1088/2058-9565/aae724
20 T. Fishman M. , Vanderstraeten L. , Zauner-Stauber V. , Haegeman J. , Verstraete F. . Faster methods for contracting infinite two-dimensional tensor networks. Phys. Rev. B, 2018, 98(23): 235148
https://doi.org/10.1103/PhysRevB.98.235148
21 Orús R. . A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Ann. Phys., 2014, 349: 117
https://doi.org/10.1016/j.aop.2014.06.013
22 Wiesner S., Simulations of many-body quantum systems by a quantum computer, arXiv: quant-ph/9603028 (1996)
23 Poulin D. , Wocjan P. . Preparing ground states of quantum many-body systems on a quantum computer. Phys. Rev. Lett., 2009, 102(13): 130503
https://doi.org/10.1103/PhysRevLett.102.130503
24 S. Abrams D. , Lloyd S. . Simulation of many-body Fermi systems on a universal quantum computer. Phys. Rev. Lett., 1997, 79(13): 2586
https://doi.org/10.1103/PhysRevLett.79.2586
25 Smith A. , Kim M. , Pollmann F. , Knolle J. . Simulating quantum many-body dynamics on a current digital quantum computer. npj Quantum Inf., 2019, 5: 106
https://doi.org/10.1038/s41534-019-0217-0
26 Peruzzo A. , McClean J. , Shadbolt P. , H. Yung M. , Q. Zhou X. , J. Love P. , Aspuru-Guzik A. , L. O’brien J. . A variational eigenvalue solver on a photonic quantum processor. Nat. Commun., 2014, 5(1): 4213
https://doi.org/10.1038/ncomms5213
27 Kandala A. , Mezzacapo A. , Temme K. , Takita M. , Brink M. , M. Chow J. , M. Gambetta J. . Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 2017, 549(7671): 242
https://doi.org/10.1038/nature23879
28 Tilly J. , Chen H. , Cao S. , Picozzi D. , Setia K. , Li Y. , Grant E. , Wossnig L. , Rungger I. , H. Booth G. , Tennyson J. . The variational quantum eigensolver: A review of methods and best practices. Phys. Rep., 2022, 986: 1
https://doi.org/10.1016/j.physrep.2022.08.003
29 A. Fedorov D. , Peng B. , Govind N. , Alexeev Y. . VQE method: A short survey and recent developments. Mater. Theory, 2022, 6(1): 2
https://doi.org/10.1186/s41313-021-00032-6
30 J. O’Malley P. , Babbush R. , D. Kivlichan I. , Romero J. , R. McClean J. , Barends R. , Kelly J. , Roushan P. , Tranter A. , Ding N. , Campbell B. , Chen Y. , Chen Z. , Chiaro B. , Dunsworth A. , G. Fowler A. , Jeffrey E. , Lucero E. , Megrant A. , Y. Mutus J. , Neeley M. , Neill C. , Quintana C. , Sank D. , Vainsencher A. , Wenner J. , C. White T. , V. Coveney P. , J. Love P. , Neven H. , Aspuru-Guzik A. , M. Martinis J. . Scalable quantum simulation of molecular energies. Phys. Rev. X, 2016, 6(3): 031007
https://doi.org/10.1103/PhysRevX.6.031007
31 L. Bosse J. , Montanaro A. . Probing ground-state properties of the kagome antiferromagnetic Heisenberg model using the variational quantum eigensolver. Phys. Rev. B, 2022, 105(9): 094409
https://doi.org/10.1103/PhysRevB.105.094409
32 Kattemölle J. , van Wezel J. . Variational quantum eigensolver for the Heisenberg antiferromagnet on the kagome lattice. Phys. Rev. B, 2022, 106(21): 214429
https://doi.org/10.1103/PhysRevB.106.214429
33 M. Nakanishi K. , Mitarai K. , Fujii K. . Subspace-search variational quantum eigensolver for excited states. Phys. Rev. Res., 2019, 1(3): 033062
https://doi.org/10.1103/PhysRevResearch.1.033062
34 Higgott O. , Wang D. , Brierley S. . Variational quantum computation of excited states. Quantum, 2019, 3: 156
https://doi.org/10.22331/q-2019-07-01-156
35 Liu S. , X. Zhang S. , Y. Hsieh C. , Zhang S. , Yao H. . Probing many-body localization by excited-state variational quantum eigensolver. Phys. Rev. B, 2023, 107(2): 024204
https://doi.org/10.1103/PhysRevB.107.024204
36 X. Xie Q. , Liu S. , Zhao Y. . Orthogonal state reduction variational eigensolver for the excited-state calculations on quantum computers. J. Chem. Theory Comput., 2022, 18(6): 3737
https://doi.org/10.1021/acs.jctc.2c00159
37 B. Zhang D. , L. Chen B. , H. Yuan Z. , Yin T. . Variational quantum eigensolvers by variance minimization. Chin. Phys. B, 2022, 31(12): 120301
https://doi.org/10.1088/1674-1056/ac8a8d
38 L. Chen B. , B. Zhang D. . Variational quantum eigensolver with mutual variance-Hamiltonian optimization. Chin. Phys. Lett., 2023, 40(1): 010303
https://doi.org/10.1088/0256-307X/40/1/010303
39 Guo Z.T. Xu Z.Li M.You L.Yang S., Variational matrix product state approach for non-Hermitian system based on a companion Hermitian Hamiltonian, arXiv: 2210.14858 (2022)
40 Moiseyev N., Non-Hermitian Quantum Mechanics, Cambridge: Cambridge University Press, 2011
41 Banach S., Theory of Linear Operations, Elsevier, 1987
42 Cerezo M. , Arrasmith A. , Babbush R. , C. Benjamin S. , Endo S. , Fujii K. , R. McClean J. , Mitarai K. , Yuan X. , Cincio L. , J. Coles P. . Variational quantum algorithms. Nat. Rev. Phys., 2021, 3(9): 625
https://doi.org/10.1038/s42254-021-00348-9
43 Cleve R. , Ekert A. , Macchiavello C. , Mosca M. . Quantum algorithms revisited. Proc. Royal Soc. A, 1998, 454(1969): 339
https://doi.org/10.1098/rspa.1998.0164
44 Bharti K. , Haug T. . Quantum-assisted simulator. Phys. Rev. A, 2021, 104(4): 042418
https://doi.org/10.1103/PhysRevA.104.042418
45 Efthymiou S. , Ramos-Calderer S. , Bravo-Prieto C. , Pérez-Salinas A. , García-Martín D. , Garcia-Saez A. , I. Latorre J. , Carrazza S. . Qibo: A framework for quantum simulation with hardware acceleration. Quantum Sci. Technol., 2022, 7(1): 015018
https://doi.org/10.1088/2058-9565/ac39f5
46 R. Johansson J. , D. Nation P. , Nori F. . QuTiP: An open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 2012, 183(8): 1760
https://doi.org/10.1016/j.cpc.2012.02.021
47 Gehlen G. . Critical and off-critical conformal analysis of the Ising quantum chain in an imaginary field. J. Phys. Math. Gen., 1991, 24(22): 5371
https://doi.org/10.1088/0305-4470/24/22/021
48 B. Sousa P.V. Ramos R., Universal quantum circuit for n-qubit quantum gate: A programmable quantum gate, arXiv: quant-ph/0602174 (2006)
49 D. Xie X. , Guo X. , Xing H. , Y. Xue Z. , B. Zhang D. , L. Zhu S. . Variational thermal quantum simulation of the lattice Schwinger model. Phys. Rev. D, 2022, 106(5): 054509
https://doi.org/10.1103/PhysRevD.106.054509
50 Haug T. , Bharti K. , Kim M. . Capacity and quantum geometry of parametrized quantum circuits. PRX Quantum, 2021, 2(4): 040309
https://doi.org/10.1103/PRXQuantum.2.040309
51 Preskill J. . Quantum computing in the NISQ era and beyond. Quantum, 2018, 2: 79
https://doi.org/10.22331/q-2018-08-06-79
52 F. Richardson L. , A. Gaunt J. . VIII. The deferred approach to the limit. Philos. Trans. Royal Soc. Ser. A, 1927, 226(636‒646): 299
https://doi.org/10.1098/rsta.1927.0008
53 Temme K. , Bravyi S. , M. Gambetta J. . Error mitigation for short-depth quantum circuits. Phys. Rev. Lett., 2017, 119(18): 180509
https://doi.org/10.1103/PhysRevLett.119.180509
[1] Ronghang Chen, Zhou Guang, Cong Guo, Guanru Feng, Shi-Yao Hou. Pure quantum gradient descent algorithm and full quantum variational eigensolver[J]. Front. Phys. , 2024, 19(2): 21202-.
[2] Bin Cheng, Xiu-Hao Deng, Xiu Gu, Yu He, Guangchong Hu, Peihao Huang, Jun Li, Ben-Chuan Lin, Dawei Lu, Yao Lu, Chudan Qiu, Hui Wang, Tao Xin, Shi Yu, Man-Hong Yung, Junkai Zeng, Song Zhang, Youpeng Zhong, Xinhua Peng, Franco Nori, Dapeng Yu. Noisy intermediate-scale quantum computers[J]. Front. Phys. , 2023, 18(2): 21308-.
[3] Junxiang Xiao, Jingwei Wen, Shijie Wei, Guilu Long. Reconstructing unknown quantum states using variational layerwise method[J]. Front. Phys. , 2022, 17(5): 51501-.
[4] Yi-Piao Wu, Guo-Qing Zhang, Cai-Xia Zhang, Jian Xu, Dan-Wei Zhang. Interplay of nonreciprocity and nonlinearity on mean-field energy and dynamics of a Bose–Einstein condensate in a double-well potential[J]. Front. Phys. , 2022, 17(4): 42503-.
[5] M. AbuGhanem, A. H. Homid, M. Abdel-Aty. Cavity control as a new quantum algorithms implementation treatment[J]. Front. Phys. , 2018, 13(1): 130303-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed