|
|
A universal non-Hermitian platform for bound state in the continuum enhanced wireless power transfer |
Haiyan Zhang1, Zhiwei Guo1( ), Yunhui Li2, Yaping Yang1, Yuguang Chen1( ), Hong Chen1 |
1. School of Physics Science and Engineering, Tongji University, Shanghai 200092, China 2. Department of Electrical Engineering, Tongji University, Shanghai 201804, China |
|
|
Abstract Non-Hermitian systems with parity−time (PT)-symmetry have been extensively studied and rapidly developed in resonance wireless power transfer (WPT). The WPT system that satisfies PT-symmetry always has real eigenvalues, which promote efficient energy transfer. However, meeting the condition of PT-symmetry is one of the most puzzling issues. Stable power transfer under different transmission conditions is also a great challenge. Bound state in the continuum (BIC) supporting extreme quality-factor mode provides an opportunity for efficient WPT. Here, we propose theoretically and demonstrate experimentally that BIC widely exists in resonance-coupled systems without PT-symmetry, and it can even realize more stable and efficient power transfer than PT-symmetric systems. Importantly, BIC for efficient WPT is universal and suitable in standard second-order and even high-order WPT systems. Our results not only extend non-Hermitian physics beyond PT-symmetry, but also bridge the gap between BIC and practical application engineering, such as high-performance WPT, wireless sensing and communications.
|
Keywords
non-Hermitian physics
parity−time asymmetry
bound state in the continuum
wireless power transfer
|
Corresponding Author(s):
Zhiwei Guo,Yuguang Chen
|
Issue Date: 19 March 2024
|
|
1 |
Krasnok A. , G. Baranov D. , Generalov A. , Li S. , Alu A. . Coherently enhanced wireless power transfer. Phys. Rev. Lett., 2018, 120(14): 143901
https://doi.org/10.1103/PhysRevLett.120.143901
|
2 |
Song M. , Jayathurathnage P. , Zanganeh E. , Krasikova M. , Smirnov P. , Belov P. , Kapitanova P. , Simovski C. , Tretyakov S. , Krasnok A. . Wireless power transfer based on novel physical concepts. Nat. Electron., 2021, 4(10): 707
https://doi.org/10.1038/s41928-021-00658-x
|
3 |
Kurs A. , Karalis A. , Moffatt R. , D. Joannopoulos J. , Fisher P. , Soljačić M. . Wireless power transfer via strongly coupled magnetic resonances. Science, 2007, 317(5834): 83
https://doi.org/10.1126/science.1143254
|
4 |
Xie Y. , Zhang Z. , Lin Y. , Feng T. , Xu Y. . Magnetic quasi-bound state in the continuum for wireless power transfer. Phys. Rev. Appl., 2021, 15(4): 044024
https://doi.org/10.1103/PhysRevApplied.15.044024
|
5 |
Assawaworrarit S. , Yu X. , Fan S. . Robust wireless power transfer using a nonlinear parity–time-symmetric circuit. Nature, 2017, 546(7658): 387
https://doi.org/10.1038/nature22404
|
6 |
Li J.Zhang B., A wireless power transfer system based on quasi‐parity–time symmetry with gain–loss ratio modulation, Int. J. Circuit Theory Appl. 51(3), 1039 (2023)
|
7 |
Miao Z. , Liu D. , Gong C. . Efficiency enhancement for an inductive wireless power transfer system by optimizing the impedance matching networks. IEEE Trans. Biomed. Circuits Syst., 2017, 11(5): 1160
https://doi.org/10.1109/TBCAS.2017.2740266
|
8 |
Song J. , Yang F. , Guo Z. , Wu X. , Zhu K. , Jiang J. , Sun Y. , Li Y. , Jiang H. , Chen H. . Wireless power transfer via topological modes in dimer chains. Phys. Rev. Appl., 2021, 15(1): 014009
https://doi.org/10.1103/PhysRevApplied.15.014009
|
9 |
Guo Z.Jiang J.Wu X.Zhang H.Hu S.Wang Y.Li Y.Yang Y.Chen H., Rotation manipulation of high-order PT-symmetry for robust wireless power transfer, Fundamental Res., doi: 10.1016/j.fmre.2023.11.010 (2023)
|
10 |
Guo Z. , Yang F. , Zhang H. , Wu X. , Wu Q. , Zhu K. , Jiang J. , Jiang H. , Yang Y. , Li Y. , Chen H. . Level pinning of anti-PT symmetric circuits for efficient wireless power transfer. Natl. Sci. Rev., 2023, 11(1): nwad172
https://doi.org/10.1093/nsr/nwad172
|
11 |
L. Cannon B. , F. Hoburg J. , D. Stancil D. , C. Goldstein S. . Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE Trans. Power Electron., 2009, 24(7): 1819
https://doi.org/10.1109/TPEL.2009.2017195
|
12 |
Zhang L. , Yang Y. , Jiang Z. , Chen Q. , Yan Q. , Wu Z. , Zhang B. , Huangfu J. , Chen H. . Demonstration of topological wireless power transfer. Sci. Bull. (Beijing), 2021, 66(10): 974
https://doi.org/10.1016/j.scib.2021.01.028
|
13 |
Sakhdari M. , Hajizadegan M. , Y. Chen P. . Robust extended-range wireless power transfer using a higher-order PT-symmetric platform. Phys. Rev. Res., 2020, 2(1): 013152
https://doi.org/10.1103/PhysRevResearch.2.013152
|
14 |
Zhou J. , Zhang B. , Xiao W. , Qiu D. , Chen Y. . Nonlinear parity–time-symmetric model for constant efficiency wireless power transfer: Application to a drone-in-flight wireless charging platform. IEEE Trans. Ind. Electron., 2019, 66(5): 4097
https://doi.org/10.1109/TIE.2018.2864515
|
15 |
Kim H. , Yoo S. , Joo H. , Lee J. , An D. , Nam S. , Han H. , H. Kim D. , Kim S. . Wide-range robust wireless power transfer using heterogeneously coupled and flippable neutrals in parity–time symmetry. Sci. Adv., 2022, 8(24): eabo4610
https://doi.org/10.1126/sciadv.abo4610
|
16 |
Guo Z. , Long Y. , Jiang H. , Ren J. , Chen H. . Anomalous unidirectional excitation of high-k hyperbolic modes using all-electric metasources. Adv. Photonics, 2021, 3(3): 036001
https://doi.org/10.1117/1.AP.3.3.036001
|
17 |
P. Sample A. , A. Meyer D. , R. Smith J. . Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron., 2011, 58(2): 544
https://doi.org/10.1109/TIE.2010.2046002
|
18 |
Zeng C. , Guo Z. , Zhu K. , Fan C. , Li G. , Jiang J. , Li Y. , Jiang H. , Yang Y. , Sun Y. , Chen H. . Efficient and stable wireless power transfer based on the non-Hermitian physics. Chin. Phys. B, 2022, 31(1): 010307
https://doi.org/10.1088/1674-1056/ac3815
|
19 |
Tesla N. . Apparatus for transmitting electrical energy. U. S. Patent, 1914, 1: 119,732
|
20 |
Huang T. , Wang B. , Zhang W. , Zhao C. . Ultracompact energy transfer in anapole-based metachains. Nano Lett., 2021, 21(14): 6102
https://doi.org/10.1021/acs.nanolett.1c01571
|
21 |
X. Wang B. , Y. Zhao C. . Topological phonon polariton enhanced radiative heat transfer in bichromatic nanoparticle arrays mimicking Aubry–André–Harper model. Phys. Rev. B, 2023, 107(12): 125409
https://doi.org/10.1103/PhysRevB.107.125409
|
22 |
Wu Y. , Kang L. , H. Werner D. . Symmetry in non-Hermitian wireless power transfer systems. Phys. Rev. Lett., 2022, 129(20): 200201
https://doi.org/10.1103/PhysRevLett.129.200201
|
23 |
Hao X. , Yin K. , Zou J. , Wang R. , Huang Y. , Ma X. , Dong T. . Frequency-stable robust wireless power transfer based on high-order pseudo-Hermitian physics. Phys. Rev. Lett., 2023, 130(7): 077202
https://doi.org/10.1103/PhysRevLett.130.077202
|
24 |
Li A. , Wei H. , Cotrufo M. , Chen W. , Mann S. , Ni X. , Xu B. , Chen J. , Wang J. , Fan S. , W. Qiu C. , Alù A. , Chen L. . Exceptional points and non-Hermitian photonics at the nanoscale. Nat. Nanotechnol., 2023, 18(7): 706
https://doi.org/10.1038/s41565-023-01408-0
|
25 |
Liang C. , Tang Y. , N. Xu A. , C. Liu Y. . Observation of exceptional points in thermal atomic ensembles. Phys. Rev. Lett., 2023, 130(26): 263601
https://doi.org/10.1103/PhysRevLett.130.263601
|
26 |
Li Y. , Ao Y. , Hu X. , Lu C. , T. Chan C. , Gong Q. . Unsupervised learning of non‐Hermitian photonic bulk topology. Laser Photonics Rev., 2023, 17(12): 2300481
https://doi.org/10.1002/lpor.202300481
|
27 |
Ke S. , Wen W. , Zhao D. , Wang Y. . Floquet engineering of the non-Hermitian skin effect in photonic waveguide arrays. Phys. Rev. A, 2023, 107(5): 053508
https://doi.org/10.1103/PhysRevA.107.053508
|
28 |
M. Zhang S. , Jin L. . Localization in non-Hermitian asymmetric rhombic lattice. Phys. Rev. Res., 2020, 2(3): 033127
https://doi.org/10.1103/PhysRevResearch.2.033127
|
29 |
El-Ganainy R. , G. Makris K. , Khajavikhan M. , H. Musslimani Z. , Rotter S. , N. Christodoulides D. . Non-Hermitian physics and PT symmetry. Nat. Phys., 2018, 14(1): 11
https://doi.org/10.1038/nphys4323
|
30 |
M. Bender C.Boettcher S.N. Meisinger P., PT-symmetric quantum mechanics, J. Math. Phys. 40(5), 2201 (1999)
|
31 |
M. Bender C. , Boettcher S. . Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 1998, 80(24): 5243
https://doi.org/10.1103/PhysRevLett.80.5243
|
32 |
Schindler J. , Li A. , C. Zheng M. , M. Ellis F. , Kottos T. . Experimental study of active LRC circuits with PT symmetries. Phys. Rev. A, 2011, 84(4): 040101
https://doi.org/10.1103/PhysRevA.84.040101
|
33 |
Longhi S., PT-symmetric laser absorber, Phys. Rev. A 82(3), 031801 (2010)
|
34 |
D. Chong Y.Ge L.D. Stone A., PT-symmetry breaking and laser-absorber modes in optical scattering systems, Phys. Rev. Lett. 106(9), 093902 (2011)
|
35 |
Gao Z. , T. M. Fryslie S. , J. Thompson B. , S. Carney P. , D. Choquette K. . Parity–time symmetry in coherently coupled vertical cavity laser arrays. Optica, 2017, 4(3): 323
https://doi.org/10.1364/OPTICA.4.000323
|
36 |
M. Lee J. , Factor S. , Lin Z. , Vitebskiy I. , M. Ellis F. , Kottos T. . Reconfigurable directional lasing modes in cavities with generalized PT symmetry. Phys. Rev. Lett., 2014, 112(25): 253902
https://doi.org/10.1103/PhysRevLett.112.253902
|
37 |
Sun Y. , Tan W. , Q. Li H. , Li J. , Chen H. . Experimental demonstration of a coherent perfect absorber with PT phase transition. Phys. Rev. Lett., 2014, 112(14): 143903
https://doi.org/10.1103/PhysRevLett.112.143903
|
38 |
Wang C. , R. Sweeney W. , D. Stone A. , Yang L. . Coherent perfect absorption at an exceptional point. Science, 2021, 373(6560): 1261
https://doi.org/10.1126/science.abj1028
|
39 |
Hajizadegan M. , Sakhdari M. , Liao S. , Y. Chen P. . High-sensitivity wireless displacement sensing enabled by PT-symmetric telemetry. IEEE Trans. Antenn. Propag., 2019, 67(5): 3445
https://doi.org/10.1109/TAP.2019.2905892
|
40 |
Sakhdari M. , Hajizadegan M. , Zhong Q. , N. Christodoulides D. , El-Ganainy R. , Y. Chen P. . Experimental observation of PT symmetry breaking near divergent exceptional points. Phys. Rev. Lett., 2019, 123(19): 193901
https://doi.org/10.1103/PhysRevLett.123.193901
|
41 |
Xiao Z. , Li H. , Kottos T. , Alu A. . Enhanced sensing and nondegraded thermal noise performance based on PT-symmetric electronic circuits with a sixth-order exceptional point. Phys. Rev. Lett., 2019, 123(21): 213901
https://doi.org/10.1103/PhysRevLett.123.213901
|
42 |
Guo Z. , Zhang T. , Song J. , Jiang H. , Chen H. . Sensitivity of topological edge states in a non-Hermitian dimer chain. Photon. Res., 2021, 9(4): 574
https://doi.org/10.1364/PRJ.413873
|
43 |
Qu Y. , Zhang B. , Gu W. , Li J. , Shu X. . Distance extension of S-PS wireless power transfer system based on parity–time symmetry. IEEE Trans. Circuits Syst. II Express Briefs, 2023, 70(8): 2954
https://doi.org/10.1109/TCSII.2023.3250236
|
44 |
Kim J. , Son H.-C. , Kim K.-H. , Park Y.-J. . Efficiency analysis of magnetic resonance wireless power transfer with intermediate resonant coil. IEEE Antennas Wirel. Propag. Lett., 2011, 10: 389
https://doi.org/10.1109/LAWP.2011.2150192
|
45 |
Saha C. , Anya I. , Alexandru C. , Jinks R. . Wireless power transfer using relay resonators. Appl. Phys. Lett., 2018, 112(26): 263902
https://doi.org/10.1063/1.5022032
|
46 |
Chen H.Qiu D.Rong C.Zhang B., A double-transmitting coil wireless power transfer system based on parity time symmetry principle, IEEE Trans. Power Electron. 38(11), 13396 (2023)
|
47 |
W. Hsu C. , Zhen B. , D. Stone A. , D. Joannopoulos J. , Soljačić M. . Bound states in the continuum. Nat. Rev. Mater., 2016, 1(9): 16048
https://doi.org/10.1038/natrevmats.2016.48
|
48 |
Wang J. , Shi L. , Zi J. . Spin Hall effect of light via momentum-space topological vortices around bound sates in the continuum. Phys. Rev. Lett., 2022, 129(23): 236101
https://doi.org/10.1103/PhysRevLett.129.236101
|
49 |
Zhang H. , Liu S. , Guo Z. , Hu S. , Chen Y. , Li Y. , Li Y. , Chen H. . Topological bound state in the continuum induced unidirectional acoustic perfect absorption. Sci. China Phys. Mech. Astron., 2023, 66(8): 284311
https://doi.org/10.1007/s11433-023-2136-y
|
50 |
X. Wang X. , Guo Z. , Song J. , Jiang H. , Chen H. , Hu X. . Unique Huygens–Fresnel electromagnetic transportation of chiral Dirac wavelet in topological photonic crystal. Nat. Commun., 2023, 14(1): 3040
https://doi.org/10.1038/s41467-023-38325-8
|
51 |
Wang Q. , Zhu C. , Zheng X. , Xue H. , Zhang B. , D. Chong Y. . Continuum of bound states in a non-Hermitian model. Phys. Rev. Lett., 2023, 130(10): 103602
https://doi.org/10.1103/PhysRevLett.130.103602
|
52 |
Fan S. , Suh W. , D. Joannopoulos J. . Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A, 2003, 20(3): 569
https://doi.org/10.1364/JOSAA.20.000569
|
53 |
Guo Z. , Jiang H. , Li Y. , Chen H. , S. Agarwal G. . Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material. Opt. Express, 2018, 26(2): 627
https://doi.org/10.1364/OE.26.000627
|
54 |
Zhang H. , Zhu K. , Guo Z. , Chen Y. , Sun Y. , Jiang J. , Li Y. , Yu Z. , Chen H. . Robustness of wireless power transfer systems with parity–time symmetry and asymmetry. Energies, 2023, 16(12): 4605
https://doi.org/10.3390/en16124605
|
[1] |
fop-21388-OF-zhouzhiwei_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|