Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (4) : 43209    https://doi.org/10.1007/s11467-023-1388-x
A universal non-Hermitian platform for bound state in the continuum enhanced wireless power transfer
Haiyan Zhang1, Zhiwei Guo1(), Yunhui Li2, Yaping Yang1, Yuguang Chen1(), Hong Chen1
1. School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
2. Department of Electrical Engineering, Tongji University, Shanghai 201804, China
 Download: PDF(5326 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Non-Hermitian systems with parity−time (PT)-symmetry have been extensively studied and rapidly developed in resonance wireless power transfer (WPT). The WPT system that satisfies PT-symmetry always has real eigenvalues, which promote efficient energy transfer. However, meeting the condition of PT-symmetry is one of the most puzzling issues. Stable power transfer under different transmission conditions is also a great challenge. Bound state in the continuum (BIC) supporting extreme quality-factor mode provides an opportunity for efficient WPT. Here, we propose theoretically and demonstrate experimentally that BIC widely exists in resonance-coupled systems without PT-symmetry, and it can even realize more stable and efficient power transfer than PT-symmetric systems. Importantly, BIC for efficient WPT is universal and suitable in standard second-order and even high-order WPT systems. Our results not only extend non-Hermitian physics beyond PT-symmetry, but also bridge the gap between BIC and practical application engineering, such as high-performance WPT, wireless sensing and communications.

Keywords non-Hermitian physics      parity−time asymmetry      bound state in the continuum      wireless power transfer     
Corresponding Author(s): Zhiwei Guo,Yuguang Chen   
Issue Date: 19 March 2024
 Cite this article:   
Haiyan Zhang,Zhiwei Guo,Yunhui Li, et al. A universal non-Hermitian platform for bound state in the continuum enhanced wireless power transfer[J]. Front. Phys. , 2024, 19(4): 43209.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1388-x
https://academic.hep.com.cn/fop/EN/Y2024/V19/I4/43209
Fig.1  Schematic diagrams of non-Hermitian models. (a) A general non-Hermitian physical model with multiple resonators. (b) Second-order non-Hermitian systems, including the PT-symmetric model with balanced gain−loss (g1= γ 2), and PT-asymmetric model with unbalanced gain−loss (g1 γ 2). (c) Third-order non-Hermitian systems, including PT-symmetric system with balanced gain−loss ( g1= γ 3) and symmetric coupling (κ12=κ23), and PT-asymmetric system with unbalanced gain−loss (g1γ3) and/or asymmetric coupling (κ12 κ 23).
Fig.2  BIC enabled high-efficient WPT. For the BIC condition of second-order non-Hermitian system κ= g1γ2, the evolution of the real part (a) and imaginary part (b) of the eigenfrequencies of the system described by Eq. (4) in the two-dimensional parameter space (g1, γ 2). (c) The variation of coupling strength with gain and loss to meet the BIC condition of κ= g 1 γ2. (d) The transfer efficiency of the second-order WPT system with the aid of BIC. (e−h) Same as (a−d), but for the third-order non-Hermitian WPT system. Real (e) and imaginary (f) parts of the eigenfrequencies of the system described by Eq. (10) in the parameter space of ( κ12, κ 23) when g1=4.8 kHz and γ3= g1 κ232/ κ 122. (g) The variation of loss with coupling strengths to meet the BIC condition of γ3= g1 κ232/κ122 when g1=4.8 kHz. (h) The calculated transfer efficiency of the third-order WPT system with the aid of BIC when g1=4.8 kHz and γ3= g1 κ232/κ122 (upper surface), and balanced gain−loss of g1= γ 3=4.8 kHz (lower surface). The intrinsic loss is considered Γ=0.195 kHz to match the actual experimental system.
Fig.3  Comparison of PT-symmetry and BIC for WPT in two different non-Hermitian systems. Evolution of the real part (a) and imaginary part (b) of the eigenfrequencies in the second-order PT-symmetric system with g1=4.8 kHz and γ2=4.8 kHz. (c) The corresponding transfer efficiency versus κ. (d−f) Similar to (a−c), but for the BIC-assisted efficient WPT, where the asymmetric parameters are g 1=4.8 kHz and γ2=7.2 kHz, respectively. (g−i) Same as (a−c), but for the third-order PT-symmetric system with g1=4.8 kHz and γ2= 4.8 kHz. (j−l) Same as (d−f), but for the BIC-assisted efficient WPT in the third-order non-Hermitian system with g1=4.8 kHz and γ3= g1 κ232/ κ 122. The intrinsic loss is considered as Γ =0.195 kHz, which is consistent with the actual WPT system composed of lossy coils.
Fig.4  Third-order non-Hermitian WPT systems. (a) Third-order WPT system consisting of three resonant (transmitter, relay and receiver) coils and two non-resonant (source and load) coils. (b) The corresponding photograph of the experimental setup.
Fig.5  Flexible regulation of the BIC for efficient WPT in the third-order system. Evolution of the real part and imaginary part of the eigenfrequencies in the third-order non-Hermitian WPT system with different gain−loss ratios: (a, d) g1/γ3= 0.5(g 1=4.8 kHz and γ3= 9.6 kHz); (b, e) g1/γ3= 1 (g1=9.6 kHz and γ3= 9.6 kHz); (c, f) g1/γ3= 2 (g1=9.6 kHz and γ3= 4.8 kHz). The coupling strength between the transmitter coil and relay coil is fixed, that is, κ12= 13.1 kHz with s12=15 cm. The solid line and the pentagram represent the theoretical and experimental results respectively. (g−i) Similar to (a−f), but for the power transfer efficiency versus s23 at the fixed working frequency ω0. The BIC with real eigenvalue ω1= ω 0 is marked by the black arrow. The intrinsic loss of the resonant coil is Γ=0.195 kHz. The calculated (measured) transfer efficiency is marked by solid lines (circles).
Fig.6  Comparison of transfer efficiency between BIC-assisted systems and balanced gain−loss systems. (a) The transfer efficiency of second-order WPT systems: balanced gain−loss system (g1=γ2=4.8 kHz), and BIC-assisted system (g1=4.8 kHz and γ2= κ 2/g1). (b) Same as (a), but for the third-order WPT systems: balanced gain−loss system (g1= γ 3=4.8 kHz), and BIC-assisted system (g1= 4.8 kHz and γ3=g1κ232/ κ 122). The calculated and experimental results are marked by solid lines and circles respectively.
1 Krasnok A., G. Baranov D., Generalov A., Li S., Alu A.. Coherently enhanced wireless power transfer. Phys. Rev. Lett., 2018, 120(14): 143901
https://doi.org/10.1103/PhysRevLett.120.143901
2 Song M., Jayathurathnage P., Zanganeh E., Krasikova M., Smirnov P., Belov P., Kapitanova P., Simovski C., Tretyakov S., Krasnok A.. Wireless power transfer based on novel physical concepts. Nat. Electron., 2021, 4(10): 707
https://doi.org/10.1038/s41928-021-00658-x
3 Kurs A., Karalis A., Moffatt R., D. Joannopoulos J., Fisher P., Soljačić M.. Wireless power transfer via strongly coupled magnetic resonances. Science, 2007, 317(5834): 83
https://doi.org/10.1126/science.1143254
4 Xie Y., Zhang Z., Lin Y., Feng T., Xu Y.. Magnetic quasi-bound state in the continuum for wireless power transfer. Phys. Rev. Appl., 2021, 15(4): 044024
https://doi.org/10.1103/PhysRevApplied.15.044024
5 Assawaworrarit S., Yu X., Fan S.. Robust wireless power transfer using a nonlinear parity–time-symmetric circuit. Nature, 2017, 546(7658): 387
https://doi.org/10.1038/nature22404
6 Li J.Zhang B., A wireless power transfer system based on quasi‐parity–time symmetry with gain–loss ratio modulation, Int. J. Circuit Theory Appl. 51(3), 1039 (2023)
7 Miao Z., Liu D., Gong C.. Efficiency enhancement for an inductive wireless power transfer system by optimizing the impedance matching networks. IEEE Trans. Biomed. Circuits Syst., 2017, 11(5): 1160
https://doi.org/10.1109/TBCAS.2017.2740266
8 Song J., Yang F., Guo Z., Wu X., Zhu K., Jiang J., Sun Y., Li Y., Jiang H., Chen H.. Wireless power transfer via topological modes in dimer chains. Phys. Rev. Appl., 2021, 15(1): 014009
https://doi.org/10.1103/PhysRevApplied.15.014009
9 Guo Z.Jiang J.Wu X.Zhang H.Hu S. Wang Y.Li Y.Yang Y.Chen H., Rotation manipulation of high-order PT-symmetry for robust wireless power transfer, Fundamental Res., doi: 10.1016/j.fmre.2023.11.010 (2023)
10 Guo Z., Yang F., Zhang H., Wu X., Wu Q., Zhu K., Jiang J., Jiang H., Yang Y., Li Y., Chen H.. Level pinning of anti-PT symmetric circuits for efficient wireless power transfer. Natl. Sci. Rev., 2023, 11(1): nwad172
https://doi.org/10.1093/nsr/nwad172
11 L. Cannon B., F. Hoburg J., D. Stancil D., C. Goldstein S.. Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE Trans. Power Electron., 2009, 24(7): 1819
https://doi.org/10.1109/TPEL.2009.2017195
12 Zhang L., Yang Y., Jiang Z., Chen Q., Yan Q., Wu Z., Zhang B., Huangfu J., Chen H.. Demonstration of topological wireless power transfer. Sci. Bull. (Beijing), 2021, 66(10): 974
https://doi.org/10.1016/j.scib.2021.01.028
13 Sakhdari M., Hajizadegan M., Y. Chen P.. Robust extended-range wireless power transfer using a higher-order PT-symmetric platform. Phys. Rev. Res., 2020, 2(1): 013152
https://doi.org/10.1103/PhysRevResearch.2.013152
14 Zhou J., Zhang B., Xiao W., Qiu D., Chen Y.. Nonlinear parity–time-symmetric model for constant efficiency wireless power transfer: Application to a drone-in-flight wireless charging platform. IEEE Trans. Ind. Electron., 2019, 66(5): 4097
https://doi.org/10.1109/TIE.2018.2864515
15 Kim H., Yoo S., Joo H., Lee J., An D., Nam S., Han H., H. Kim D., Kim S.. Wide-range robust wireless power transfer using heterogeneously coupled and flippable neutrals in parity–time symmetry. Sci. Adv., 2022, 8(24): eabo4610
https://doi.org/10.1126/sciadv.abo4610
16 Guo Z., Long Y., Jiang H., Ren J., Chen H.. Anomalous unidirectional excitation of high-k hyperbolic modes using all-electric metasources. Adv. Photonics, 2021, 3(3): 036001
https://doi.org/10.1117/1.AP.3.3.036001
17 P. Sample A., A. Meyer D., R. Smith J.. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron., 2011, 58(2): 544
https://doi.org/10.1109/TIE.2010.2046002
18 Zeng C., Guo Z., Zhu K., Fan C., Li G., Jiang J., Li Y., Jiang H., Yang Y., Sun Y., Chen H.. Efficient and stable wireless power transfer based on the non-Hermitian physics. Chin. Phys. B, 2022, 31(1): 010307
https://doi.org/10.1088/1674-1056/ac3815
19 Tesla N.. Apparatus for transmitting electrical energy. U. S. Patent, 1914, 1: 119,732
20 Huang T., Wang B., Zhang W., Zhao C.. Ultracompact energy transfer in anapole-based metachains. Nano Lett., 2021, 21(14): 6102
https://doi.org/10.1021/acs.nanolett.1c01571
21 X. Wang B., Y. Zhao C.. Topological phonon polariton enhanced radiative heat transfer in bichromatic nanoparticle arrays mimicking Aubry–André–Harper model. Phys. Rev. B, 2023, 107(12): 125409
https://doi.org/10.1103/PhysRevB.107.125409
22 Wu Y., Kang L., H. Werner D.. Symmetry in non-Hermitian wireless power transfer systems. Phys. Rev. Lett., 2022, 129(20): 200201
https://doi.org/10.1103/PhysRevLett.129.200201
23 Hao X., Yin K., Zou J., Wang R., Huang Y., Ma X., Dong T.. Frequency-stable robust wireless power transfer based on high-order pseudo-Hermitian physics. Phys. Rev. Lett., 2023, 130(7): 077202
https://doi.org/10.1103/PhysRevLett.130.077202
24 Li A., Wei H., Cotrufo M., Chen W., Mann S., Ni X., Xu B., Chen J., Wang J., Fan S., W. Qiu C., Alù A., Chen L.. Exceptional points and non-Hermitian photonics at the nanoscale. Nat. Nanotechnol., 2023, 18(7): 706
https://doi.org/10.1038/s41565-023-01408-0
25 Liang C., Tang Y., N. Xu A., C. Liu Y.. Observation of exceptional points in thermal atomic ensembles. Phys. Rev. Lett., 2023, 130(26): 263601
https://doi.org/10.1103/PhysRevLett.130.263601
26 Li Y., Ao Y., Hu X., Lu C., T. Chan C., Gong Q.. Unsupervised learning of non‐Hermitian photonic bulk topology. Laser Photonics Rev., 2023, 17(12): 2300481
https://doi.org/10.1002/lpor.202300481
27 Ke S., Wen W., Zhao D., Wang Y.. Floquet engineering of the non-Hermitian skin effect in photonic waveguide arrays. Phys. Rev. A, 2023, 107(5): 053508
https://doi.org/10.1103/PhysRevA.107.053508
28 M. Zhang S., Jin L.. Localization in non-Hermitian asymmetric rhombic lattice. Phys. Rev. Res., 2020, 2(3): 033127
https://doi.org/10.1103/PhysRevResearch.2.033127
29 El-Ganainy R., G. Makris K., Khajavikhan M., H. Musslimani Z., Rotter S., N. Christodoulides D.. Non-Hermitian physics and PT symmetry. Nat. Phys., 2018, 14(1): 11
https://doi.org/10.1038/nphys4323
30 M. Bender C.Boettcher S.N. Meisinger P., PT-symmetric quantum mechanics, J. Math. Phys. 40(5), 2201 (1999)
31 M. Bender C., Boettcher S.. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 1998, 80(24): 5243
https://doi.org/10.1103/PhysRevLett.80.5243
32 Schindler J., Li A., C. Zheng M., M. Ellis F., Kottos T.. Experimental study of active LRC circuits with PT symmetries. Phys. Rev. A, 2011, 84(4): 040101
https://doi.org/10.1103/PhysRevA.84.040101
33 Longhi S., PT-symmetric laser absorber, Phys. Rev. A 82(3), 031801 (2010)
34 D. Chong Y.Ge L.D. Stone A., PT-symmetry breaking and laser-absorber modes in optical scattering systems, Phys. Rev. Lett. 106(9), 093902 (2011)
35 Gao Z., T. M. Fryslie S., J. Thompson B., S. Carney P., D. Choquette K.. Parity–time symmetry in coherently coupled vertical cavity laser arrays. Optica, 2017, 4(3): 323
https://doi.org/10.1364/OPTICA.4.000323
36 M. Lee J., Factor S., Lin Z., Vitebskiy I., M. Ellis F., Kottos T.. Reconfigurable directional lasing modes in cavities with generalized PT symmetry. Phys. Rev. Lett., 2014, 112(25): 253902
https://doi.org/10.1103/PhysRevLett.112.253902
37 Sun Y., Tan W., Q. Li H., Li J., Chen H.. Experimental demonstration of a coherent perfect absorber with PT phase transition. Phys. Rev. Lett., 2014, 112(14): 143903
https://doi.org/10.1103/PhysRevLett.112.143903
38 Wang C., R. Sweeney W., D. Stone A., Yang L.. Coherent perfect absorption at an exceptional point. Science, 2021, 373(6560): 1261
https://doi.org/10.1126/science.abj1028
39 Hajizadegan M., Sakhdari M., Liao S., Y. Chen P.. High-sensitivity wireless displacement sensing enabled by PT-symmetric telemetry. IEEE Trans. Antenn. Propag., 2019, 67(5): 3445
https://doi.org/10.1109/TAP.2019.2905892
40 Sakhdari M., Hajizadegan M., Zhong Q., N. Christodoulides D., El-Ganainy R., Y. Chen P.. Experimental observation of PT symmetry breaking near divergent exceptional points. Phys. Rev. Lett., 2019, 123(19): 193901
https://doi.org/10.1103/PhysRevLett.123.193901
41 Xiao Z., Li H., Kottos T., Alu A.. Enhanced sensing and nondegraded thermal noise performance based on PT-symmetric electronic circuits with a sixth-order exceptional point. Phys. Rev. Lett., 2019, 123(21): 213901
https://doi.org/10.1103/PhysRevLett.123.213901
42 Guo Z., Zhang T., Song J., Jiang H., Chen H.. Sensitivity of topological edge states in a non-Hermitian dimer chain. Photon. Res., 2021, 9(4): 574
https://doi.org/10.1364/PRJ.413873
43 Qu Y., Zhang B., Gu W., Li J., Shu X.. Distance extension of S-PS wireless power transfer system based on parity–time symmetry. IEEE Trans. Circuits Syst. II Express Briefs, 2023, 70(8): 2954
https://doi.org/10.1109/TCSII.2023.3250236
44 Kim J., Son H.-C., Kim K.-H., Park Y.-J.. Efficiency analysis of magnetic resonance wireless power transfer with intermediate resonant coil. IEEE Antennas Wirel. Propag. Lett., 2011, 10: 389
https://doi.org/10.1109/LAWP.2011.2150192
45 Saha C., Anya I., Alexandru C., Jinks R.. Wireless power transfer using relay resonators. Appl. Phys. Lett., 2018, 112(26): 263902
https://doi.org/10.1063/1.5022032
46 Chen H.Qiu D.Rong C.Zhang B., A double-transmitting coil wireless power transfer system based on parity time symmetry principle, IEEE Trans. Power Electron. 38(11), 13396 (2023)
47 W. Hsu C., Zhen B., D. Stone A., D. Joannopoulos J., Soljačić M.. Bound states in the continuum. Nat. Rev. Mater., 2016, 1(9): 16048
https://doi.org/10.1038/natrevmats.2016.48
48 Wang J., Shi L., Zi J.. Spin Hall effect of light via momentum-space topological vortices around bound sates in the continuum. Phys. Rev. Lett., 2022, 129(23): 236101
https://doi.org/10.1103/PhysRevLett.129.236101
49 Zhang H., Liu S., Guo Z., Hu S., Chen Y., Li Y., Li Y., Chen H.. Topological bound state in the continuum induced unidirectional acoustic perfect absorption. Sci. China Phys. Mech. Astron., 2023, 66(8): 284311
https://doi.org/10.1007/s11433-023-2136-y
50 X. Wang X., Guo Z., Song J., Jiang H., Chen H., Hu X.. Unique Huygens–Fresnel electromagnetic transportation of chiral Dirac wavelet in topological photonic crystal. Nat. Commun., 2023, 14(1): 3040
https://doi.org/10.1038/s41467-023-38325-8
51 Wang Q., Zhu C., Zheng X., Xue H., Zhang B., D. Chong Y.. Continuum of bound states in a non-Hermitian model. Phys. Rev. Lett., 2023, 130(10): 103602
https://doi.org/10.1103/PhysRevLett.130.103602
52 Fan S., Suh W., D. Joannopoulos J.. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A, 2003, 20(3): 569
https://doi.org/10.1364/JOSAA.20.000569
53 Guo Z., Jiang H., Li Y., Chen H., S. Agarwal G.. Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material. Opt. Express, 2018, 26(2): 627
https://doi.org/10.1364/OE.26.000627
54 Zhang H., Zhu K., Guo Z., Chen Y., Sun Y., Jiang J., Li Y., Yu Z., Chen H.. Robustness of wireless power transfer systems with parity–time symmetry and asymmetry. Energies, 2023, 16(12): 4605
https://doi.org/10.3390/en16124605
[1] fop-21388-OF-zhouzhiwei_suppl_1 Download
[1] Xu-Dan Xie, Zheng-Yuan Xue, Dan-Bo Zhang. Variational quantum algorithms for scanning the complex spectrum of non-Hermitian systems[J]. Front. Phys. , 2024, 19(4): 41202-.
[2] Yi-Piao Wu, Guo-Qing Zhang, Cai-Xia Zhang, Jian Xu, Dan-Wei Zhang. Interplay of nonreciprocity and nonlinearity on mean-field energy and dynamics of a Bose–Einstein condensate in a double-well potential[J]. Front. Phys. , 2022, 17(4): 42503-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed