|
|
Variational quantum algorithms for scanning the complex spectrum of non-Hermitian systems |
Xu-Dan Xie1, Zheng-Yuan Xue1,2( ), Dan-Bo Zhang1,2( ) |
1. Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, and School of Physics, South China Normal University, Guangzhou 510006, China 2. Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong−Hong Kong Joint Laboratory of Quantum Matter, and Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China |
|
|
Abstract Solving non-Hermitian quantum many-body systems on a quantum computer by minimizing the variational energy is challenging as the energy can be complex. Here, we propose a variational quantum algorithm for solving the non-Hermitian Hamiltonian by minimizing a type of energy variance, where zero variance can naturally determine the eigenvalues and the associated left and right eigenstates. Moreover, the energy is set as a parameter in the cost function and can be tuned to scan the whole spectrum efficiently by using a two-step optimization scheme. Through numerical simulations, we demonstrate the algorithm for preparing the left and right eigenstates, verifying the biorthogonal relations, as well as evaluating the observables. We also investigate the impact of quantum noise on our algorithm and show that its performance can be largely improved using error mitigation techniques. Therefore, our work suggests an avenue for solving non-Hermitian quantum many-body systems with variational quantum algorithms on near-term noisy quantum computers.
|
Keywords
quantum algorithm
non-Hermitian physics
quantum many-body systems
|
Corresponding Author(s):
Zheng-Yuan Xue,Dan-Bo Zhang
|
Issue Date: 05 February 2024
|
|
1 |
Ashida Y. , Gong Z. , Ueda M. . Non-Hermitian physics. Adv. Phys., 2020, 69(3): 249
https://doi.org/10.1080/00018732.2021.1876991
|
2 |
Guo A. , J. Salamo G. , Duchesne D. , Morandotti R. , Volatier-Ravat M. , Aimez V. , A. Siviloglou G. , N. Christodoulides D. . Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett., 2009, 103(9): 093902
https://doi.org/10.1103/PhysRevLett.103.093902
|
3 |
M. Bender C. . Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys., 2007, 70(6): 947
https://doi.org/10.1088/0034-4885/70/6/R03
|
4 |
Dorey P. , Dunning C. , Tateo R. , equivalences Spectral . Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics. J. Phys. Math. Gen., 2001, 34(28): 5679
https://doi.org/10.1088/0305-4470/34/28/305
|
5 |
K. Özdemir Ş. , Rotter S. , Nori F. , Yang L. . Parity‒time symmetry and exceptional points in photonics. Nat. Mater., 2019, 18: 783
https://doi.org/10.1038/s41563-019-0304-9
|
6 |
Yao S. , Wang Z. . Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett., 2018, 121(8): 086803
https://doi.org/10.1103/PhysRevLett.121.086803
|
7 |
Wang Z. , J. Lang L. , He L. . Emergent Mott insulators and non-Hermitian conservation laws in an interacting bosonic chain with noninteger filling and nonreciprocal hopping. Phys. Rev. B, 2022, 105(5): 054315
https://doi.org/10.1103/PhysRevB.105.054315
|
8 |
Jiang H. , J. Lang L. , Yang C. , L. Zhu S. , Chen S. . Interplay of non-Hermitian skin effects and Anderson localization in nonreciprocal quasiperiodic lattices. Phys. Rev. B, 2019, 100(5): 054301
https://doi.org/10.1103/PhysRevB.100.054301
|
9 |
J. Lang L. , Cai X. , Chen S. . Edge states and topological phases in one-dimensional optical superlattices. Phys. Rev. Lett., 2012, 108(22): 220401
https://doi.org/10.1103/PhysRevLett.108.220401
|
10 |
W. Zhang D. , Z. Tang L. , J. Lang L. , Yan H. , L. Zhu S. . Non-Hermitian topological Anderson insulators. Sci. China Phys. Mech. Astron., 2020, 63(6): 267062
https://doi.org/10.1007/s11433-020-1521-9
|
11 |
Z. Tang L. , Q. Zhang G. , F. Zhang L. , W. Zhang D. . Localization and topological transitions in non-Hermitian quasiperiodic lattices. Phys. Rev. A, 2021, 103(3): 033325
https://doi.org/10.1103/PhysRevA.103.033325
|
12 |
Z. Tang L. , F. Zhang L. , Q. Zhang G. , W. Zhang D. . Topological Anderson insulators in two-dimensional non-Hermitian disordered systems. Phys. Rev. A, 2020, 101(6): 063612
https://doi.org/10.1103/PhysRevA.101.063612
|
13 |
Heiss W. . Exceptional points of non-Hermitian operators. J. Phys. Math. Gen., 2004, 37(6): 2455
https://doi.org/10.1088/0305-4470/37/6/034
|
14 |
Song F. , Yao S. , Wang Z. . Non-Hermitian skin effect and chiral damping in open quantum systems. Phys. Rev. Lett., 2019, 123(17): 170401
https://doi.org/10.1103/PhysRevLett.123.170401
|
15 |
Feinberg J. , Zee A. . Non-Hermitian localization and delocalization. Phys. Rev. E, 1999, 59(6): 6433
https://doi.org/10.1103/PhysRevE.59.6433
|
16 |
del Campo A. , L. Egusquiza I. , B. Plenio M. , F. Huelga S. . Quantum speed limits in open system dynamics. Phys. Rev. Lett., 2013, 110(5): 050403
https://doi.org/10.1103/PhysRevLett.110.050403
|
17 |
Barahona F. . On the computational complexity of Ising spin glass models. J. Phys. Math. Gen., 1982, 15(10): 3241
https://doi.org/10.1088/0305-4470/15/10/028
|
18 |
Chen G. , Song F. , L. Lado J. . Topological spin excitations in non-Hermitian spin chains with a generalized kernel polynomial algorithm. Phys. Rev. Lett., 2023, 130(10): 100401
https://doi.org/10.1103/PhysRevLett.130.100401
|
19 |
Jaschke D. , Montangero S. , D. Carr L. . One-dimensional many-body entangled open quantum systems with tensor network methods. Quantum Sci. Technol., 2018, 4(1): 013001
https://doi.org/10.1088/2058-9565/aae724
|
20 |
T. Fishman M. , Vanderstraeten L. , Zauner-Stauber V. , Haegeman J. , Verstraete F. . Faster methods for contracting infinite two-dimensional tensor networks. Phys. Rev. B, 2018, 98(23): 235148
https://doi.org/10.1103/PhysRevB.98.235148
|
21 |
Orús R. . A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Ann. Phys., 2014, 349: 117
https://doi.org/10.1016/j.aop.2014.06.013
|
22 |
Wiesner S., Simulations of many-body quantum systems by a quantum computer, arXiv: quant-ph/9603028 (1996)
|
23 |
Poulin D. , Wocjan P. . Preparing ground states of quantum many-body systems on a quantum computer. Phys. Rev. Lett., 2009, 102(13): 130503
https://doi.org/10.1103/PhysRevLett.102.130503
|
24 |
S. Abrams D. , Lloyd S. . Simulation of many-body Fermi systems on a universal quantum computer. Phys. Rev. Lett., 1997, 79(13): 2586
https://doi.org/10.1103/PhysRevLett.79.2586
|
25 |
Smith A. , Kim M. , Pollmann F. , Knolle J. . Simulating quantum many-body dynamics on a current digital quantum computer. npj Quantum Inf., 2019, 5: 106
https://doi.org/10.1038/s41534-019-0217-0
|
26 |
Peruzzo A. , McClean J. , Shadbolt P. , H. Yung M. , Q. Zhou X. , J. Love P. , Aspuru-Guzik A. , L. O’brien J. . A variational eigenvalue solver on a photonic quantum processor. Nat. Commun., 2014, 5(1): 4213
https://doi.org/10.1038/ncomms5213
|
27 |
Kandala A. , Mezzacapo A. , Temme K. , Takita M. , Brink M. , M. Chow J. , M. Gambetta J. . Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 2017, 549(7671): 242
https://doi.org/10.1038/nature23879
|
28 |
Tilly J. , Chen H. , Cao S. , Picozzi D. , Setia K. , Li Y. , Grant E. , Wossnig L. , Rungger I. , H. Booth G. , Tennyson J. . The variational quantum eigensolver: A review of methods and best practices. Phys. Rep., 2022, 986: 1
https://doi.org/10.1016/j.physrep.2022.08.003
|
29 |
A. Fedorov D. , Peng B. , Govind N. , Alexeev Y. . VQE method: A short survey and recent developments. Mater. Theory, 2022, 6(1): 2
https://doi.org/10.1186/s41313-021-00032-6
|
30 |
J. O’Malley P. , Babbush R. , D. Kivlichan I. , Romero J. , R. McClean J. , Barends R. , Kelly J. , Roushan P. , Tranter A. , Ding N. , Campbell B. , Chen Y. , Chen Z. , Chiaro B. , Dunsworth A. , G. Fowler A. , Jeffrey E. , Lucero E. , Megrant A. , Y. Mutus J. , Neeley M. , Neill C. , Quintana C. , Sank D. , Vainsencher A. , Wenner J. , C. White T. , V. Coveney P. , J. Love P. , Neven H. , Aspuru-Guzik A. , M. Martinis J. . Scalable quantum simulation of molecular energies. Phys. Rev. X, 2016, 6(3): 031007
https://doi.org/10.1103/PhysRevX.6.031007
|
31 |
L. Bosse J. , Montanaro A. . Probing ground-state properties of the kagome antiferromagnetic Heisenberg model using the variational quantum eigensolver. Phys. Rev. B, 2022, 105(9): 094409
https://doi.org/10.1103/PhysRevB.105.094409
|
32 |
Kattemölle J. , van Wezel J. . Variational quantum eigensolver for the Heisenberg antiferromagnet on the kagome lattice. Phys. Rev. B, 2022, 106(21): 214429
https://doi.org/10.1103/PhysRevB.106.214429
|
33 |
M. Nakanishi K. , Mitarai K. , Fujii K. . Subspace-search variational quantum eigensolver for excited states. Phys. Rev. Res., 2019, 1(3): 033062
https://doi.org/10.1103/PhysRevResearch.1.033062
|
34 |
Higgott O. , Wang D. , Brierley S. . Variational quantum computation of excited states. Quantum, 2019, 3: 156
https://doi.org/10.22331/q-2019-07-01-156
|
35 |
Liu S. , X. Zhang S. , Y. Hsieh C. , Zhang S. , Yao H. . Probing many-body localization by excited-state variational quantum eigensolver. Phys. Rev. B, 2023, 107(2): 024204
https://doi.org/10.1103/PhysRevB.107.024204
|
36 |
X. Xie Q. , Liu S. , Zhao Y. . Orthogonal state reduction variational eigensolver for the excited-state calculations on quantum computers. J. Chem. Theory Comput., 2022, 18(6): 3737
https://doi.org/10.1021/acs.jctc.2c00159
|
37 |
B. Zhang D. , L. Chen B. , H. Yuan Z. , Yin T. . Variational quantum eigensolvers by variance minimization. Chin. Phys. B, 2022, 31(12): 120301
https://doi.org/10.1088/1674-1056/ac8a8d
|
38 |
L. Chen B. , B. Zhang D. . Variational quantum eigensolver with mutual variance-Hamiltonian optimization. Chin. Phys. Lett., 2023, 40(1): 010303
https://doi.org/10.1088/0256-307X/40/1/010303
|
39 |
Guo Z.T. Xu Z.Li M.You L.Yang S., Variational matrix product state approach for non-Hermitian system based on a companion Hermitian Hamiltonian, arXiv: 2210.14858 (2022)
|
40 |
Moiseyev N., Non-Hermitian Quantum Mechanics, Cambridge: Cambridge University Press, 2011
|
41 |
Banach S., Theory of Linear Operations, Elsevier, 1987
|
42 |
Cerezo M. , Arrasmith A. , Babbush R. , C. Benjamin S. , Endo S. , Fujii K. , R. McClean J. , Mitarai K. , Yuan X. , Cincio L. , J. Coles P. . Variational quantum algorithms. Nat. Rev. Phys., 2021, 3(9): 625
https://doi.org/10.1038/s42254-021-00348-9
|
43 |
Cleve R. , Ekert A. , Macchiavello C. , Mosca M. . Quantum algorithms revisited. Proc. Royal Soc. A, 1998, 454(1969): 339
https://doi.org/10.1098/rspa.1998.0164
|
44 |
Bharti K. , Haug T. . Quantum-assisted simulator. Phys. Rev. A, 2021, 104(4): 042418
https://doi.org/10.1103/PhysRevA.104.042418
|
45 |
Efthymiou S. , Ramos-Calderer S. , Bravo-Prieto C. , Pérez-Salinas A. , García-Martín D. , Garcia-Saez A. , I. Latorre J. , Carrazza S. . Qibo: A framework for quantum simulation with hardware acceleration. Quantum Sci. Technol., 2022, 7(1): 015018
https://doi.org/10.1088/2058-9565/ac39f5
|
46 |
R. Johansson J. , D. Nation P. , Nori F. . QuTiP: An open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 2012, 183(8): 1760
https://doi.org/10.1016/j.cpc.2012.02.021
|
47 |
Gehlen G. . Critical and off-critical conformal analysis of the Ising quantum chain in an imaginary field. J. Phys. Math. Gen., 1991, 24(22): 5371
https://doi.org/10.1088/0305-4470/24/22/021
|
48 |
B. Sousa P.V. Ramos R., Universal quantum circuit for n-qubit quantum gate: A programmable quantum gate, arXiv: quant-ph/0602174 (2006)
|
49 |
D. Xie X. , Guo X. , Xing H. , Y. Xue Z. , B. Zhang D. , L. Zhu S. . Variational thermal quantum simulation of the lattice Schwinger model. Phys. Rev. D, 2022, 106(5): 054509
https://doi.org/10.1103/PhysRevD.106.054509
|
50 |
Haug T. , Bharti K. , Kim M. . Capacity and quantum geometry of parametrized quantum circuits. PRX Quantum, 2021, 2(4): 040309
https://doi.org/10.1103/PRXQuantum.2.040309
|
51 |
Preskill J. . Quantum computing in the NISQ era and beyond. Quantum, 2018, 2: 79
https://doi.org/10.22331/q-2018-08-06-79
|
52 |
F. Richardson L. , A. Gaunt J. . VIII. The deferred approach to the limit. Philos. Trans. Royal Soc. Ser. A, 1927, 226(636‒646): 299
https://doi.org/10.1098/rsta.1927.0008
|
53 |
Temme K. , Bravyi S. , M. Gambetta J. . Error mitigation for short-depth quantum circuits. Phys. Rev. Lett., 2017, 119(18): 180509
https://doi.org/10.1103/PhysRevLett.119.180509
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|